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Prediction of  Wave  Drift Damping
               a  Higher Order BEM
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                                       Summary

  The  paper  develops a numerical  method  for predicting  wave  drift damping of  three dirnensional
bodies. The  first order  potentials are  calculated  by a  new  integral equation  method,  in which  the second
derivatives of  the steady  potential has been removed  from  the integration on  the free surface.  The
second  order  mean  potential  is calculated  by an  integral equation  method  which  is firstly proposed  and

            Comparison is made  with  analytic  solution  fora uniform  cylinder.  Numerical examina-implemented.
tions are  made  on  the  convergence  with  radius  of  the mesh  on  the free surface,  and  magnitude  of each
cornponent  of  wave  clrift damping.  TimmanrNewman  relation  is also  used  to check  the cerrection  of
the first order  potentials. Comparison with  experimental  results is made  on  an  array  of four cylinders
which  are  restrained  and  freely moving  respectively.  It was  found that good  agreements  exist  between
the  present calculation  and  experimental  results  and  negative  wave  damping  rnay  eccur  at  some  wave

frequencies.

1. Introduetion

  Tension  leg platforms (TLPs) are  seiniusubmersible

structures  moored  to seabed  with  a  number  of  preten-
siened  vertical  cables  <tethers). The  response  motion

of upper  structure  with  wave  exciting  induces tethers
vibrating  continuously,  which  wirl break  when  their

fatigue iife has been reached.  Damping  can  decrease
amplitudes  of  response  ef  structures.  Thus, aecurately

predicting damping  is irnportant for the  prediction of

fatigue Iife of  tethers. Usually damping of a  compli-

ment  structure  can  be d{vided into the viscous  damping,
the  radiation  dannping and  the wave  clrift damping. The
wave  drift damping, defined by  Wichers  and  Sluijsi', is
due to the increase of  clrift force with  forward moving
speed  of a floating body. Its calculation  needs  the
nenlinear  knowledge on  wave  diffraction and  radiation

in a  steady  flow.

  In this respect,  significant  progress  has been made

recently.  Matsui, Lee and  SanoM  znd  Etnmerhoff  ancl

Sc]avounos3i have derived analytic  solutions  for uni-

form cylinders  in finite and  infinite water  clepth. Bao
and  Kinoshita") expended  to truncated  cylinders.  FoF
3D  arbitrary  bodies, integral equation  method  had been
developed by  Nessen, Grue  ancl  PalmS), Gmie  and  Palm6),
Zhao  et a17}, Huijsmans and  HermansS)  and  Eatock
Taylor  and  Teng9), NewmaniO],  among  others.
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  The  present research  examines  the wave  clamping  of

floating bodies by a  higher order  boundary  element

method  based on  perturbation with  respect  to wave

slope  and  current  velocity.  The  oscillating  wave  poten-
tiAls are  resolved  by  a new  developed integral equation

(Teng and  Katoii)). Comparing with  some  widely  used

ones,  the present one  removes  seeond  derivatives of

steady  potential  frorn the integral on  the  free surface.

Thus, the  present integral equation  can  be dealt with

more  accurately.  Cauchy principal  value  (CPV) inte-

grals on  the  body  surface  and  the fTee surface  are  clealt
with  by direct and  indirect methods  respectively.  The
present  work  also  derived an  integral equation  for the
calculation  of  second  order  steady  potential,  which  will

give rise  to some  centribution  to wave  drift damping
(Grue and  Palm6)). The second  order  drift forces on

forward moving  bodies are  calculated  both by a  near

field and  a far field method.  The  wave  damping is

obtained  by  numerical  differentiation of  seconcl  order

mean  drift forces in current.

  Numerical test is made  on  the  convergence  of  drift
force with  radius  of  the  mesh  on  the free surface,  ancl

the  examination  of the contribution  of  the second  order

steady  potential on  clrift force. The  comparison

between  the  far fielcl and  near  field methed  is made  upon

horizontal modes  at  restrained  case. The Timman-
Newman  relationship  is a]so  used  to certify  the  correc-

tion  of  the present  method.  Cornparison is made  with

Kinoshita, Sunahara and  Bao'st!) experimental  results

on  an  array  of  four cylinders  which  are  restrained  and

freely moving  respeetively.  It was  found that  good

agreeme"ts  exist  between  the  present calculation  and
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experiniental  results  and  negative  svave  drift damping
may  occur  at  some  waxre  frequency.

