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A Nonlinear Simulation Method of 3-D Body
Motions in Waves (st Report)

Formulation of the Method with Acceleration Potential

by Katsuji Tanizawa*

Summary

A full nonlinear method to simulate three dimensional body motions in waves is presented. This is
a time domain method to simulate Euler’s equation of ideal fluid motion coupled with the equation of
solid body motions.

Introducing Prandtl’s nonlinear acceleration potential, whose gradient gives acceleration of the fluid,
Euler’s differential equation of the ideal fluid motion is converted to the integral équation of the
acceleration potential. The boundary condition of the acceleration potential on the body surface is
systematically derived from the kinematic relation between the acceleration of the solid body and the
acceleration of the fluid on the body surface. Since this kinematic boundary condition is a function of
the body acceleration, the boundary values on the floating body can not be evaluated explicitly. To
overcome this point, the unknown acceleration of the free floating body is eliminated by substituting
the equation of body motion into kinematic condition, then implicit body surface boundary condition
is derived. This is the kinematic and dynamic condition which guarantees dynamic equilibrium of
forces between ideal fluid and the solid body at any instance. With the free-surface boundary condition
of the acceleration potential, the formulation of the boundary value problem for the acceleration field
is completed.

Although this formulation of the acceleration field is mathematically correct, this is not appropriate
to numerical computation, because Prandt!’s nonlinear acceleration potential does not satisfy Laplace’s
equation. Therefore, the nonlinear part is shifted from the governing equation to the boundary
condition, then the alternative formulation for the numerical computation is derived. The
computational flow of the nonlinear simulation method based on this alternative formulation is also
given. In order to show the accuracy of this new method, two dimensional numerical results are
presented. They show that the conservation of mass, momentum and energy are satisfied excellently.

sional higher order panel methods*®. Anyway, the

1. In i . . ) . .
troduction linear theories describe arbitrary but small amplitude

Time domain full nonlinear simulation is the most
direct approach to compute large amplitude motions of
arbitrary shaped bodies in waves. But this approach
was neither appropriate to analytical methods nor
numerical methods when high speed CPU was expen-
sive and hard to available. Therefore, linear theories
like Slender body theory, Strip theory, Unified theory
etc. have been investigated and used as practical tools
to study the seakeeping performance of ships! 2+,
These linear theories are based on four basic assump-
tions, (1) Ideal fluid, (2) Small displacement of free-
surface, (3) Small motions of floating body and (4)
Slender body shape. Nowadays, the assumption (4) is
going to be removed by the development of three dimen-
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body motions by superposing frequency response func-
tions of the body to regular waves, then solve the
problems in frequency domain. So, the time dependent
variables are assumed to be sinusoidal and can be
separated as ¢’ form, where w is encounter frequency
of body and wave component. Therefore, the accelera-
tion of fluid and body can be described as iwe™* form,
then the simultaneous equation of fluid and body
motions can be solved in frequency domain to deter-
mine added mass and damping coefficient. The linear
theories are very useful as far as motions of body and
free-surface are small enough to hold the assumptions
(1), (2) and (3), but cannot be applied to estimate
large body motions. Of course, perturbation method
can be used to extend linear theories to weak nonlinear
problem, but not to the full nonlinear problem like the
bottom emerging ship motions in heavy seas or capsiz-
ing of small vessels in a plunging wave.

However, recent design office of ship yards are crav-
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ing for powerful numerical tools for the advanced ship
design by nonlinear analysis and so development of the
time domain simulation method is an issue of burning
concern. Fortunately, recent development of high speed
CPU and parallel processing technology will open the
possibility to apply three dimensional time domain
simulation methods as design tools in near future,
The numerical treatment for full nonlinear wave
simulation was firstly given by Longuet-Higgins in 1976
and his method is well known as Mixed Eulerian and
Lagrangian method (MEL). Detonated by this break
through, many time domain simulation methods for
nonlinear wave body interaction problem were devel-
oped in past two decades, but many of them are not
consistent from hydrodynamical point of view because
the hydrodynamic pressure is computed by the back-
ward finite difference of the velocity potential and so
hydrodynamic equilibrium of forces between water and
floating bodies are not guaranteed consequently. For
the consistent time domain simulation, it is indispens-

able to solve the simultaneous equations of ideal fluid
motion and floating body motions. The first consistent

