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ANonlinear  Simulation Method of  3-D
            Motions in Waves  (ist Report)

     Formulation of  the Method  with  Acceleration Potential

Body

by KatsujiTanizawa*

                                       Summary

  A  full nonlinear  method  to simulate  three dirnensienal body  motions  in waves  is presented. This is
a  tirne domain  method  to simulate  Euler's equation  of ideal fluld motion  coupled  with  the equation  of
solid  body motions.

  Introclucing Prandtl's nonlinear  acceleration  petentfal, whose  gradient gives acceleration  of  the  fluid,
Euler's differential equation  of  the ideal fluid motion  is converted  to the integral equation  of  the
acceleration  potential. The boundary condition  of the acceleration  potential  on  the bocly surface  is
systematically  derived fro'm the kinematic relation  between the  .acceleration of the solid body and  the
acceleration  of the fluid on  the body  surface.  Since this kinematic boundary condition  is a  function of
the body acceleration,  the  boundary values  on  the floating body  can  not  be evaluated  explicitly. To
overcorne  this point, the unknown  acceleration  of  the  free floating body is elirninated  by substituting
the equation  of  body  motion  into kinematic cendition,  then implicit body surface  bounclary condition
is derived. This is the kinematic and  dynamic  condition  which  guarantees  dynamic  equilibrium  of
forces between  ideal fluid and  the solid  body  at  any  instance. With  the  free-surface boundary condition
of  the acceleration  potential, the  forrnulation of  the boundary value  problem  for the acceleration  field
is completed,

  Although  this formulation of  the  acceleration  field is mathematically  correct,  this is not  appropriate

to numerical  computation,  because Prandtl's nonlinear  acceleratlon  petential does not  satisfy  Laplace's
equation.  Therefore, the nonlinear  part is shifted  from the governing  equation  to the  boundary
condition,  then  the  alternative  fermulation for the numerical  computation  is derived. The
computational  flow of the nonlinear  simulation  method  basecl on  this alternative  formulation is also
given.  In order  to show  the accuracy  of  this new  method,  two  dimensional numerical  results  are

presented. They  show  that the  conservation  of  mass,  momentum  and  energy  are  satisfiecl  excellently.

                1. Introduction

  Time  domain  full nonlinear  simulation  is the most

direct appreach  to compute  large amplitude  motiens  of

arbitrary  shaped  bodies in waves.  But  this approach
was  neither  appropriate  to analytical  methocls  nor

numericai  methods  when  high speed  CPU  was  expen-

sive  and  hard to available.  Therefere, Iinear theories
like Slender body  theory,  Strip theory, Unified theory
etc.  have  been investigated and  used  as  practical tools
to study  the seakeeping  performance  of shipsi)･2),3).

These linear theories  are  based on  four basic assump-
tions, (1) Ideal fluicl, (2) Small displacement of freen
$urface,  (3) Small  motions  of  fioating body and  (4)
Slender body  shape.  Nowadays, the assumption  (4) is
going  to be removed  by the development  of threedimen-
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sional  higher order  panel metheds`)'5)'6].  Anyway, the

linear theories describe arbitrary  but small  amplitude

body  motions  by superposing  frequency response  func-
tions  of  the body to regular  waves,  then  solve  the

problems  in frequency domain. So, the time  clependent
variables  are  assumed  to be sinusoidal  and  can  be '

separated  as eiblt form, where  a) is encounter  frequency

of  body and  wave  component.  Therefore, the accelera-
tion of  fluid and  body  can  be described as  iweiW  ̀ form,
then  the  simultaneous  equation  ef fluid and  body
motions  can  be solved  in frequency domain to deter-
mine  added  rnass  and  damping  coeMcient.  The  Iinear
theories  are  very  useful  as  far as motions  of  body  and

free-surface are small  enough  to hold the assumptions

(1), (2) and  (3), but cannot  be applied  to estimate
large bedy  motions.  Of course,  perturbation method

can  be used  to extend  linear theories to weak  nonlinear

problem, but not  te the  full nonlinear  problem  like the
bottom  emerging  ship  motions  in heavy  seas  or  capsiz-

ing of  small  vessels  in a plunging wave.

  However,  recent  design ofice  of  ship  yards  are  crav-
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ing  for powerfu] numerical  tools  for the advanced  ship

deslgn by nontinear  analysis  and  so  development of the

time  domain  simutation  method  is an  issue of  burning
concern.  Fertunately, recent  development  of  high speecl

CPU  and  parallel processing technology  will  open  the

possibility  to apply  three dimensional time domain
simulation  methods  as design teols in near  future.

  The  numerical  treatment for full nonlinear  wave

simulation  was  firstty given by Longuet'Higgins in 1976
and  his method  js well  known  as  Mixecl Eulerian and

Lagrangian  rnethod  (MEL). Detonated  by this break

through, many  time domain simulation  methods  for

nonlinear  wave  body interaction problem  were  devel-
oped  in past twe  decades, but many  of them  are  not

consistent  from  hydrodynamical  point  of  view  because
the hydrodynamic pressure  is computed  by the back-
ward  finite difference of  the velocity  potential and  so

hydrodynamic  equilibr{um  of  forces between  water  and

fioating bodies are  not  guaranteed  consequently,  For

the  consistent  time  domain simulation,  it is indispens-

able  to solve  the simultaneous  equations  of  icleal fiuid
motion  and  floating body motions.  The first consistent

simulation  method  for two  dimensional problem  was

developecl by Vinje &  BrevigS' in 1981, They
decomposed the acceleration  field into four modes  cor-

responding  to the unit  acceleration  of  the three body
motions  (heave sway  ancl  roll)  and  the  other  accelera-

tions  like the centripetal  acceleration  comes  from the

velocity  field, then  solved  the  boundary  value  problem
corresponding  to each  modes  in their simulation

method.  The solutions  of the each  mocles  were  used  with

the equation  of  floating body motions  to determine
heave, sway  and  roll acceleration  of the bocly. Since
Vinje's method  solves  the  acceleration  field four times
for two  dimensional  problem  and  seven  times if applied

to three  dimensional case,  it is CPU  time  consuming.