          2. Perturbation expansion

  2. 1 Ve]ocity potential and  wave  sttrface

  The fluid is assumed  to be homogenous  and  incom-
pressible,  and  the  motion  irrotational. Waves  are

assumed  to be  periedic. There exists  a  velocity  poten-
tial O  that satisfies the Laplace equation,  the nonlinear

free surface  condition

    O,,+2VO･VO,+g ¢ .

     +SVM･V(VO･V ¢ )-O (1)

on  the free surface  z=  g(x, y, t), defined by

    r--i(  
dd¢
, 
+Svo･vo).[,  (2)

and  the body conditien

    oo
      =l(b･n  (3)
    Onon

 the instantaneous bocly surface  So. I4 is the velocity
of  body motion  and  n  is the unit  normal  vector  of  the

body  surface  pointing eut  of  the fiuid.
  Under  the  assumption  of  small  wave  sEope  E=  la4, the

velocity  potentiar can  be expended  into a  perturbation

serles

   O(x, t) ==  O(O)(x)+Eo(i)(x, t)
           +E2o(!)(x, t)t-･- <4)
The potentials  at  each  order  of  e  can  further be  expancl-

ed  with  respect  to the current  parameter  T==aU]kn

   o[O)(x)== LLts

   oCi)(x, t)=o(ie)(x.t)+  TO(ii)(x,  t)+---  
'
 (5)

   di[2}(ar, t)=OC20)(x, t)+ TepC2i)(x,  t)+･･･

where  o  is the wave  encounter  frequency which  has  a

relation  with  wave  frequency te of

   a;  cv-kU  cos  B, (6)
B is the incident angle  of the waves,  and  fe is the wave
number  which  is the real  solution  of the dispersion

relation.  The  first index in the superscript  corresponds

to wave  steepness,  and  the  second  to current  parameter.

  As  the same  the wave  profile can  be expanded  into
   g(x, t)=egC')(m, t)+E2gC2)(  ir, t)+･-  (7)
and

   gu}(x, t)=gCiO,(x, t)+rgUi](x, t)+･･･
                                      (8)
   g(2)(x, t) =:  gC20}(x, t)+  ry(!i](x,  t) +･･･

where

   g"e)=-¢ EiO}/ka
                                      (9)
   gui)=-uvx..v¢ [iO)ls
 2.2 Hydrodynamic  forces

  After getting the  djffraction potential, the
hydrodynamie  pressure in the fluid domain can  be
obtained  from  Bemoulli's equation.  By  perturbation
expansion,  the pressure may  be  written  in the  form

   p(x, t)=:p`O'(x)+ep{r)(x, t)+E2p`2'(.r, t)+-･･ (10)
and

   p(O](x,t)=p(ua)(x)+o(T2)
   p{i}(x, t) =tpCiO)(x,  t)+ Tp`'i'<x,  t)+O(f)

   p(M(x, t)=p('e)(x, t)+ zpt2i)(x,  t)+o( r2)

                                      (11)

   Ge(x, Xo)  4x[ r+  
n             '

            +nZM=i( Jln -  £n
 +  ;lrt +  2n )]

where

   r  ==  [<R2+(z- 2b)2]if2, ri =;  [R2+(2+ zo)2]iJ2,
   hn=[R2+(x-fo-2nh)2]U2,

   7lan=[R2+(l+th+2nh)2]U2,

   r4n=[R2+(g-th+2nh)2]U2,

   1tsn=:[R2+(z+thrm2nh)Z]"2,

   R2==(.r-xo)2+(y-yo)2,
and  h is the water  depth. The  a

p("O) is the hycirostatic pressure  and  Pf]O) the Iinear
oscillating  pressure. The  remaining  components  are

defined by  the  re]ations

   pt-.. -p[  
00eiiD

 +voao).v ¢
{ei]]

   p[2o} ..  L p[  
OOa

 
t(
 
20}

 i                 +rVOCIO}.v ¢
[}o)]

   p[m).. 
mp[

 
eSi2i]