simulation method for two dimensional problem was
developed by Vinje & Brevig® in 1981. They
decomposed the acceleration field into four modes cor-
responding to the unit acceleration of the three body
motions (heave sway and roll) and the other accelera-
tions like the centripetal acceleration comes from the
velocity field, then solved the boundary value problem
corresponding to each modes in their simulation
method. The solutions of the each modes were used with
the equation of floating body motions to determine
heave, sway and roll acceleration of the body. Since
Vinje’s method solves the acceleration field four times
for two dimensional problem and seven times if applied
to three dimensional case, it is CPU time consuming.
So, the authors'? developed further rational method to
solve the simultaneous equations in the acceleration
field in 1990. The authors introduced the implicit body
surface boundary condition derived from the kinematic
body surface boundary condition and the equation of
body motions, and showed the simultaneous equations
of ideal fluid motion and floating body motions could be
solved without decomposition. Van Daalen*® also came
up to the same idea independently in 1993.

But, still remained question is the exact kinematic
body surface boundary conditions for the acceleration
field. Since the relation between the fluid acceleration
and the boundary condition is not clearly shown in these
works, physical meaning to solve the acceleration field
is obscure even now. Therefore, Prandtl’s nonlinear
acceleration potential is introduced to formulate the
boundary value problem of the acceleration filed in this
paper.Since Prandtl’s nonlinear acceleration potential is
hydrodynamic pressure itself and its gradient gives
acceleration of the fluid, the physical meaning to solve
the acceleration field can be clearly shown. Thus §2

and § 3 of this paper are spent for the formulation of the
boundary value problem on Prandtl’s nonlinear acceler-
ation potential. The construction of the numerical
simulation method is written in §4 and § 5 and some
examples of numerical simulations and their accuracy
checks are presented in § 6.

2. Euler’s equation of ideal fluid motion and the
acceleration potential

First of all, let us introduce the nonlinear acceleration
potential from Euler’s equation of the ideal fluid motion.
Nondimensional Euler's equation of the ideal fluid
motion is written as

a=20 90\ (y.7)o=—Pp-rZ (1)
where the density of the fluid and the gravitational
acceleration are unities, D/Dt is the material derivative,
v and a are velocity and acceleration of the fluid
respectively. Vectors are written in bold type face in
this article. Similar to the velocity potential ¢ whose
gradient gives the velocity of the fluid as v=F¢, a
scalar function which gradient gives the acceleration of
the fluid can be derived from equation (1). Substitut-
ing the relation v=F¢, equation (1) is written as

_Dré¢ g .

=LDCs b+ (rprIve

_ 00 1 2\_f0d , 1 2
~I7W+l7<7(17¢) >‘7(W+ Lwe) ) (2)

then gradient of 9¢/3¢ +1/2(F $)* gives the acceleration
of the fluid. Here, let us define the nonlinear accelera-
tion potential @ as

0%, 1
=S +5(7¢) (3)

From the definition, fluid acceleration is expressed as a
=[@®. This is the general form of Prandtl’s accelera-
tion potential. Since the second term of the right side of
equation (3) is nonlinear, this acceleration potential
dose not satisfy Laplace’s equation FP?@=+0, but the
acceleration field described by this acceleration poten-
tial is irrotational. When Prandtl applied the accelera-
tion potential to his wing theory, he assumed the veloc-
ity disturbance is small compared to the wing forward
speed V and used the linearized form @=0¢/0¢+ VIV ¢.
Therefore the linearlized acceleration potential is much
well known. But, in this article, nonlinear acceleration
potential defined by equation (3) is used to solve fluid
and body motions. From equations (1), (2) and (3),
the acceleration potential is written in another form as
O®=—p—Z+const
(Integral constant can be set to zero. ), (4)
so that physical meaning of the acceleration potential is
very clear. Despite of this clearness, the acceleration
potential is rarely used to solve the hydrodynamic prob-
lems. The reason seems to be that the acceleration field
is not necessarily solved in the framework of linear
theory. But in addition, there exist two unsolved prob-
lems. These are (1) the body surface boundary condi-
tion of the acceleration potential is not clearly obtained
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and (2) the acceleration potential is nonlinear and
dose not satisfy Laplace’s equation. These problems
are overcome in the following sections.