So, the  authorsZ!)  developecl further rational  rnethod  to

solve  the sirnultaneous  equations  in the acceleration

field in 1990. The  authors  introduced the implicit body
surface  boundary conditlon  derived from the kinematic
body surface  boundary condition  and  the equation  of

body  motions,  and  showecl  the simultaneous  equations

of  ideal fiuicl motion  and  fioating body  motions  could  be

solved  without  decomposition. Van  Daalen]3) also  carne

up  to the same  idea independently in 1993.

  But, still remainecl  question is the  exact  kinematic

body surface  boundary  cenditions  for the acceleration
field. Since the retation  between the fluid acceleration

and  the boundary condition  is not  clearly  shown  in these
works,  physical  meaning  to sotve  the acceleration  field
is obscure  even  now.  Therefore, Prandtl"s nonlinear

acceleration  potential is introduced te formulate the
boundary value  problem  of  the acceleration  filed in this
paper. Since Prandtl's nonlinear  acceleration  potential  is
hydrodynamic  pressure itself and  its gradient gives
acceleration  of the fluid, the physical meaning  to solve

the acceleration  field can  be clearly  shewn.  Thus S2

andS3  of  this paper are  spent  for the  formulation of  the

boundary value  probletn on  Prandtl's nonlinear  acceler-

ation  potential. The  construction  of  the  numerical

simulation  method  is written  in S 4 and  g 5 and  some

examples  of  numericaL  sirnulations  ancl  their  accuracy

checks  are  presentecl in g 6.

2. Euler's equation  of  ideal fluid motion  and  the

   acceleration  potelltial

  First of  all, let us  introduce the nonlinear  acceleration

potential from  Euler's equation  of  the ideal fluid motion.
Nondimensional  Euler's equation  of  the ideal fiuid
motion  is written  as

    a==  SVt ==  3Vt +(v･7)v==  
-7p-7z

 (i)

where  the density of･the  fiuid and  the  gravitational
acceleration  are  unities.  DPt  is the rnaterial  derivative,
v  and  a  are  velocity  and  ac ¢ eleration  of  the fluid

respectively.  Vectors are  written  in bold type face in
this article. Similar to the  velocity  potential  ip whose

gradient  gives  the velocity  of  the fluid as  v=7di,  a

scalar  function which  gradient gives the  acceleration  of

the fiuid can  be derived from  equation  (1). Substitut-
ing the relation  v=7ip,  equation  ( 1 ) is written  as

    a=tt 
DD7,di

 =-  
0g,di

 +(7di･7)7di

     =C7  gdit +l7(t(l7di)2) =7(  
aodit
 +t(7di)2) (2}

then gradient of Oip!Ot+1f2(7ip)2 gives  the acceleration

of  the  fluid. Here, let us  define the nonlinear  accelera-

tion potential ¢  as

    O== g¢t +t(7  di)2 (3)

From  the definition, fluid acceleration  is expressed  as  a

==l7e.  This is the general form of  Prandtl's accelera-

tion potential, Since the  second  term  of  the right  side  of

equation  (3) is nonlinear,  this acceleration  potential

dose net  satisfy  Laplace's equation  7!OIO, but the
acceleration  field describecl by  this  acceleration  poten-

tial is irrotational. When  Prandtl applied  the  accelera･

tion potential to his wing  theory, he assumed  the  veloc-

ity disturbance is small  compared  to the wing  forwarcl･

speed  V and  usecl  the  Iinearized form O ==eiplat+  V7ip.
Therefore the linearlized acceleration  potential is much
well  known.  But, in this article,  nonlinear  acceleration

potential defined by  equation  ( 3 ) is used  to solve  fluid
and  body motions,  From  equations  (1), (2) and  (3),
the acceleration  potential i$ written  in another  forrn as

    O=-P-Z+const
      CIntegral constant  can  be set to zero. ), (4)
so  that physical meaning  of  the acceleration  potential is

very  clear.  Despite of  this clearness,  the acceleration

potential  is rarely  used  to solve  the hydrodynamic prob-
lems. The reason  seems  to be  that  the  acceleration  field

is not  necessarily  solved  in the  framework  of  Iinear

theory, But in adclition. there exist  two  unsolved  prob-

lems. These are  <1) the  body  surface  boundary  condi-

tien of  the acceleration  potential is not  clearly  ebtained
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and  (2) the acceleration  potential is non]inear  and

dose not  satisfy  Laplaee's equation.  These  problems

are  overcorne  in the fnllewing sections.

3. Boundary  conditions  of  the acceleration  field

  3.1 Acceleration of  fluid particle sliding  on  the

       body  surface

  In order  to get the kinematic body surface  boundary

condition,  the acceleration  of  fiLiid particle  sliding  on

the body surface  is studied  first. As illustrated in Fig. 1,

the space  fixed reference  frame O-XYZ  and  the bocly
fixed reference  frame  o-xu2  are  employed.  The origin

o  is situated  at  the  center  of  gravity ef  the body and  the
frame  o"xgy2  moves  with  translat{ng velocity  vo and

angular  velocity  w.  The  relation  between  these  two

frames  is described by the fundamental  vectors  i,j, h,

The  fundarnental vector  means  polar vector  for the

translating motion  and  axlal  vector  for the  angular

motien.  So, both vo and  w  can  be written  as  vo=ve=i

+voal'+voik  and  (v==tori+casuJ'r'  wzk  respectively.  In
Fig. 1, P  is a  point fixecl to the fluid particle  slicling  on

the  body  surface,  Using the  positioning vectors  Ro  and

r=xpi+yal'+apk,  the  positioning vector  R  of point P

is expressed  as

   R=Ro+r  (5)
Here, we  know  the relation  between time differential

operators  dldt in O-X}CZ  frame and  [(l(dt] in o-xyz

frame  as cUdti[cUdt]+to × . Using the relation,  the

derivative of  equation  (5) with  respect  to time  gives
the  velocity  of  point P

    v=`Re+fi=ve+[t]+diXr=vo+[v]+wXr

                                         (6)
where  [v]=:["l=thpi+tial'+2pk. S[milarly, the

derivative of  equation  (6) with  respect  to time gives
the acceleration  of  point  P

    a=Ro+h'm-ae+diXr+wx(wxr)+[a]+2te ×[v]
                                         (7)
where  ao+di × r  is the  acceleration  due to the trans-
lational and  angular  acceleration  of  the bedy, w ×(to ×
r)  is the centripetal  acceleration  due to the angular