 +vo(oi).voc2o}+voai).vdi"o]]

                                       (12)
The mean  values  of  the second  order  pressure  in terms
of  E are

   pf2e)m..`evotio)･vo"o}
                                       (l3)

   pC21>m=-p[uvx.･vot20)m+Svo{il)･v¢
(iO)]

where  diC2e)M is the second  orcler  steady  velocity  potential
in terms of  wave  steepness,

            3. Integral equations

  3.1 Zero  order  steady  potential
  The steady  velocity  potential  xs can  be  expressed  as

the surn  of  a  steady  incident potential and  the distur-
bance  from  a  body

   xs(x)==x-x.  (14)
Under the assumption  of  small  forward speed,  x

satisfies  the `rigid
 wall'  condition

    9x =o  ･ as)
    crn .              '
on  the free surface,
    0x
      =ni  .(16)
    Onon

 the mean  body surface  SB, and

   vx=o  lxl-oo (u)
in the field far away  from  the,body. The  calculation  of

the zero  order  steady  potential is straightforward  by
using  the  Green's function

(18)

(l9)
                          bove  Green's function
satisfies  the  rigid  wal]  free surface  condition  on  the mean
water  surface  and  the impermeable  condition  at sea

bed.

  3. 2 The  first order  oscillating  potential
  The  first order  oscillating  potential  in wave  slope  E

can  be expressed  as

   oU)(x, t)=A  Re[o(i,(x)eifft]=A Re[(  epg)(x)
                       , yL"1  (2o)

            +diei'(x)+ia.1.,&¢SP(x))eiat],

NII-Electronic  



The Society of Naval Architects of Japan

NII-Electronic Library Service

The  Society  ofNaval  Architects  of  Japan

Prediction of  Wave  Drift Dam  inbv  a  Hi her Order BEM 185

 where  A  is the amplitude  of  the  incident waves,  ipo the

 incident potential, di7 diffraction potential and  dii(i=1,
 
･･･,6)

 the racliation  potentials corresponding  to six

 generalized body motions.  (nySi, &, 63) are  the amplitudes

 of  translatlonal rnotion,  and  (c"4, &, &)=:(ai, a2, (ula) the

 amplitudes  of  rotation.

  Approximating to the Ieading order  in current  factor

 T, the  free surface  condition  for the first erder  potentials
 in wave  slope  E  can  be written  as

    
-voeFSi'+2iTV2ip,Ci'-V2xfi+iripS-i'Vix

     +  
e.¢

.2i'  =o  i= i, ･･-,6 and  o+7  
(2D

 on  the  still  water  suriace,  where  yo=a21kr,  and  V2  is a

 two  dimensional gradient operator  on  a  herizontal

 plane. In the field far away  from  the body, the above
 equation  can  be simplified  a$

    
- u,disv  -2ir-aopttl-2i' +  

ofiodiii'

 =  o. (22)

 The  body  condition  can  be written  as

    
Ooip.b"

 =o,  dihll;dig)+diei}
                                   (23)

    
e.di.2i'

 =:  n. +-£. ;m,, 1'=1, t'', 6

 on  the mean  body surface  SB, where

   (ne1, m2, m3)=-(n'V)Vxs,
                                   (24)
   (m4, ms,  m6)=-(n-V)(x  XVhrs).

  From  the  free surface  boundary  condition  (Eq. 22)
and  the out  going conclition  of  oscillating  waves  at

infinity, we  can  derive a  Green's function as

   4ffG(x, xo) ==  
-t-t,

 -XMf2"eAw

      Af(r)+v)coshA(h+z)coshA(h+zb)

          z(AF  A, :)-,  ,o,h  Ah) cta de

                                   (25)
where

    va=  
-h+i[(x-x,)cos

 e+<y-yo)sin e)],
   f( r)  =:1-2r  cos  e, (26)
   F(  r, A) =;sinh  Ah+2r  cos  e cosh  Ah.