3. Boundary conditions of the acceleration field

3.1 Acceleration of fluid particle sliding on the
body surface
In order to get the kinematic body surface boundary
condition, the acceleration of fluid particle sliding on
the body surface is studied first. As illustrated in Fig. 1,
the space fixed reference frame O-XYZ and the body
fixed reference frame o-xyz are employed. The origin
o is situated at the center of gravity of the body and the
frame o-xyz moves with translating velocity o and
angular velocity @. The relation between these two
frames is described by the fundamental vectors i, J, k.
The fundamental vector means polar vector for the
translating motion and axial vector for the angular
motion. So, both vs and @ can be written as vo=uvozi
+ Voud + Vozk and @=w:i+ w,j+ w:k respectively. In
Fig.1, P is a point fixed to the fluid particle sliding on
the body surface. Using the positioning vectors R, and
r=xpi+yrj+2zrk, the positioning vector R of point P
is expressed as
R=R0 +r ( 5 )
Here, we know the relation between time differential
operators d/dt in O-XYZ frame and [d/dt) in o-xyz
frame as dfdt=[d/dt]+wX. Using the relation, the
derivative of equation (5) with respect to time gives
the velocity of point P
v=Ro+r=v,+[F]toXr=v,+[v]+oxr
(6)
where [vl=[Fl=2ri+gpj+2pk. Similarly, the
derivative of equation (6) with respect to time gives
the acceleration of point P
a=Ro+i=a,+oxXr+ox(exr)+la]+2ex[v]
(7)
where ao+@Xr is the acceleration due to the trans-
lational and angular acceleration of the body, @ X (@ X
r) is the centripetal acceleration due to the angular

Fig.1

Frame of reference

velocity of the body, [al=[¥]=Xri+ §jrj+ Zrk is the
acceleration of point P observed from o-xyz frame and
~2w % [v] is Coriolis acceleration orthogonal to ® and
[v].

3.2 Kinematic boundary condition on the body

surface

Similar to the kinematic boundary condition for the
velocity potential, the kinematic boundary condition for
the acceleration potential can be expressed as a scalar
product of the acceleration vector of the fluid particle
and the unit normal vector of the body surface at the
fluid particle considered. The kinematic boundary
conditions for velocity and acceleration potentials are

%=n-l7¢=n-v (8)
%%=n-l7@=n-a (9)

where n=n.i+nyj+n:k is the unit normal vector of

the body surface. Using equation (6), we have
nv=n(vo+wxXr)+n-v].

Since n and [v] are orthogonal, the second term dis-

appears and following well known body surface bound-

ary condition for the velocity potential is obtained.

%:n-v:ﬂ-(vv‘l'(I)XY) (10)

Similarly, equation (7) is used to have
na=n-(a,+oxXr)+n-oxX(wxr)
+nla]+n20x[v]. (11
Here the velocity potential ¢ can be used to express [v]
and [a]. From equation (6 ), [v] is written as
lvl=v—vo—0Xr=F¢—vo—wXr. (12)
Since [v] is tangential to the body surface as far as no
separation occurres, normal and tangential components
of [a] are given by
[aln=—k.([v])*
[a]s :[ v ]s,
where k. is normal curvature of the body surface along
the path line of fiuid. As shown in Fig. 2 if the piece of
body surface around point P is smooth enough and be
expressed by a pair of parameters «, v as x=x(u, v), ¥
=(u, v), 2=2(u, v), and if the path line of point P is
expressed by projection of line #(s), v(s) on the u—v -
plane as P(s)=P(u(s), v(s)), the normal curvature £
is given by thesecond fundamental form of differential

(13)

body

Fluid domain

Fig.2 Local coordinate system
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geometry

() =11 (9ELS), 4FLS)) (14)

Term [als in equation (13) is unknown, but nr-[als
disappears because of orthogonality. Then, n-[a]
becomes
n-la]l=n-([a].+[als)=n-[a].
==k [V)P=—k(Pd—vo—@X 1) (15)
Finally the kinematic boundary condition of the accel-

eration field is reduced to be
%:n-(ao%d}x r+nex(exr)
—ka(Tp—vo— @ X 1)?
+n-20¢—vo—wXxr). (16)
3.3 Euler’s equation of solid body motions coupled
with fluid motion
Since the body surface boundary condition given by
equation (16) includes the body acceleration a, and @,
this boundary condition can not be applied to the free
floating body surface because the body acceleration is
unknown before we solve the acceleration field. In such
a case, the equation of body motion can be used to
eliminate unknown body acceleration from equation
(16).
The equation of translational body motion is given by
mao=mbo=ml Vo]l t+@Xmv,=Ff 17
where m is the body mass, @o=aozi + aoyJ + aozk is the
acceleration of the center of gravity and F=fi+fJj
+ fzk is the force acts to the body. Taking notice of
that the relation between O-XYZ frame and o-xyz
frame is described by the fundamental vectors i, j, &,
the components of above equation are given by
Maoxr= Wl( Voxt+ VozWy — ’l/ayC()z) =fx
Moy = m( Voy+ VozWz— UozCUz) zfy} (18)
Moz =MD 0z "+ Voy@z— Vozy)=fz).
Similarly, the equation of angular body motion and its
components are given by
H=[H]+oXH=M (19)
HI+szy _HywzzMz
Hy+szz—szz=My}
Hz+HyCUx_HIQ)y=Mz N
where H=H:i+ H,j+ H:k is angular momentum of
the body and M= Mzi+ M,j+ M.k is moment acts to
the body. With the angular velocity @ and the inertia
tensor
IIZ‘ I.l‘!g’ IIZ
Iz[lyx Tyy [yz] (21
IZI Izy [zz ’
the components of angular momentum H = le are given
by