X

z

Fig.1 Frame  of reference

x
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velocity  of  the body, [a]=[F]=jt'pi 1' !t'al'+ k'ph is the
acceleration  of  point P  observecl  from  o-,ryz  fratne and
-2co

 × [v] is Cor{olis acceleration  orthogonal  to bl and

[vl･
  :l.2 Kinematic  boundary  condition  on  the bedy
      surface

  Similar to the kinematic boundary condition  for the
velecity  potential, the kinematic boundary condition  for
the  acceleration  petential can  be expressed  as  a  sca]ar

preduct of the acceLeration  vector  of  the  fluid particle
ancl the unit  normal  vector  of  the body  surface  at  the

fluid particle considered.  The  kinematic  boundary

conditions  for verocity  and  acceleration  potentials are

    gS-n･7ip-n･v' (s)

    e¢
       =n+7O==n･a

 (9)
    0nwhere

 n=nti+nal'+nik  is the unit  normal  vector  of

the  body  surface.  Using equation  (6), we  have

    n.v=:n.(vo+wXr)+n.[v].

Since n  and  [vl are  orthogonal,  the second  term  dis-
appears  and  following well  known  body surface  bound-
ary  condition  for the velocity  petential is obtained.

   -99=n･v=n･(v.+wxr)  ao)
    enSimilarly,

 equation  (7) is used  to have

    n.a==n･(ao+diXr)+n･tu × (wXr)
         +n･[a]+n･2tu × [vl. (ID
Here the  velocity  potential di can  be used  to express  [v]
and  [a], From  equation  (6), [v] is written  as

    [v]=v-vo-wXr==7di-ve-toXr. (12)
Since [v] is tangential to the body  surface  as  far as  no

separation  occurres,  normal  and  tangential  components

of [a] are  given by

   [a]n==-kn([v])2
                                         (13)
   [a]s=[O].,
where  kn is normal  curvature  of  the bedy surface  along

the path line of fiuid. As shown  in Fig. 2 if the  piece of

bocly surface  around  point P  is smooth  enough  and  be
expressed  by a  pair of  parameters  u,  v  as x  ==x(u,  v), y
=(za,  v),  z==2(u,  v),  and  if the path  line of  point P  is
expressed  by  projection of  line u(s),  v(s)  on  the  u-v  ･

plane as  P(s)==P(u(s),  v(s)),  the  normal  curvature  kn
is given by thesecond fundamental form of clifferential

u

body

Fluid domain

Fig.2 Local coordinate  system
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geometry

   k.(,)=ii (d:gs>, 
d:gs)).

 a4)

Term  [a]s in equatien  (13) is unknown,  but n'{a]s

disappears because uf  erthogonality.  Then, n'[a]

becomes

   n.[a]==n.([a]n+[a]s)==n'[a]n

        =-kn([V)]2=mfen(7ipLVe-toXr)Z  (15)
Finatly the kinematic  boundary eondition  of  the accel-

eration  fieCd is reduced  to be
    o¢
      ==n･(ao+diXr)+n･tu × (wXr)
    On
        

nfen(l7ip+vo'wXr)U

        +n･2to(7ip-v.-taXr).  (16)

 3. 3 Euler's equation  of  solid  body  motions  coupled

      wi.th  fiuid motion

  Since the  body surface  boundary  condition  given by

equation  (16) includes the bocly acceleration  ao  and  di,

this boundary condition  can  not  be applied  to the  free

fioating body surface  because the body aeceleratlon  is
unknown  before we  solve  the acceleration  field. In such
a  case,  the equation  of  body rnotion  can  be used  to

eliminate  unkhown  bocly acceleration  from  equation

(I6>.
  The  equation  of translational body motion  is given by

   mao=TnOo=m[ijo]+wXmvo=f  (17)
where  m  is the body mass,  ao==aori+aoyj+aoalt  is the
acceleration  of  the center  pf gravity  and  f=  fii+ aj
+Gk  is the force acts  to the body. Taklng notice  of

that  the  relation  between  O-Xl'Z  frarne and  o-xyz

frame is described by the fundamental vectors  i,j, h,
the components  of above  equation  are  given by

   7naox=:m(VoJ"voztoyLvogtoz)=1l

   maey==m(Voy+vexcai-Veicax)  
:j[}t

 (18)
   maol=m(Vol+Voyto=TVoxtov)==fiJ.

Similarly, the equation  of  angular  body motion  and  its
cornponents  are  given  by

   H-[H]+caxH-=M  (19)

   IZr+IILtoy-HLfwfl==n4le)

   H}+lltsdi.-Mtu.==vat (20)
   th+HLwx-H=wy==na1,
where  H=  Hti+HLfj+Mh  is angular  rnornentum  of

the body and  M==Mxi+taJJ+n(ek  is moment  acts  to

the body. With the angrilar  velocity  tu and  the inertia
tenser

      rl}x Gy Ual

   I="LIyx Iby Ilal (21)
      Lla  i}y Ihe],

the  components  of  angular  mornentum  H=fo  are  given
by

[21-[2･ i:･ Sligi} (22)

Substituting this equation  into equation  (20) giyes fol-
lowing equation.