  Applying Green's second  identity to the unsteady

potentials and  an  oscillating  source  with  a  reverse

speed,  as  shown  by Nossen  et a15) for infinite water

depth, we  can  obtain  the  integral equation

   adiS'i'(xo)-  Y[L. diS')(x) 
0aGn

 cls

     +2iT.LL,.disL)(x)(v,G･v2x+-S-cvgx)cis
      T g5Si'(xo) fore5S"=gsll'

     
=iY[]ll(G+':tVG'vxs)njds

 forf=1,-･,6

                                  (27)
after  using  the Tllck's theoremi3) to remove  the seconcl

order  derivative ef  the steacly  potential for smooth

body. Here SF is the outer  free surface.  Examination
on  fleating cylinders  by  Eatock  Taylor  and  Teng') has
suggested  that  the  local geometry  of  

[corners'
 couLd

have  an  important effect on  the fiow when  the  body  has
forward  speed.  Wave  drift damping,  however,  is very

litUe influenced by this effect.  The  second  order  deriva-

 tive of  the steady  potential on  the free surface  can  be

 removed  by applying  the transform (Teng and  Katoii))

    ff.G(x, x,)vdiSi)･vxds

      
=:-.V[.G(x,mo)

¢SDnidl (28)

      -.[L.diS;)(v,G･v,x+Gv;x)ds

 where  CE  is the water  Iine, the intersecting line of the

 body  ancl the still water  surface,  and  the line integral is
 taken clockwise.  This yields a  new  integral equation  of

    aipS'i)( rD)T.0g. ¢}i'(x) 
OoGn

 cls

     =iT.)[l.GdiSi'(x)nidl

     
-iT.[.[ipS-i)(x)V,G･V,x(:)

     -GipSi)(x)-V,x(x)]ds

       f di8"(xo) for ip S''

     
+tOI.(G+-it'VG-Vxs)nJds

 fori;1,･-･,6

                                   (29)
  For  benefiting the discretization by higher orcler ele-

 ments,  we  combine  

'the
 above  equation  with  a corre-

 sponding  integral equation  obtained  inside the body,
 as  Eatock  Taylor and  Chaui4) clid for the  wave

diffraction in still  water,  and  ebtain  a  new  integral
equatlon

   [1-.Lf.(voG-2iTG=)decltr]O,C"(xa)
     +  

.L)CIE

 diS'`'(xo) 
T
 ips･i'cr)] 

O..S
 d!r

     =ir.V[I.GipSDntdZ

     
-irOl)[di,Li)v2G･v2x-GVzdiS･i'･V2x)ds

      t ipSi'(xz}) fordiS'

     
+tOg.(G+-it-VG-Vz,)n.ds

 forl･-hl,･.,,6.

                                  (30)
Since the  derivative of  the  steady  disturbance x  on  the
free surface  decays  rapidly  with  increasing distance
frem the body, the integration on  the free surface  is
needed  only  in a  small  area  around  the  body,
  Beeause  the calculation  of  the Green's function is
very  expensive  and  the unknowns  are  both on  the bodv
surface  and  the free surface,  it is not  economic  to use

Eq.(30) directly for practical application.  Here  the

perturbation method  is introcluced to expand  the

Green's function into Taylor series  in terms of the

current  parameter  r

   G(-r)t=GCO)+TGCi'+e(r2), (31)
where  G(O) is the  same  as the Green  function for the
wave  problem  without  current,  and

   GCi)==-2io2cCD)ldv,ax. (32}
Substituting equations  ( 5 ) and  (31) into equation  (30)
and  cellecting  the same  order  terms in r, we  can  clerive
two  sets  of  integral equations  as follows

   [1"0f.vG`"'(x,xe)cinrdu]diS'O'(x,)
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    +  
.(L.[

 diSiM(･To)- diiL"'(.)]i.G.ji" ds

     f disi' for ipb'["

    
=1.LLI.G[mnJds

 fori--i.･--,6

for the  zero  order  terms in T;  and

              ]   [1-Il,vG"'idude qsui)(xo)

    +Ill.[di[]i'(xu)-di<i,,(x)]eoG.;O'ds

    ==  
.LL.

 
eeG,Ii'