H; Iz I.ry I w:
Hy = [y.r lyy Iyz Wy (22)
Hz lzx l,zy Izz Wz).

Substituting this equation into equation (20) gives fol-
lowing equation. '

(20)

[z + (]zz - [.z/.y)CUywz + [zy( Wy— a)za)t)
+ [zr( w2+ (U.tCUy) + [yz( CU?;_ wg) =M.
[yya';y + (II.Z‘ - lzz) wzwr+ Iyz( Wz— G)z(l)y)
+ [ty( Cl}.t + wya)z) + [zz((l)gf Cl)fr) = M!/
Loz + Ly = L) 0rwy + Lex( 6 x — wyw2)
+ [yz(d)y + C()zah:) -+ Izy((l)i— (Uzy) = Mz
This equation is called Euler’s equation of three dimen-
sional angular body motions.
Next, let us introduce the generalized values. The
generalized inertia tensor of the body is defined as

(23)

m 0 0 0 0 O
0 m 0 0 0 O
0 0 m 0 0 O
= 24
J‘t O 0 0 III [I_!_l IIZ ( )
0 0 0 lu Iy Il
0 0 0 [l Iw L

The generalized body acceleration « is defined as a pair
of translational acceleration @o=aoxi + aoyj + aozk and
angular acceleration @=[@]+owXo=[d]=d:i+d.Jj
+wzk
@=(Qozi+ QoyJ + Gozk, Gzl + Buf + Duk) (25)
In the same way, the generalized force acts to the body
is also defined as a pair of force and moment
F=(f:i+fui+fk, Mzi+Myj+M:k) (26)
Using these generalized values, equation (17) can be
combined with (19) to have single equation
Ma+B=F 27
The components of this equation are
m 0 0 0 0 0 Qox
0 0 0 0 Aoy
m 0 0 0 Aoz
0 Iz.z [zy lzz a)z
0 luzx Iy Ipz||@y
0 Lo Iy Ilellw:

oo o oo
oo oo ¥

0 fx
0 fy
0 fe

T (L= L) 04— [ey0:0s+ Lecvx0,+ Lk =) | | Ma
(Ixz—fzz)(l)zCUz_Iyz(l)x(Uy""IIywyCUz‘l‘Izr(a)g— (l)i') M\
(Iyy = Lnz) wz@y — Lxyz+ Lz0o0: + I 02— 02)) (M
(28)
where the second term of the left side is the components’
of # which appears because o-xyz frame has angular
velocdity.
On the other hand, hydraulic force fr and moment M,
act to the body are expressed by the pressure integral
on the body surface

f,= | pnds (29)
M,Z/s-'pnx rds. (30)

Using the hydraulic force: fr=fri+ frid+frk and
moment Mr=M i+ Mpnj+ Mk, the generalized
hydraulic forth can be defined as

Ff:(ffzi + frud + fr2k, My +Mfyj+Mfzk)- (31)
Moreover, normal vector can be also generalized with n
and nXr as
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N=(n,nxr)
=(nei+ngj+nk, (nyz—ny)i
F+(n:x—ne2)j+(nwy—nyx)k). (32)
Using these generalized values, equation (29) and (30)
can bhe brought into single form

Fy= ﬂ  pNds (33)

Substituting equation (4 ) into equation (33), the gener-
alized hydraulic force is written as a function of the
acceleration potential

F,= [ (-0-2)Nas. (34)
Then, denoting other forces like gravity, thrust etc. as a

generalized force F,, we have the generalized total
force acts on the body

F=F,+Fg=fs (— @~ Z)Nds + F,. (35)

Equation (27) and (35) gives the generalized Euler’s
equation of three dimensional body motions coupled
with fluid motion,

.ﬂa+,3=£ (—@—2Z)Nds+ F,. (36)

3.4 Implicit body surface boundary condition

Using the generalized acceleration @ and the general-

ized normal vector IV, the first term of the right side of
equation (16) is simply written as

n(act+oxXri=n-a,+a-(nXr)=N-a. (37)
The other terms of the right side of equation (16) can
be evaluated from the solution of the velocity field and
denoted here as ¢ for simplicity.

g=n-oX(oXr)

— k(P p—vo—w X 1)?