I.u toxt(taz -  luy>a)yaiz - (tu( cbg- cviaJr)

  +  lilx( cbg +  w.iwy)  - Jyi< a4  
-

 cai) =  MJ
lyycby+(Ir.c"I}e)caztox+lyi(toi-caxwg)
  +i,ry(ev.t+togav2)+I}x(wY-ml)=My

Iazcbi+(fy"-Irx)aJraiy'Ff}t(ebr-togcaD

  +l}i(diy+(vta).r)+I.ry(tvi'wi);va

(23}

This equation  is called  Euler's equation  of  three  dimen-
sional  angular  bocly motions.
  Next, let us introduce the  generalized  va]ues.  The

genera]ized  inertia tensor of the body is defined as

nt-

mooooeomooooeoDo
oooo

m  o o o
O kx Gy Lt
O igx Il,y ty-
e lir iEy la

(24)

The  generalized  body acceleration  a  is defined as  a  pair

of  translational acceleration  ao=  aexi+aoyj  r' ae-k  and

angular  acceleration  di =[di]+wXto=[dil=  dixi+diyJ'

+  di.h

   a=(aoxi+aoal'+ao"k,toxi+diyj+cbuk)  (25)
In the  same  way,  the  generalized force acts  to the body

is also  defined as  a  pair of  force and  moment

   F=(.t}i+jUj+fik,  uait' M.i+M.k)  (26>
Using these generalized values,  equation  C17) can  be

combined  with  <19) to have single  equation

   .ffa+B=F  (27)
The  components  of  this equation  are

moooooomoooooooo

oooo

m  o o o
O tix lty ILi

O fbx lly Ili
O la Gy Ih

ae=aoyaezca=Wywt

                  o

                  o
                  o
+
  (ILi-llg)wyuairml}yavtwx+Izaa,xto,+ll.(w2.-di)
  (1}xmlLe)midix-Ibetordiy+l}yte.ywa+1le:(m2z-cai)
  (lly-Iix)wxtoy-latoytoE+hztoi(tit+ilay(wi-WZ)

 A
 fi
 A
  ua
 ua
 in(2S)

where  the  second  term  of the left side  is the  eomponents

of  B which  appears  because o-xyg  frame has angular
velocdity.

  On  the  other  hand, hydraulic force e  and  moment  ILts

act  to the  body  are  expressed  by the  pressure  integral
on  the body surface

   t-kpnds  (2g)

   ii(f=kpnxms.  (3o)

Using the hydraulic force L=IVtei+Lf.uj+filak and

moment  tl{)=:Mfxi+Mfuj+idkk,  the generalized
hydraulic forth can  be  defined as

   fi}==(thi+f}vj+]Vlrk,Mttri+Mfgj+fi(,th). {3I)
Moreover,  normal  vector  can  be also  generalized with  n

and  nXras
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    N=(n,  n × r)

      =(nritnyj+ntk,(nyz-niu)i

        +(nxx-n=z)j-(nxy-nyx)h).  (32)
 Using these  generalizect  values,  equation  {29} and  <30)
 can  be brought into single  form

    e-Lprvds  (33)

 Substituting equation  ( 4 ) into equation  (33) ,
 the gener-

 alized  hydraulic force is written  as  a  function of the

 acceleration  potentiat

    L-L(-o-z)lvd,,  (34)

Then,  denoting  other  forces Iike gravity, thrust etc.  as  a

generalized force FU, we  have  the generalized  total

ferce acts  on  the body

    F-i;:f+a=.41(- ¢ -z)ivds+ila. (3s)

Equation (27) and  (35> gives  the  generalized  Euler's

equation  of  three dimensional body motions  couplecl

with  fluid motion.

    "a+B=k(-o-z>ivds+iila,  (36)

  3.4 Implicit body  surface  boundary  condition

  Using the  generalized acceleration  a  and  the general-
ized normal  vector  N,  the  first term  of  the right  side  of

equation  (16) is simply  written  as

    n･<ae+diXr)=ntao+di･(nXr)==N･a.  (37)
The  other  terms  of the right  sicle of  equation  (16) can

be evaluated  from the solution  of  the velocity  field and

clenoted here as  q  for simplicity.
    q=n･to × (tuXr)
       rmkn(7ip-vo'to× r)2

       +n･2a) × (7¢ -ve-wXr)  (38)
Then, equation  (16) is simply  written  in the form
    0pt
    o. 

=N'a+q･

 
'
 (39)

On  the  other  hancl, equatien  (36) gives

    a=Jff-tlk(-to-z)ivds+F}-Bl  <4o)

Substituting equatien  (40) into equation  (39), the
implicit body surface  boundary  condition

    
0,9

 - iyJ,t-i.41 . ¢ Nds

         +N)it-i(Y[.-ZIVds+E,-B}+q  (41)

is given.  Thi$ implicit boundary condition  gives the
relation  between  the acceleration  potential and  its fiux
on  the body  surface.  This is the kinematic and  clynamic
condition  which  connects  Euler's equation  of  fluid
motion  and  Euler's equation  of  body  motion.

  3.5 Free-surface boundary condition

  Equating  the dynamic freersurface boundary condi-

tion P==O and  equation  (4), we  have  simple  free-sur-
face boundary condition  for the acceleration  potential
    O=  

-Z.
 (42)

   4. The  formulation for numerical  method

  As  mentioned  in g 2, the acce]eration  potential ¢  dose
not  satisfy  Laplace's equation  because of  the  nonlinear

 term  lf2(7di)i in equatinn  (3). Su, di is not  appropriate

 to numerical  methods  like BEM,  But  this nonlinear

 term  can  be explicitly  evaluated  from the solution  ef

 velocity  field. Therefore it is not  necessary  to solve  the

nonlinear  part  with  ¢ , Let us  subtract  the  nonlinear

term  from  ¢  and  put llnear part as

      -  odi -
    di,- ot -m--S-(7di)Z (43)

Since g5t satisfies  Laplace's equation,  boundary value
problem  on  dit is easier  te be selved  than that  is on  ¢ .

 But, we  have to remind  that gradient  of  dit does not  give

the fluid acceleration.

  The boundary conditions  for dit is easily  obtainecl  by

substituting  equation  (43) into (39), (41) and  (42).
First, the body  surface  kinematic boundary condition
for dit is

    
n(Oljl;'.

 ='N'a+q'  oOn(-S-(7di)2) (44)

Next, the implicit body surface  boundary condition  for
ipt is

    
Oodi.'