 [¢ `'o'(x)-
 di"m(xo)] ds

    +O[.(vG`i)-2iGkobdicimds

    +i.v[.Gip(ia)"ldl

    -ill,[di[iO)v,GCO)-K72z+G{o)v,dicio).v,xld3i

     f O fer ipSi'

    
+101.(Gti)+

 
vi,VG{O)･vxfi)n,ds

(33)

                         forj-- L 
"',

 6

                                (34)
for the first order  terms in r. The  calculation  of  the

rernaining  Cauchy  principal  value  (CI'V) integrations is

conducted  directly by a nllmerieal  method  (Teng and

Eatock TayloriS}), in which  a technique  is applied  to

$eparate  out  a  singularity  whose  CPV  integration van-

ishes, while  assuring  that  the  integration of the remain-

ing term  is straightforward.
 3.3 Second order  steady  potential

 The  second  order  steady  potential  satisfies  the  bound-

ary  conditions

   
OOaC:]M

 =-  20g 
lMldiC'O)02 ip[i")"leZ2] (35)

                               '
on  the still water  surface,  and

   
00o.tl21V)M

 =.IRe[-n.[(6(iW+a[iO) × ::)･V]Vdi('O)*

    +(aCiO}Xn).[ia(6(iO)+a"O)xx)-VdiCiO)]*]

                                (36)
on  the body  surface,  where  

*
 denotes the complex

conjugate.  The  second  order  steady  potential  comes

from  the evanescent  modes  of  first order  pQtentials. It

always  exists  in current,  even  in the case  where  it

vanishes  in sti]1 water,  for examp]e,  a fixed uniform

cylinder.

 Applying Go as Green's function, the  integral equation

for the  second  order  steady  po'tential can  be written  as

   ¢ C2o)m<xo)+01.  
0oGnO

 [o(20)m(a;,)- o(20]m(x)] ds

    =T-Re[IIIt{-nt[(e"o)+a(]o)xx)+v]v ¢
ao)*

    +(a{r"'xn)･[ia(c;(iO)+aC`"'xx)-Vdi[iO)]"}Gods]

    
-
 2ag 

Jm[.nc, di(iO'(x)vl. ip(iO}*(x)G,cts]

                                (37)
 The integral equation  also  includes second  deriva-

tives in both the integral on  the free surface  and  the

body  surface.  To  get  rid  of  seconcl  derivatives, follow-

ing transforms  are  used

   hn[XL.Goqs"")(x)v{,dicio)*(x)cls]

    =im[-IL,diti")(x)v2c;,･v2ip[io)*(x)cis

    +  f,.., G, di{Lo](,,) 
0ip`iSi*,

 
(x)

 dl]

for the integral on  the free surface,  where

contour  at  outer  boundary  of  the  mesh  on

surface,  and

   .(Zl.Co[(B`]")'V)Vg5Ci"}*].nds

     IL.[(i?-fi"u')(vG,-vipao)*)-(vG,-6uo))
    (Vip(i"'*.n)-Go(a"O'xn)･ViptiO)']cts

    
-j[.Go(VdiCiO)*× 6Cio))･dl

(38>

CJ is athe

 free

(39}

for the integral on  the body surface,  where  6=:e+a × x.

Furthermore,  to remove  CPV  integrals, which  appear  in
the discretization by  high order  elements,  the  following
relation

   IL.l("'a"o))(vGe･vip(io)*(x,))
    

-(VGo･fi(iU')(Vip('O)'(xo)-n)

    -Go(a"O)xn)･VipCiO)*(x,)lds

    
-f.Go(Vip{'U'"(xo)

× 6`'O))'dl=:O (40)

{s added  to  the  integral on  the bedy surface,  and  it

yields

   Y[II.[(6C'"}･v)v¢
cio)*].nds

    =Y[L.[(n'6{iO])(VGo'(vdi('O)'(x)-vip`]o)"(xo))

    -(VGa･6`iO')(VdiCiU"(x)-Vdi"O"(xo))'n)

    
-Go(aCiO)xn)-(Vdi(iO)*(x)-VdiCiO)*(xo))]cis

    
-A.

 G,I(v dicio)*(x)-vdi(io)*(x,)) × 6cio}] - di (4o

Then, integration can  be done in a straightforward

manner.