+n20X(Fd—vo—wXr) (38)
Then, equation (16) is simply written in the form
00 _ ar. ,
%—N atq. : (39)
On the other hand, equation (36) gives
a=/ﬂ“{_/s- (= 0—Z)Nds+F,—8) (40)

Substituting equation (40) into equation (39), the
implicit body surface boundary condition

90 _ N —
S =N [ — ONds
e N [ ~zZNas+F,~8}+q 4D
is given. This implicit boundary condition gives the

relation between the acceleration potential and its flux
on the body surface. This is the kinematic and dynamic
condition which connects Euler's equation of fluid
motion and Euler’s equation of body motion.

3.5 Free-surface boundary condition

Equating the dynamic free-surface boundary condi-
tion p=0 and equation (4), we have simple free-sur-
face boundary condition for the acceleration potential

O=—7Z. (42)

4. The formulation for numerical method

As mentioned in § 2, the acceleration potential @ dose
not satisfy Laplace’s equation because of the nonlinear

term 1/2(F7 $)* in equation (3). So, @ is not appropriate
to numerical methods like BEM. But this nonlinear
term can be explicitly evaluated from the solution of
velocity field. Therefore it is not necessary to solve the
nonlinear part with @. Let us subtract the nonlinear
term from @ and put linear part as

be=22—0—Lryy (43)
Since ¢. satisfies Laplace’s equation, boundary value
problem on ¢, is easier to be solved than that is on @.
But, we have to remind that gradient of ¢: does not give
the fluid acceleration.

The boundary conditions for ¢ is easily obtained by
substituting equation (43) into (39), (41) and (42).
First, the body surface kinematic boundary condition
for ¢ is

aaq‘;; =N-a+tg —a—i<—%-(l7¢)2> (44)
Next, the implicit body surface boundary condition for

¢t iS
3 _ i [
Ny ﬁ —pNds

+ N [ (-z-3ws¢)Nas+ 7, )

_9(1 2>

+a-L{1we) (45)
Binding the terms which can be evaluated from the
solution of velocity field as @

Q=N./a“{/;<-—Z———%—(V«ﬁ)z)Nds%—Fg—B}

+a—2{(Lwer) (46)

we have final form of the implicit body surface bound-
ary condition

%’f—aezwr' l —6Nds +Q. (47

The implicit boundary condition should be discretized
by boundary elements when used for BEM. Lastly, free-
surface boundary condition for ¢. is

be=—Z -7 $). (49)

The kinematic body surface boundary condition for the
nonlinear acceleration potential @ is derived from the.
physical correspondence of @ to the acceleration of
fluid a. On the other hand, #: does not have such a
direct physical correspondence. So, boundary con-
ditionsfor ¢: is derived indirectly but systematically
from those for @.

5. Application of the acceleration potential to
the numerical simulation

Let us apply the boundary value problem on ¢: to the
nonlinear time domain simulation. Fig.3 shows the
flow of the new simulation method which traces the
body and free-surface motions step by step from the
give initial condition. This method is composed of
following five procedures.

(1) The boundary value problem on ¢ is solved and
the velocity field is determined.
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(2) The boundary condition for ¢. is computed
using the solution of the velocity field.

(3) The boundary value problem on ¢. is solved
and the acceleration field is determined.

(4) Using the solution of the acceleration field, the
pressure distribution on the body surface, hydraulic
force and the accelerations of body are determined.

(5) Integrating the velocity and the acceleration,
new position and motions of the body at the next time
step are estimated. For the renewal of free-surface, the
mixed Eulerian and Lagrangian method is utilized.