 =  Nnt7'k  - OtNds

         +ivM'i(.41(-z-S-vto)2)ivds+a-Bl

         +q-  oOn (d}(7di)Z) (45)

Binding the terrns which  can  be evaluated  from the

solution  of  velocity  field as  O

    Q-lvnt-i(Iil(-z-S(7ip)2)lvds+17u-B)

       +e-'ljli(t(7di)2),  (46)

we  have final form  of  the implicit body  surface  bound-
ary  condition

    
Oodi.t

 ==  N.ifi,Cl -ip ,Nds+o.  (47>

The  impllcit boundary condition  should  be  discretized
by  boundary  elements  when  used  for BEM.  Lastly, free-

surface  boundary  conclition  for dit is

    di,= -Z-t(7di)2.  (48)

The  kinematic body surface  boundary condition  for the
nonlinear  acceleration  potential op is derived from  the.

physical correspondence  ef 70  to the  acceleration  of

fluid a.  On the other  hand, ipt does not  have  such  a

direct physical correspondence.  So, boundary  con-

ditionsfor ipt is derived tndirectly but systematically

from those for O.

5. Application of  the  acceleration  potential  to

   the numerical  simulation

  Let us  apply  the boundary value  problem  on  dit to the

nonlinear  time  dornain simulation.  Fig.3 shows  the

flow of  the  new  simulation  method  which  traces the
body  and  freeusurface motions  step  by step  from the

give  initial condition,  This  method  is composed  of

following five procedures.
  ( 1 ) The  boundary  value  problem  on  ip issolved and
the velocity  field is determined.
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   (2) The  beundary  condition  for dit is computed

 using  the solution  of  the veEocity  field.

   (3) The  boundary value  problem  on  ipt is salved

 ancl  the  aeceleration  field is determined.

   (4) Using the  solution  of  the acceleration  field, the

 pressure  distribLttion on  the body surface,  hydraulic

 force and  the  acceteratiens  of  body are  determined.

   {5) Integrating the velocity  and  the Hcceteration,

 new  position  and  motions  of  the body at  the next  time

 step  are  estimated.  For the renewal  of  free-surface, the

 mixed  Eulerian and  Lagrangian methodis  utilized.

   It can  be  said  that  this new  simulation  method  is

 much  consi$tent  compared  with  methods  those  do not

 have above  procedures (2) and  (3) (referred to as

･ the  former methocl  hereinafter). Fig.4 shows  the typi-

 cal  flow of  the  forrner method.  Since the former  method

 does  not  solve  the acceleration  field, dit is computed  by

 the  backward  finite difference. In brief, denoting the

 velocity  potential  of the collocational  point  i on  the

 body surface  at time t as  dii(t) and  the velocity  of  the

 collocational  point  i as  v-  doe(t)!dt is written  as

     opt -0dijY)+v,･7ip,(t)  (49)

 Here dipi(t)ldt is appreximated  by backw,ard finite

difference to have

    
ndijlt)

 
dit(t)-Si(t-dt)-.,･7di,(t)

 (so)

Thus, the former methocl  cemputes  the hydraulie force

by integrating the pressure distribution on  the body

given by this backwurd finite difference, cornputes  the

acceleration  of  the body using  this hydraulic force and
integrates this acceleration  to estimate  the  motion  and

position of  the  body for next  time step. But  again,  the

backward finite difference is applied  to compute  pres-

sure  in next  time  step.  This  sequence  of computation  is

not  consistent  from  the  hyclrodynamical point of view

because the sequence  Is no  more  than  the  repetition  of

backward  finite dfference and  forward  time  tntegral.
So, there  is no  reason  to have  the converged  result  by

this sequence.  As a  rnatter  of fact, the numerical

example  shown  in the  next  section  shows  that  the  for-

mer  methed  gives no  converged  result  even  if very  small

time  step  At is used.  This  inconststency is overcome  by
introducing the procedure (2) and  (3). These  two

procedures guarantee the dynamic equilibrium  forces
between  body and  fiuid. In other  words,  the equations

of fluid motion  and  body motions  can  be solved  simulta-

neously  by procedure (2) ancl (3).

Start

Solvethevelocityfield(BEM)

v2ip=o:withgivenB.C

SetB.C.foraccelerationfield
Equation(45),(48)and(49)

tsf'sog1>f4%sg'

Solvetheaccelerationfield(BEM)'

v2ipt=o:withgivenB.C.

Cornputepressure,hydraulicforce
artdaccelerationoffleatingbody

Timemarchingprocedure()vllIL)
Updateshapeandvelocity
potentialoffree-surfaceand
thepositionoffloatingbodyetc.

t=t+At

No
t>tstop

YesStoP

(1)

(2)

(3)

(4)

(5)

Fig.3 Computational  fiow formulated  with  the accel-

      eration  potential  : The new  method

Start

Solvethevelocityfield{BEM)

vZe=O:withgivenB,C

ComputeOip1ntbybackward
finitediffereneeapproxirnation

Aesoe1Mdide::ptv

Computepressure,hydraulicforce

andaccelerationoffioatingbody

Timemarchingprocedure(MEL)
Updateshapeandvelocity
potentialoffree-surfaceand
thepositionoffloatingbodyetc.

t=t+At

No

Yest>tstoV

StoP

(1)

(2)(3)

(4)

(5)

Fig.4 Computational  fiow formulated  without

      acceleration  potential : The  former  methodth'e
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  In addition,  procedure (2) and  (:]) are  effective  to

reduce  CPU  time.  For the  nonlinear  time  domain

simulation,  the boundary  element  matrix  must  be recon-

structed  every  time  step  to truce  exact  moving  bound-

ary  and  this reconstructivn  requires  more  than 5096 ef

entire  CPU  time.  But, since  the matrix  is the  function
of  boundary shape,  we  can  u$e  same  matrix  for both
veloeity  field and  aceelerntion  field, Therefere. incre-

ment  of  CPU  time  by procedure  (Z) ancl  (3) is not  so

large. On the  other  hancl, since  no  backward  finite

difference is required  to compute  dit in the  new  method,

we  can  use  larger time step  At as  shown  in the  next

section.  As a  result,  we  can  reduce  CPU  time  consicler-

ably  by  the  new  method.