         4. Hydrodynamicforce

 The  hydrodynarnic force$ ancl moments  on  bodies can

be obtained  6y direct integration of the hydrodynamic

pressure on  body  surface.  This  method  is called  as the

near  fielcl method.  When  approximating  to the  first
order  in terms  of  current  parameter  T, the leading order

exciting  force in terms of  wave  slope  s  can  be written

as

   F`"==-pl]l.Re[(iadi{i'
         +UVxs+VO`Di')eiif']nds (42)
The  first order  force in wave  slope  is usually  divided

into exciting  force and  hydrodynamic coeficients,

which  correspend  to  diffraction and  radiation  poten-

tials, respectively,  The  hydrodynamic  coeMcients  sat-

isfy the  TimmanLNewman  relation5)ifi}

   fh(r)=ew2aij+iwbij

        t:: ol.ip,.,cts=fi.,(- ,) u, i=1, ..., 6) 
(43)

which  can  be  used  to check  the  correction  and  the

accuracy  of  obtained  potentials at  first order  of  wave
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slope.

  The equation  of  near  field methud  for the second

order  mean  drift force is

    ES3]=Fit2)+E?}+Fl`,;)+Ee)+Fa4)  <44)
where  Fl<M, FIL", E[i,). Ee' anci  FWa) are  defined by

    E[2]=rplZI.Re[tY'ip(iD)'-(Ve5`'O)+2TV45C:i))]n[is

    Ee'=-pOI.CJvx.-vTdi{2o)mncis

    i;IK'=="T8'IZI.Re[iaVipa"･(e{i)+aC]}× (v-x.))n

         +  icaCi)* ×  i2 qb(i)] ds

    F19' 
=

 
"ft

 A  wr･Re  [( xf  - x.) EE i"#"

         +(Yf-yc)a{)".fi6i)

           1
         

-72'(g;Ei'.ft{i"+gLg')4]]")z.]k

    Ffu2)==-etY[.Re[-S-l"")sv(io)*+Tg{io)g(m*
         +s'")"(g'5J}+(y-yc)ai'-(x-xc)eci))]ndl

                                         (45)
(xc, Yc, 2c)  and  ( cf, gLf, fy) are  the  coordinates  of  centres

of  gravity  and  fioatation, A"Lp is the area  of  waterplane.

  For  fixed bodies, the  application  of  the above  equa-

tion is not  a  dificult job. However, whep  bodies are

free te rnove,  the rnultiply  of  the' first derivatives of  first
order  potentials  will  introduce some  diMcultv. The
multiply  in A2) can  be represented  as  

'

   XI.vipcio)*･vdici])ncis= 11I.[6dioCi,O)' 
03ii"

     +  
sdi(io)*

 
oipUi)*

 .  
0di(i"}*

 
edit]i)]cts

M.Pg.42
 

L-  4:i2-(Zl:"'<c,(y,k)

-2Tcos
 fi)Jhoz[H(e)-a/t.(-ee)"]do

-2[(1-
 ck.- 

ddet")rsin
 s frn[s]

+(C.(foh)-2[  cos  B)fm[Sl]

187

         Ot2 Ot2 
'
 On 6n (46)

by  two  independent unit  vectors  ti and  iz in the plane

tangent to the body. The  normal  derivative of  velocity

potential diOi) is a combination  of  fn,i term$,  which

includes second  derivatives of  steady  potential on  the

body  surface.  Thus, to apply  the near  fielcl rnethod  to
compute  the  second  order  mean  drift forces, a  direct
evaluating  method  for the second  clerivatives of  poten-
tia!s on  body surface  has to be developed.

  As  in still water,  a  far field method  can  also  be'
developed for the  horizontal modes  of mean  drift force
upon  using  the principle of conservation  of  momentum.

