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Prediction of Wave Drift Damping by
a Higher Order BEM
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Summary

The paper develops a numerical method for predicting wave drift damping of three dimensional
bodies. The first order potentials are calculated by a new integral equation method, in which the second
derivatives of the steady potential has been removed from the integration on the free surface. The
second order mean potential is calculated by an integral equation method which is firstly proposed and
implemented. Comparison is made with analytic solution for a uniform cylinder. Numerical examina-
tions are made on the convergence with radius of the mesh on the free surface, and magnitude of each
component of wave drift damping. Timman-Newman relation is also used to check the correction of
the first order potentials. Comparison with experimental results is made on an array of four cylinders
which are restrained and freely moving respectively. It was found that good agreements exist between
the present calculation and experimental results and negative wave damping may occur at some wave

frequencies.

1. Introduetion

Tension leg platforms (TLPs) are semi-submersible
structures moored to seabed with a number of preten-
sioned vertical cables (tethers). The response motion
of upper structure with wave exciting induces tethers
vibrating continuously, which will break when their
fatigue life has been reached. Damping can decrease
amplitudes of response of structures. Thus, accurately
predicting damping is important for the prediction of
fatigue life of tethers. Usually damping of a compli-
ment structure can be divided into the viscous damping,
the radiation damping and the wave drift damping. The
wave drift damping, defined by Wichers and Sluijs?, is
due to the increase of drift force with forward moving
speed of a floating body. Its calculation needs the
nonlinear knowledge on wave diffraction and radiation
in a steady flow.

In this respect, significant progress has been made
recently. Matsui, Lee and Sano® and Emmerhoff and
Sclavounos® have derived analytic solutions for uni-
form cylinders in finite and infinite water depth. Bao
and Kinoshita® expended to truncated cylinders. For
3D arbitrary bodies, integral equation method had been
developed by Nossen, Grue and Palm®, Grue and Palm?,
Zhao et al”, Huijsmans and Hermans® and Eatock
Taylor and Teng®, Newman'®, among others.
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The present research examines the wave damping of
floating bodies by a higher .order boundary element
method based on perturbation with respect to wave
slope and current velocity. The oscillating wave poten-
tials are resolved by a new developed integral equation
(Teng and Kato'?). Comparing with some widely used
ones, the present one removes second derivatives of
steady potential from the integral on the free surface.
Thus, the present integral equation can be dealt with
more accurately. Cauchy principal value (CPV) inte-
grals on the body surface and the free surface are dealt
with by direct and indirect methods respectively. The
present work also derived an integral equation for the
calculation of second order steady potential, which will
give rise to some contribution to wave drift damping
(Grue and Palm®). The second order drift forces on
forward moving bodies are calculated both by a near
field and a far field method. The wave damping is
obtained by numerical differentiation of second order
mean drift forces in current.

Numerical test is made on the convergence of drift
force with radius of the mesh on the free surface, and
the examination of the contribution of the second order
steady potential on drift force. The comparison
between the far field and near field method is made upon
horizontal modes at restrained case. The Timman-
Newman relationship is also used to certify the correc-
tion of the present method. Comparison is made with
Kinoshita, Sunahara and Bao’s!? experimental results
on an array of four cylinders which are restrained and
freely moving respectively. It was found that good
agreements exist between the present calculation and
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experimental results and negative wave drift damping
may occur at some wave frequency.

2. Perturbation expansion

2.1 Velocity potential and wave surface
The fluid is assumed to be homogenous and incom-
pressible, and the motion irrotational. Waves are
assumed to be periodic. There exists a velocity poten-
tial @ that satisfies the Laplace equation, the nonlinear
free surface condition
@n'*'ZV@'V@r‘i‘Q@z

+3V0-V(V0-V0)=0 (1)
on the free surface z2=¢(x, v, t), defined by
__1(do 1o,
t= g( AL vm)zz: (2)
and the body condition
90 _
an = Vs n (3)

on the instantaneous body surface So. Vs is the velocity
of body motion and # is the unit normal vector of the
body surface pointing out of the fluid.

Under the assumption of small wave slope e=£A, the
velocity potential can be expended into a perturbation
series

O(x, )=09(x)+ 0 (x, t)

+80P(x, )+ (4)

The potentials at each order of & can further be expand-
ed with respect to the current parameter r=oUJg

O x)=Upys

Oz, 1)=0"x, t)+ 10" (x, t)+--- (5)

OBz, 1)=0%(x, t)+ 0z, t)+--
where ¢ is the wave encounter frequency which has a
relation with wave frequency w of :

c=w—kU cos B, (6)
B is the incident angle of the waves, and % is the wave
number which is the real solution of the dispersion
relation. The first index in the superscript corresponds
to wave steepness, and the second to current parameter.