6. Accuracycheckofthenewsimulationmethod

  As  mentioned  in the  previous section,  both the veloc-
ity field anci  the  acceleration  fierd are  solved  in the new

simulation  method.  The  physicar  rneaning  to solve  the

velocity  field is to get  the solution  which  conserves  fluid
mass  and  physical  meaning  to solve  the  acceleration

field is to get  the  solution  which  conserves  momentum

and  energy  because we  assume  ideal fluid without

energy  Ioss. Accordingly, the  simulated  results  must

satisfy  the  conservation  Iaws  of mass,  momentum  and

energy.  Thus. the accuracy  of  the new  simulation

method  can  be verified  by checking  these conservation
Iaws.

  In this report,  simple  two dimensional sirnulations  are

chosen  to check  the conservation  laws. Fig.5 is an

illustrative drawing  of  the  simulatien,  The  length of

wave  tank  L, gravitational  aeceleration  g and  density
of the water  p are  chosen  as  units  and  other  values  are

nonclimensionalized  with  these  units  in the simulations.

The  number  of  boundary erements  to discretize the
boundaries  are  36 for fioating body, 18 for piston wave
'maker

 and  right  wall,  2e for bottom  of  the tank  and

184 for free-surface.

nsuo11a

m  =  2.5 x  10-3
'
 

-10xl06

Fig. 5 Target of  the computation  ; Case 1 Wave  field
      generatecl by free heave  motion  of  the  fioating

      body, Case 2 Wave  field generated by  the  piston

      wave  maker  and  the free floating body
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  Check  of the conservation  laws are  performecl  by
comparing  the fo]Iowing values.

 
'
 Vo]ume  of  the  fluid

    L'? =III  dv ==  
.C

 Yn  rclts == 
,CZn

 zcts  (sl)

 '  rvlornentum of  the fluid

    e=L7didv==1ipnds (s2)

 
'Total

 energy  of  the fiuid

    E, rt  XZz+-S-<7ip):dv-tl 
-z2n.+

 di gS ds (s3)
 

'Impulse
 given from  the  boundary  to the fluid

    I=.CXpnctsdt  (s4)

 
'Work

 done by the boundary to the fluid

    vv-.Ctllp-3#-dsdt (ss>

It is clear  from  these equations  that  volume  P3t, momen-
tum  e  and  energy  Ef are  determined  by the velocity
field and  impulse I and  work  va are  determined by the

time  integral of  the acceleration  field. So, with  accurate

sollltion  ef  both velocity  and  acceleration  field, comput-
ed  of  V7 should  keep constant  and  Rf and  I as  well  as

Ef and  W  should  balance.

  As  the first trial, transient hezve  motion  of the bocly
floating at the center  of  the  wave  tank  is simulated  The
heave rnotion  is initiated by the unbalance  between the
weight  and  the displacement. The  initial dlsplacement
is set  to the  half of the weight  and  the body  is released
calmly  at  time t=e.  Five clifferent time steps  dt=e.O07,
O.O14, O.028, O.056 and  O.112 are  tried  for this simulation.
Since the  natural  heave period Th of this body  is about
2.24, number  of time steps  per  single  heave motion

correspond  to these nt are  320, 16e, 80, 40 and  20 respec-

tively.

  The simulated  heave motions  are  presented in Fig. 6.
We  can  see  the  new  method  gives almost  same  results

for all  tit. These  results  demonstrate  the new  method

gives converged  result  even  for the Iargest nt t T},f20.
On  the  other  hand, the forrner methed  does not  give the
converged  result  for At>O.O14  : 7Xl160.
  The  difference between these two  methods  can  be
much  clearly  shown  by conservation  check,  Next, the'
volume  change  while  the simulation  {s plotted in Fig, 7.
This figure shows  that  both  methods  have  quite high
accuracy  on  the volume  conservation  and  the maximum
error  is only  ("(O)- V}(tmax))!l,:e(O) tO.O07%.  This
results  well  demonstrate  that velocity  field is solved

very  accurately  by both method.  In contrast,  momen-

turn conservation  plot in Fig, 8 shows  the big difference
between  two  methocls.  In this figure, the  vertical

momentum  ef  the fiuid Rz is plotted  by selid  Line and
vertlcal  impulse 12 given from  boundary  to the  fluicl i$

plotted by  broken  line. This figure shows  that F}z and
h  by  the  new  method  agree  with  each  other  for all  dt,
but f}z ancl  h  by  the  former  method  clisagree even  for
the  smallest  nt=O.O07  :Zf320.  We  can  see  the  sarne-

result  on  the  energy  conservation  plot in Fig. 9. The new
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    The  former method  
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                            -･･･--- At =  O.O14
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Simulated free heave  motion  efthe  bedy : Case. 1
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o

The  former method

246
   Time

The  new  method

81012

o24

Conservation  check

  6 8 10 12
Timeof

 fluid volume:  Case 1

method  gives better results  for all rit than  the  former

method.  Since the  potential energy  is much  larger than

the kinetic energy,  the difference between two  method  is

not  as  clear  as  Ftg. 8. So, R. M.  S. error  of momentum

conservation  and  energy  conservation  is plotted  in Fig.
10. The  horizental axis  is number  of  time steps  per

natural  heave  period 7;-. This  figure quantitatively
shows  that  the  new  method  is very  stable  for the  size  of

time  step  and  gives converged  result  even  for the  largest

At. On  the  other  hand, the  convergecl  result  is hard to

be obtained  by  the former  method.  In particular, on  the

conservation  of momentum,  the convergent  speed  of the
former  method  is se slow  that the converged  result  is

hoperess to have.

  Next, as  the second  trial, the  floating body motions  in
a  wave  generated by the piston wave-maker  are

simulated.  The  amplitude  and  period of  the  wave'

maker  motion  is a=O.Ol  and  71v=1.587 respectively.

For  this simulation,  the  former  rnethod  can  not  be

appliecl  because it break down  halfway. So, only  the

results  by the new  method  are  presented  here. The

simulated  body motiens  are  shown  in Fig, 11. Time  step

dt=  O.04 :  7Lv/40 is used  for this simulation.  This  figure
shows,  the sirnulated  double  arnplitude  of  heave and

sway  are  about  80%  and  50%  of  initial draft respective-

ly and  the double amplitude  of  roll  transient motionis

about  12 degree. So, the transient body motions  are

considerably  large. The  balance between  momentum

Rf and  impulse I ancl the  balance between  total  energy

&  and  work  W  are  plotted in Fig, 12C1),  (2), (3).
Even for the large body motions,  the  mornentum  and

energy  conservation  are  well  satisfied. The  loss of  fiuid
volume  is arso  negligibiy  small,  less than O.O03%, {n the
slmulation.