This method  can  avoid  using  the second  erder  deriva-
tives  of  the  steady  potential on  body  surface  and  is
believed to give  more  accurate  results. Nossen et  alS]

have  obtained  the far field equations  for the case  of
infinity water  depth, and  Grue and  Biberg'7) got  the
following equations

    pgl.leil! =:  
m'itllitte2

 (.t2"( cg(vih)cos e

          +2Tsin2  e)IH(e)12de

&-Pg,42
  +2C.(kh)cosBReES])
=-  4YcaYti-(XI2"(c.(vih)sin e

  
-2:sin

 e cos  e)iH(e)i2de

  +2Cg(kh)sinBRe[S]]

'

                                          (47)
for finite water  depth. 'I'he

 parameters  in the above

equation  are  defined by

    s=  N/ 
2.n
 eirri4H*(e+2rh  sin  B),

    [h 
==

 [ICv(kh),  Cg(kh)==tanh leh+ 
coslehh,.leila

 , 

'(48)

    gv  tanh(uh);po,  vi ==  y(1+2Th  cos  e),
where  ll is the  distribution of  scattering'isave  ampli-

tude at  infinity.

          5. NUMERICALRESULTS

  The  theory described in the  foregoing is applied  to
clevelop a  general numerical  procedure for cornputing
the  wave  run-up  and  forces on  a  three dimensional body
in a weak  current.

  Figure 1 shows  the convergence  with  radius  ef  the
mesh  on  the  free surface  for each  component  of  second

order  mean  drift force on  a restrained  truncated cylin-

der. Index i･ denotes the total force. The cylinder  has
a  radius  a  ancl draft Tla=1, and  is in a  water  depth of
h!a=2.  The  ca]culation  is made  at  ka=1.5 and  Froude
number  (Fr== evJliii) e.10. A  positive current  velocity

is defined such  that the waves  propagate  against  the
current.  It can  be seen  that truncating errors  are  not

very  big when  radius  Rfa of the mesh  on  the free surface
is larger than  2, and  very  small  when  Rla is larger than
4.

  Figure 2 shows  the comparison  of each  component  ef

the wave  damping  of  the same  truncated cylincler,

obtainecl  by  numerical  differentiation of  each  term  ef
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seconc]  mean  drift ferce. It can  be  seefi that  the dorni-

nant  contribntion  comes  from the  water'line  integral

and  thebody  jntegral of  the first order  potential. At low

frequency, the term  from the second  erder  mean  petcn-

t{al is very  small,  but it increases "'ith  the increase of

wave  frequency and  is not  negligible  at high frequency.

  Figures 3 and  4 are  the  cross  coupling  surge  and  heavc

added  mass  and  damping coeificients of  un  hemisphere

Bt

66

'pgl:aVgi.L42o-24

                       ..,E
                   ..E･."
                ,..-e･-'
              .e･.
           .E-"
      ...-a･'
    .-e
 .,.E}･･

y
                      -+                   ..-L-..'
...."....-..,..+.,.=va,-,,:r:+..:t:1:.r..:.

-'.e-
    

-SL.L
       

-"--L
          

.".h
             

'"L'..----.e+---e

st -"-J'e"
 .+..nr
 {""Bt
 
+

Fig.2

1t.2IA1.fika1,e2

Examination on  the  contribution  of each  term

of the wave  damping  of  the truncated cylincier.

O.14e,12-u

  1 O.1Pa

Fig.3

o.ose,e6O.04O.02e

at Froude  numbers  of  ±
'e.],

 The reason  we  chosen

these values  is. that they  are  zero  in the  stil]  water

problem  and  enly  come  from  the  disturbance of  the

stead}, flow, so the calculation  of  those  values  are  very

sensib]e  to the metheds  used,  and  can  show  their  availa-

bility more  clear]y.  Frorn Figs.3 and  4 it can  be seen
that the  added  mass  und  dumping coecacients,  aT3(U)

and  biu( U), in the  fol]owing current  is close  to the  added

mass  and  damping  coedicients,  a:i(m  U) ancl b3i(- U), in
a  corresponding  reverse  current.  Tirnman and  Newman
relationship  is satisfied very  well.

  Figure 5 shows  the comparison  of  the  second  orcler

drift forces on  the fixed hemisphere by the near  fie]d and

the far field method  at  Fp'=-O.1. It can  be seen  from

t/he comparison  that  the  good  agreernent  exists  between'
the twe  methods.