It can be said that this new simulation method is
much consistent compared with methods those do not
have above procedures (2) and (3) (referred to as
. the former method hereinafter). Fig. 4 shows the typi-
cal flow of the former method. Since the former method
does not solve the acceleration field, ¢. is computed by
the backward finite difference. In brief, denoting the
velocity potential of the collocational point 7 on the
body surface at time ¢ as ¢:(¢) and the velocity of the
collocational point i as v., dg(t)/dt is written as

i‘#%ﬁz—a%g—”—+ N0 (49)
Here d¢.(t)/dt is approximated by backward finite

O
Solve the velocity field (BEM) ¢y
v2=0 :with given B.C.
|
Set B.C. for acceleration field @)

Equation (45), (48) and (49)
I
Solve the acceleration field (BEM) ®)
v2¢; =0 : with given B.C.
|

Compute pressure, hydraulic force (4)
| and acceleration of floating body

(Runge-Kutta O(At4))

|
Time marching procedure (MEL) |(5)
Update shape and velocity
potential of free-surface and
the position of floating body etc.
I

t=1t+ At

Fig.3 Computational flow formulated with the accel-
eration potential : The new method

difference to have
6@58.5!) _ ¢>.-(t)~zﬁl}(t—m) — 0T 1) (50)

Thus, the former method computes the hydraulic force
by integrating the pressure distribution on the body
given by this backward finite difference, computes the
acceleration of the body using this hydraulic force and
integrates this acceleration to estimate the motion and
position of the body for next time step. But again, the
backward finite difference is applied to compute pres-
sure in next time step. This sequence of computation is
not consistent from the hydrodynamical point of view
because the sequence is no more than the repetition of
backward finite difference and forward time integral.
So, there is no reason to have the converged result by
this sequence. As a matter of fact, the numerical
example shown in the next section shows that the for-
mer method gives no converged result even if very small
time step 4¢ is used. This inconsistency is overcome by
introducing the procedure (2) and (3). These two
procedures guarantee the dynamic equilibrium forces
between body and fluid. In other words, the equations
of fluid motion and body motions can be solved simulta-
neously by procedure (2) and (3).

Solve the velocity field (BEM) 1

v2¢=0 :with given B.C.

Compute d¢/ ¢t by backward
finite difference approximation | (3)

(4)

Compute pressure, hydraulic force
and acceleration of floating body

I
Time marching procedure (MEL) |(5)
Update shape and velocity
potential of free-surface and
the position of floating body etc.
|
t=t+ At

N Tty >

Yes

Fig.4 Computational flow formulated without the
acceleration potential: The former method

(Runge-Kutta O(At#))
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In addition, procedure (2) and (3) are effective to
reduce CPU time. For the nonlinear time domain
simulation, the boundary element matrix must be recon-
structed every time step to trace exact moving bound-
ary and this reconstruction requires more than 509 of
entire CPU time. But, since the matrix is the function
of boundary shape, we can use same matrix for both
velocity field and acceleration field. Therefore, incre-
ment of CPU time by procedure (2) and (3) is not so
large. On the other hand, since no backward finite
difference is required to compute ¢. in the new method,
we can use larger time step 4¢ as shown in the next
section. As a result, we can reduce CPU time consider-
ably by the new method.

6. Accuracy check of the new simulation method

As mentioned in the previous section, both the veloc-
ity field and the acceleration field are solved in the new
simulation method. The physical meaning to solve the
velocity field is to get the solution which conserves fluid
mass and physical meaning to solve the acceleration
field is to get the solution which conserves momentum
and energy because we assume ideal fluid without
energy loss. Accordingly, the simulated results must
satisfy the conservation laws of mass, momentum and
energy. Thus, the accuracy of the new simulation
method can be verified by checking these conservation
laws.

In this report, simple two dimensional simulations are
chosen to check the conservation laws. Fig.5 is an
illustrative drawing of the simulation. The length of
wave tank L, gravitational acceleration g and density
of the water o are chosen as units and other values are
nondimensionalized with these units in the simulations.
The number of boundary elements to discretize the
boundaries are 36 for floating body, 18 for piston wave
-maker and right wall, 20 for bottom of the tank and
184 for free-surface.

m =25x103

B =0.08 e =10x 10

N\

G\B—’N

N
§
N
=
\
N\
\
N
D

7

7

Z

)_' Y Vz ¢ =0 g

V2 =0 é

p=g=1 é

T
e o

L=1

Fig.5 Target of the computation; Case 1 Wave field
generated by free heave motion of the floating
body, Case 2 Wave field generated by the piston
wave maker and the free floating body

Check of the conservation laws are performed by
comparing the following values.
* Volume of the fluid

szf/;dz;:j;Ynyds:js‘ands (51)

* Momentum of the Auid

= [[7 av= [ pnas (52)
» Total energy of the fluid

&= [[z+ 4w srdo=L [~ 22net 62 a5 (53

* Impulse given from the boundary to the fluid

t
1= [ [ pndsat (54)
» Work done by the boundary to the fluid
i
w=["[ %% dsar (55)