  At the end  of  this section,  a  note  is adcled  for accurate'

numerical  evaluatien  of  the  term  oOn(S-(7di>2) in the

equation  (44) and  (46). This  is the  nonlinear  term
shifted  from  the  governing equation  of  ¢  to the  bound-

ary  condition  for dit. Therefore, accurate  numerical

evaluation  of this term  isindispensable to get  the accu-
rate  solution  of the acceleration  field, At first, as the

most  direct approach  to evaluate  this term, the values

of  ¢  at  some  internal points of  fluid domain  are  comput-

ed  to take  finite difference among  value$  on  the  body

surface  and  the internal peints. But. this method  was

found to be too sensitive  to the location of  the  internar
points and  converged  results  could  not  be nbtainecl.  So,
the  folrowing formula  is used  to evaluate  this term  in
this paper.



The Society of Naval Architects of Japan

NII-Electronic Library Service

The  Society  of  NavalArchitects  ofJapan

A  Nonlinear  SimulationMethod of  3'D  BodMotions  inWaves(lst  Re ort) 187

The  former method

Finite diderence is use  to get gbt

The new  method

Acceleration field is solved  to get gbt

  41o4

S 21o4

S Oicl

S -2 104

  "04

Momentum  
--･･･-･Impulse

   At=O.112

.att  :-t

  4 lo4

fi 21o4eg

 olooES

 -2 lo-4

 4  10`

  4 lo4

g 2lo4'
 OIOO

ES
 -2 loq

  4  10`

o246810  12

2

Mornentum  
---･･･-Impulse

   At=  O.t12

  4 lo-4

e 2 lo4eg

 olofES

 -2 lo4

  4  lo4

  4  lo4

g2lo4
1' oioo
eg
 -2 lo4

  4  lo4

  4 lo4

s2zoqee"

 OloDES

 -2 10-4

 4  lo4

Fig. 8

Time

Conservationcheck of

  4 10"

S 2io-4
g oloo
aS
 -2 tog

  4  lo4

  4 lo4

g2lo4
g oloo
eS
 -2 lo4

 4  10-

  4  10-

S 2lo"

g oloo

g -2 lo4
 4  lo4

o2468  1012

o2468  1012

2

  4 la4

E 2lo-4
eg

 
oloo

S -2 lo4

 4lo4

vertical

2

o2

momentum

 468
   Time

: Case1

1012



The Society of Naval Architects of Japan

NII-Electronic Library Service

The  Society  of  NavalArchitects  ofJapan

188 Journai of1"heSociet  of  NavalArchitects  of  a  an,Vol.  176

The forrner method
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The new  method
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 Fig. 11 Simulated  body rnotion  in a wave  generated by

      the piston wave  maker:  Case. 2

  S. (.}(Fdi)2) 
..
 
-k(7ip)2+-gS<

 -ge,, )+ Oodi, -ES,-( 3#)
                                  (56)
where  fe is the curvature  of  the  body surface.  Since the
right  side  of  equation  (56) can  be evaluated  only  from
the surface  values,  this formula  is appropriate  to nurner-
ical rnethods  like BEM.  Moreover,  equation  (56) gives

The  new  method

Acceleration field is solved  to get ipt
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               Tirne

    (3) Conservation of  Energy

Conservation check  of  momentum  and  energy  :

Case.2

stable  result to the  panel size. The derivation of  this
equation  is given  in Appendix.  A.

          7. Concludingremarks

 This  work  is aimed  to develop the three dimens{onal
full nonlinear  theory on  the wave  body  interactien prob-
lem  and  the numerical  simulation  method  as  its appl{ca-
tion. As  the first step  of  this work,  the  mathematical
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fermulation of  the  boundary  value  prob]em  of  the

acceleration  field is studied  and  an  idea of  the new  time

dumain simulatiun  method  is presented. Following

items are  main  results  of  this reporL

  1. Euler's equation  of  ideal flu{cl motions  is transfor-

rned  to the integra] equation  of  the acce!eration  poten-

tial O.

  2, Using the kinematic forrnttla of  the  acceleration

of  fluid partiele  slidtng  on  the body surface,  the  body

surface  boundary  conditien  fer the  acceleration  poten-

tial O  ts derived.
  3. Substituting the equatton  of  three dimensional
body motiens  into the body surface  boundary conclition,
the {mplicit body surface  boundary  conclition  for ¢  is

derived. With  this impLicit boundary  condition,  the

ideal fluid motion  and  the floating body metions  can  be

solved  simultaneously.

  4. The  freeTsurface boundary  condition  for O  is

added  to cornplete  the  mathematical  formulation ef the

boundary value  problem  on  the acceleration  potenttal

e.

  5. Physical meaning  to solve  the acceleration  field is

clearly  understood  from abeve  arguments.

  6, For  numerical  rnethod  like BEM,  the  nonlinear

term  in di is shifted  frem the governing equation  to the

boundary conditions,  then alternative  boundary  value

problem  on  ipt is formulatecl.

  7. As  an  application  of  dit. the new  nonlinear  time

domatn simulation  method  is proposed,

  8. To  demonstrate the  accuracy  of this new  method,

two  dimensional full nonlinear  simulations  of  floating

body  motions  are  presented. The  results  show  that the

simulated  results  are  accurate  and  satisfy  the conserva-

tion law  of  mass,  momentum  and  energy  excellently.

The three dimensional simulation  code  based on  this

new  method  is under  developrnent. Hopefully, some

results  of three  dimensional full nonltnear  simulations

will  be presented in the  next  report.