  Figure 6 shows  the comparison  of  the first order

exciting  force on  a  u-iform  circular  cylinder  of  radius  a

in a  water  depth of  h!a=l with  Matsui et  al's2)iS) ana-

lytic sulution.  In the calculation,  a  mesh  of 16 (4
(circumferentially) x4  (depthwise)) elements  on  a

quadrant  of  body surface,  and  32 (4 (circumferentially)
x8  (radially)) elements  on  a  quadrant  of  free surface

are  applied.  The  comparison  shows  that the agreernent

with  Matsui's analytic  solution  is very  good. Fig.7
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Fig.5 Comparison of  second  order  drift force on  the
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shows  the comparison  of  the second  order  rnean  drift

force at different Froude number.  The  comparison  with

Matsui's analytic  solution  shows  that at low  frequency

the  two  results  agree  very  well,  but at  high frequency a

little difference exists. It seems  that  the difference

comes  frorn the methods  used  in the  calculation  of wave

forces. Matsui's method  is to get  them  by  the  Taylor's

expansion  with  the forces anti  its derivatives at  
zero

current  speed,  but ours  is to compute  them  directly at  a

given speed.  Due  to the nonlinearity  of  the dispersion

equation  with  current  speed  and  relatively  stronger

effect of  current  at high fTequency, especially  in an

opposing  current,  our  results  diverge from Matsui  et  al's

at  high wave  frequency and  are  not  symmetric  about

the  one  in still water.  From  Figs. 6 and  7, it can  also  be

seen  that the current  effect  on  the second  order  drift

force is significant,  but the  effect  en  the first order

exciting  forces is relatively  weak.

  Figure 8 is the wave  damping of the  cylinder,  which  is

obtained  by the numerical  differentiation of  the mean

drift forces at  Fr= ± e.05 with  respect  to body  moving

 speed.  It can  be seen  that the wave  damping reaches  its

 maximum  at about  ka =:O.7,  and  then  escillates  with  the

 increase'of wave  frequency.
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  Figures 9-11 show  the comparison  of the mean  drift

forces of present calculation  by  the far field methocl

with  Kinoshita et al'sB] experimental  results  of  an  array

of
 four restrained  cylinders.  The cylinders  are  with

radii  of a  and  draft Tfa=2,  and  are  located at  corners

of  a  square  with  side  Iength of 5a. Figs. 12r14 show  the

comparison  with  Kinoshita et al'sB) freely moving  exper-

iments, The geometric facters of the cyrinders  are  the

same  as  the restrained  case, ancl  the inertia factors used

in the present calculation  are  the same  as  Kinoshita et

m
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in a water  depth of  h!a 
==

 1.

e,2OAo.eo.eka11,21,41.e
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-+7-o.os.
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on  four freely

al's  experiment.  It can  be seen  that the  present calcula-
tion  has a  good  agreement  with  the  experiments  no

matter  in the  restrainecl  or freely moving  cases.

  Figures 15 and  16 show  the wave  drift damping,
obtained  by numerical  differentiation of  the  mean  drift
force at  Fr= ± O.e5. It again  shows  that good  agree-

rnent  exists  between  the present calculation  and  the
experimental  results,  and  negative  wave  drift damping
appears  at  about  fea=e.8 both in experimental  and

calculated  results.
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                  Conclusions

  1. All components  of  seconcl  order  drift forces con-
verge  quickly with  the increase of the radius  of the

mesh  on  the  free surface.  Truncating errors  can  be

neglectecl  when  R!a is Iarger than  4.

  2. When  wave  frequency is not  very  high, the  contri-

bution from  the second  order  mean  velocity  potential  is

very  small  for the near  field method.  However, at  high

frequency, it is not  negligible,

  3, Timman-Newman  relationship  is satisfied very

well  ancl good  agreement  is found from the cemparison

of  the first order  exciting  force with  Matsui's analytic
solution.  It states  that the method  for the  first order

potential  is correct  and  accurate.

  4. Good  agreements  are  found between the present

calculation  and  the  experimental  results  on  an  array  of

four restrained  and  freely moving  cylinders.  It val{-

dates the application  of  the  present  theory.  Negative
wave  damping  is again  found  at some  wave  frequency.
It may  incluce big response  of  the system.  Special
concern  is suggested  to be paid  for complex  structures.
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