It is clear from these equations that volume V;, momen-
tum P, and energy E, are determined by the velocity
field and impulse I and work W are determined by the
time integral of the acceleration field. So, with accurate
solution of both velocity and acceleration field, comput-
ed of V; should keep constant and P and I as well as
Es and W should balance,

As the first trial, transient heave motion of the body
floating at the center of the wave tank is simulated. The
heave motion is initiated by the unbalance between the
weight and the displacement. The initial displacement
is set to the half of the weight and the body is released
calmly at time £=0. Five different time steps 4¢=0.007,
0.014, 0.028, 0.056 and 0.112 are tried for this simulation.
Since the natural heave period 7% of this body is about
2.24, number of time steps per single heave motion
correspond to these 4¢ are 320, 160, 80, 40 and 20 respec-
tively.

The simulated heave motions are presented in Fig. 6.
We can see the new method gives almost same results
for all 4¢. These results demonstrate the new method
gives converged result even for the largest 4t = T,/20.
On the other hand, the former method does not give the
converged result for 4¢>0.014= T,/160.

The difference between these two methods can be
much clearly shown by conservation check. Next, the’
volume change while the simulation is plotted in Fig. 7.
This figure shows that both methods have quite high
accuracy on the volume conservation and the maximum
error is only (V(0)— Vi(tmax))/V+(0)=0.007%. This
results well demonstrate that velocity field is solved
very accurately by both method. In contrast, momen-
tum conservation plot in Fig. 8 shows the big difference
between two methods. In this figure, the vertical
momentum of the fluid P is plotted by solid line and
vertical impulse Iz given from boundary to the fluid is
plotted by broken line. This figure shows that Pz and
I: by the new method agree with each other for all 4¢,
but Py and Iz by the former method disagree even for
the smallest 4¢=0.007= T./320. We can see the same-
result on the energy conservation plot in Fig. 9. The new
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Fig.6 Simulated free heave motion of the body : Case. 1

method gives better results for all 4¢ than the former
method. Since the potential energy is much larger than
the kinetic energy, the difference between two method is
not as clear as Fig. 8. So, R. M. S. error of momentum
conservation and energy conservation is plotted in Fig.
10. The horizontal axis is number of time steps per
natural heave period 7». This figure quantitatively
shows that the new method is very stable for the size of
time step and gives converged result even for the largest
4dt. On the other hand, the converged result is hard to
be obtained by the former method. In particular, on the
conservation of momentum, the convergent speed of the
former method is so slow that the converged result is
hopeless to have.

Next, as the second trial, the floating body motions in
a wave generated by the piston wave-maker are
simulated. The amplitude and period of the wave-
maker motion is ¢=0.01 and 7T»=1.587 respectively.
For this simulation, the former method can not be
applied because it break down halfway. So, only the
results by the new method are presented here. The
simulated body motions are shown in Fig. 11. Time step
At =0.04= T,/40 is used for this simulation. This figure
shows, the simulated double amplitude of heave and
sway are about 809 and 509 of initial draft respective-

Fig.7 Conservation check of fluid volume: Case 1

ly and the double amplitude of roll transient motionis
about 12 degree. So, the transient body motions are
considerably large. The balance between momentum
P and impulse I and the balance between total energy
Es and work W are plotted in Fig.12(1), (2), (3).
Even for the large body motions, the momentum and
energy conservation are well satisfied. The loss of fluid
volume is also negligibly small, less than 0.003%, in the
simulation,

At the end of this section, a note is added for accurate

numerical evaluation of the term %(%(17 ¢)2> in the

equation (44) and (46). This is the nonlinear term
shifted from the governing equation of @ to the bound-
ary condition for ¢.. Therefore, accurate numerical
evaluation of this term isindispensable to get the accu-
rate solution of the acceleration field. At first, as the
most direct approach to evaluate this term, the values
of ¢ at some internal points of fluid domain are comput-
ed to take finite difference among values on the body
surface and the internal points. But, this method was
found to be too sensitive to the location of the internal
points and converged results could not be obtained. So,
the following formula is used to evaluate this term in
this paper.
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The new method

8 102, Acceleration field is solved to geto, ~0.15

o 6107 Sway RV
5

2 4102

]

> 2 1072

<

B

“ 010°-

-2 107

0 2 4 6 8 10 12
Time

Fig. 11 Simulated body motion in a wave generated by
the piston wave maker: Case. 2

Abro)-xeore(-20)-8 430
(56)

where % is the curvature of the body surface. Since the
right side of equation (56) can be evaluated only from
the surface values, this formula is appropriate to numer-
ical methods like BEM. Moreover, equation (56) gives

The new method

Acceleration field is solved to get ¢,
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Fig. 12 Conservation check of momentum and energy :
Case. 2

stable result to the panel size. The derivation of this
equation is given in Appendix. A.