8. Acknowledgement

  On  the body  surface  kinematic boundary  condition

for the acceleration  potential  O, Dt  Tomita,  Dr. Hinat-

su, and  Dr, Murashige  of  Sh!p Research Institute pro-
vided  many  discussions, op{nions  and  hints to the

author.  They are  quite helpful to derive the boundary
condition  ancl hit the point to understancl  the physical

meaning.  The  author  records  here the warmest  ackn-

owledgement  te them  for their help and  favon

References

1) Ogilvie, T.F. and  Tuck,  E.O.: A  rational  strip

   theory  of  ship  motions,Rep.  No.O13,  DepL  of

   Nav.  Arch. and  Marine Eng., Univ. of  Arlichigan.

    (1969)
2) Maruo,  H.: An  improvement  Df  the  slender  bedy
   theory for oscMating  ships  with  zero  forward

   speed,  Bulletin of  Faculty Eng., Yokohama
   National Univ., Vol. 19, <1970)

3}

4}

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

Newman,  J.N,: The theory  of  ship  motions,

Aclv. Appl. Mech,, (I978}
Kobayashi,  M, : On  the hydrodynarnfc forces and
motnents  acting  on  a three dimensional body
with  a  constant  forward speed,  Jeurnal of  5NAJ,
Vol. 150, (1981)
Iwashita, H  and  Ohl<usu, M.:  Hydrodynamic
forces on  a  ship  moving  with  forward speed  in
waves,  Journal of  SNAJ,  Vol. 166, (1989>
Kashiwagi,  M.  et  al.:  Numerical  calculation

methods  of  ship  motion  basecl on  three-dimen-

sional  theories, 11th rvIarine Dynamics Sympo-
siurn, SNAJ, (1994)
Longuet-Higgins, M,S.  and  Cokelet, E.:The
deformation of steep  surface  waves  on  water,

Proc. Roy. Soc. ser,  A350, (l976)
V{nje, T, and  Brevig, P.:Nonlinear  Ship
Motions, Proc. of  the 3rd. Int. Conf. on  Num.
Ship Hyclro., (1981) ab

Yeung,  R. W.  and  Wu,  C. : Nonlinear wave-body

motion  in a  closed  domain, Computer &  Fluids,
vol.  17, (1989)
Yang, C. and  Lin, Y. Z, : Time-demain calcula-

tion of the nonlinear  hydrodynamics of wave7

body  interactien, Proc. 5th Int. Conf. Num.  Ship
Hydro.  part I, (1989)
Sen, D., Pawlowski, J. S., Lever, J, and  Hinchey,
M.  J. : Twemdimensional  numerical  modeling  of

large motions  of  floating bodies in waves,  Proc.
5th Int. Conf. Num.  Ship Hydro., part 1, (1989)
Tanizawa,  K.: A  numerical  method  for non-

linear simulation  of  2-D  bocly motions  in waves

by means  of  B. E. M., Journal of  SNAJ,  Vol. 168,
(1990)Van

 Daalen, E. F. G. : Numerical and  Theoreti-
cal  Studies of  Water  Waves  and  Floating Bodies,

Ph. D. thesis, University of Twente,  The  Nether-
lands, (1993)
Cao, Y., Beck, R. and  Schultz, W.  W,  : Nonlinear

motions  of floating bod[es in incident waves,  9th

Workshop  on  Water Waves  and  Floating Bodies,
Kuju, Oita, (1994)
Tanizawa,  K. : A  Nonlinear Simulation  Methed
of  3'D  body Motions  in Waves, Ieth Workshop
on  Water  Waves  and  Floating Bodies, Oxforcl,
(1995>

Appendix.A  Formula  for
           01
   tion of  on 

T2'numeri

¢ al computa-

(7ip)2

 Using the lecal polar coordinate  system  (r, e) which
origin  located at the !ocal center  of  the curvature  as

shown  in Fig. A, the rJdirectional  gradient of  square  of

the fluid velocity  is written  as

   '31.m('e(7ip)2)== g9 3Z.9 ･  enipe (-t Sodie '5  oOro'ee )
                                        (A-1)
Substituting the Laplace's equation

    Z2.ag 'l  Sip.'JJ-2 3Ze9 =O  ("'2)

into equation  <A-1) ,
 following relation  can  be  obtuined.

   ut-l-(7 di)!)! 7'} i( 039 )2+( %die )2)
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             +-?i9(--.eS"3-T)+ $S ,S,-(e,9)

                               (A 3)
Furthermore,  re]at'ions

   ':S.'!S.r rdOe 
["EI,l'･  l=le (A'4)

can  be taken  to rewrite  equation  <A-3) to get the final

form

   ". (t(7 di)2) -･.  -k(7di)2 +.3e(-  
Oo2,9

 )
             +0odi,-oO',L(sc':) (A-5)

Appendix. B Relation between  Eulerian angles

          and  fundamental yectors

 In this article, the fundamental  vectors  i,ik  are

usecl  to relate  the  space  fixed reference  frame ancl  the
body  fixed reference  frame. But in many  cases,  the

angular  position of  ship  is presented  by Eulerian angles.
Therefere, the relation  between Eulerian angles  and

fundamental vectors  is given  here. As  Fig. B  shows,  let
us  use  pitch  angle  0, roll  angle  p  ancl yaw  angle  di as

Eu16rian angles,  then apply  sequence  of  rotatfons  di, 0
and  q  to OLXYZ  frame  so  that it coincide  to oLxyz

frame. Keeping the sequence  of  retations,  the  relation

between  (X, Y, Z) and  (x, y, z)  can  be written  as

  M=[::s,Zc,:･:$ gll:::l･:sgo,x,di.L,c&sg,sg:s
  1.ZI L Lsine

 sinqcose

id

   Local center  of  radius

Fig. A  Local polar coordinate

       ::g:::.L･zgo,#$-',s;':g:,`g$11:1 (B-i)
             cos  ep cose  lltzJ
Since (X, Y, Z)  is identical to xi  +  w' +zh,  the relation

between Eulerian angles  and  fundamental  vectors  {s
clearly  understood  from this equation.

 Moreover,  the  relation  between angular  velocity  te=

wxi+a,.vj,  a,gh  and  Eulerian angular  velocity  e, ip, di
can  be written  as

   Iii::r[g ll:c:･sglqll [.E,.geilnllZ](gl･l (B-2'

Fig. B
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