7. Concluding remarks

This work is aimed to develop the three dimensional
full nonlinear theory on the wave body interaction prob-
lem and the numerical simulation method as its applica-
tion. As the first step of this work, the mathematical
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formulation of the boundary value problem of the
acceleration field is studied and an idea of the new time
domain simulation method is presented. Following
items are main results of this report.

1. Euler’s equation of ideal fluid motions is transfor-
med to the integral equation of the acceleration poten-
tial @.

2. Using the kinematic formula of the acceleration
of fluid particle sliding on the body surface, the body
surface boundary condition for the acceleration poten-
tial @ is derived.

3. Substituting the equation of three dimensional
body motions into the body surface boundary condition,
the implicit body surface boundary condition for @ is
derived. With this implicit boundary condition, the
ideal fluid motion and the floating body motions can be
solved simultaneously.

4. The free-surface boundary condition for @ is
added to complete the mathematical formulation of the
boundary value problem on the acceleration potential
D.

5. Physical meaning to solve the acceleration field is
clearly understood from above arguments.

6. For numerical method like BEM, the nonlinear
term in @ is shifted from the governing equation to the
boundary conditions, then alternative boundary value
problem on ¢, is formulated.

7. As an application of ¢, the new nonlinear time
domain simulation method is proposed.

8. To demonstrate the accuracy of this new method,
two dimensional full nonlinear simulations of floating
body motions are presented. The results show that the
simulated results are accurate and satisfy the conserva-
tion law of mass, momentum and energy excellently.
The three dimensional simulation code based on this
new method is under development. Hopefully, some
results of three dimensional full nonlinear simulations
will be presented in the next report.
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Appendix. A Formula for numerical computa-’

: 0 Lipasy
tion of 57 2 7 ¢)

Using the local polar coordinate system (7, 8) which
origin located at the local center of the curvature as
shown in Fig. A, the »-directional gradient of square of
the fluid velocity is written as

d (1 0 &* d 1 04 . 1 &
W(T(V(ﬁ)z) :Tf arqz + r&djﬁ {_7 70 ¥ argﬁﬁ}
(A-1)

Substituting the Laplace’s equation
Fp 196 1 Fo_
ar 5 37+ r? 06* =0

into equation (A-1), following relation can be obtained.

Zbow)-- (33

(A-2)
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op( __ 3 dp _d (¢
+ 8r< r290°? >+ 136 130\ 8;’)
(A-3)
Furthermore, relations
9.6 9 _9a 1_, (A

or on' 790 s’ r
can be taken to rewrite equation (A-3) to get the final
.~ form

Hboor) w25

o o (59)

(A-5)

Appendix. B Relation between Eulerian angles
and fundamental vectors

In this article, the fundamental vectors i, Jj, B are
used to relate the space fixed reference frame and the
body fixed reference frame. But in many cases, the
angular position of ship is presented by Eulerian angles.
Therefore, the relation between Eulerian angles and
fundamental vectors is given here. As Fig. B shows, let
us use pitch angle &, roll angle ¢ and yaw angle ¢ as
Eulérian angles, then apply sequence of rotations ¢, 8
and ¢ to O-XYZ frame so that it coincide to o-xyz
frame. Keeping the sequence of rotations, the relation
between (X, Y, Z) and (x, v, 2) can be written as

X cos @ cos ¢ sin ¢ sin & cos ¢—cos ¢ sin ¢
[Y}={cos fsin¢ sin ¢ sin @ sin ¢+cos @ cos ¢

Z —sin § sin ¢ cos 8

body

Local center of radius

Fig. A Local polar coordinate

cos gsin @sin ¢ —singcos ¢ [{y
cos ¢ cos 8 z
Since (X, Y, Z) is identical to xi + yj + zk, the relation
between Eulerian angles and fundamental vectors is
clearly understood from this equation.

Moreover, the relation between angular velocity @=
wzi+ wyj, w:k and Eulerian angular velocity 6,6, ¢
can be written as

@ 1 singptan§ cos ¢tan 8){w:
{0’}2{0 cos ¢ —~sin @ ng} (B-2)

¢} L0 sinpsecd cos ¢sec 8)lws

cos ¢ sin 4 cos ¢ +sin ¢ sin ¢ (x
(B-1)

Fig. B Eulerian angles
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