As the same the wave profile can be expanded into

§(x, )=etzx, t)+ 2§ (x, 1)+ (7)
and

g0, )=z, 1)+ 5 (x, t)+-

§x, )=z, )+ 5 (z, t)+-
where

§(10): — @510)/g

g(ll)z__ — vas_vwglm/g

2.2 Hydrodynamic forces
~After getting the diffraction potential, the

hydrodynamic pressure in the fluid domain can be
obtained from Bernoulli’s equation. By perturbation
expansion, the pressure may be written in the form

Mz, )=p9x)+epP(x, t)+2pP(x, t)+--- (10)
and

p(O)(I’ l()zp(oﬂ)(l.) _‘_ 0( 2.2)

PNz, 1)=p"x, t)+ p" Nz, t)+0(7?)

p(Z)(x, t):p(ZO)(x, t)_;_z_p(ZI)(J;, t)+0(2’2)

(8)

(9)

(1)

p™ is the hydrostatic pressure and p"® the linear
oscillating pressure. The remaining components are
defined by the relations

p(ll):_p[ a@(“) +v$(m).v@(ﬂl)]

ot
0 1
(20) — __ 4 (10, (10)
b p[ 5V 0%V 0 ]
(21) a@(zl) (01) (20) {11) (10)
P =—p| 2= +v0™. 0= +v 0.V

(12)
The mean values of the second order pressure in terms
of € are

PO = ZV(D“"’-V@‘“’-}
(13)
1
2um. . _ . 20m . _L° an, (10
? P{l}V}{s Vo +2V(D Vo ]

where @®”™ is the second order steady velocity potential
in terms of wave steepness.

3. Integral equations

3.1 Zero order steady potential
The steady velocity potential xs can be expressed as
the sum of a steady incident potential and the distur-
bance from a body
xs(x)=x—=z. (14)
Under the assumption of small forward speed, x
satisfies the ‘rigid wall’ condition

ox _

o =() (15)
on the free surface,

2 —p, a6
on the mean body surface Ss, and '

Vx=0 |z|-o0 1n

in the field far away from the body. The calculation of
the zero order steady potential is straightforward by
using the Green’s function

Go(x, z0)= —-—4—17?[%4-%

+3(Le-ta by )]
n=1\ 725 Yan ¥an Vsn
where ‘

7,=[(R2+(z_z0)2]1/2’ 7’1=[R2+(2+Zo)2]”2,

ron=|R*+(z2—20—2nh)*]'?,

ran=[R*+(z2+ 20+ 2nh)*]*?
ran=[R*+(2— 20+ 2nh)*]*?,
ron=[R%*+(z+ 20— 2nh)*]"?,

R*=(x—x0)*+(y—w)?, (19)
and 7 is the water depth. The above Green’s function
satisfies the rigid wall free surface condition on the mean
water surface and the impermeable condition at sea
bed.

3.2 The first order oscillating potential
The first order oscillating potential in wave slope &
can be expressed as

OV (x, t)=A Re[ 0V (x)e ]=A Re[((bé”(x)

(18)

6 (20)
+ $0(2) +ie D E#0(2) e |
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where A is the amplitude of the incident waves, ¢, the
incident potential, ¢; diffraction potential and ¢;(j=1,
---,6) the radiation potentials corresponding to six
generalized body motions. (&1, &, &) are the amplitudes
of translational motion, and (&, &, &)=(a, @, as) the
amplitudes of rotation.

Approximating to the leading order in current factor
7, the free surface condition for the first order potentials
in wave slope € can be written as

— 1@+ 27tV 8V Vaoxs + 1rpIVix

+987 —g j=1,-,6 and 047 1)
z
on the still water surface, where ww=0%/g, and V: is a
two dimensional gradient operator on a horizontal
plane. In the field far away from the body, the above
equation can be simplified as

o 0% | 9P
Vo 221‘-{%-1- ) 22)

The body condition can be written as

a{;’L&’U:o, ¢g):¢61)+ ¢g/x)

7

a¢(_1) U (23)
gy = nitymn =16

on the mean body surface Sz, where
(m1, ma, ma)=—(n-V)Vys, 24)

(ma, ms, ms)=—(n-V)(z X Vyxs).
From the free surface boundary condition (Eq.22)
and the out going condition of oscillating waves at
infinity, we can derive a Green’s function as
_minL_/’“’f” aw
47G(x, x0) el A A

(Af(z)+v)cosh A(h+z)cosh A b+ z) i do
7(AF(A, )~ v cosh Ak)

(25)
where
W=—h+i[(z—xo)cos 8+ (y—yo)sin )],
f(z)=1—2r cos 6, (26)

F(z, A)=sinh Ak +27 cos @ cosh .

Applying Green’s second identity to the unsteady
potentials and an oscillating source with a reverse
speed, as shown by Nossen et al® for infinite water
depth, we can obtain the integral equation

ap$(x0) — f ‘é E¢§~“(x)%ds

+2ir./:/5;¢3'”(‘r)<sz'Vz){‘}‘“‘z];GV%x)ds
¢61)(.1'0) fOI‘ ¢5'1)=¢(D”

={/f<G+£VG-sz)n,-ds forj=1,+-,6

Ss Vo

27
after using the Tuck’s theorem'® to remove the second
order derivative of the steady potential for smooth
body. Here Sr is the outer free surface. Examination
on floating cylinders by Eatock Taylor and Teng® has
suggested that the local geometry of ‘corners’ could
have an important effect on the flow when the body has
forward speed. Wave drift damping, however, is very
little influenced by this effect. The second order deriva-

tive of the steady potential on the free surface can be
removed by applying the transform (Teng and Kato!")

f £ Gz, 2o)V PV yds
= f; Gz, z)¢Pmdl (28)
_—./.Z S(VaGVax+ GVix)ds

where Cjp is the water line, the intersecting line of the
body and the still water surface, and the line integral is
taken clockwise. This yields a new integral equation of

at(a)— [[[ 4572y 9 as
= z'r](; GoP(x)mdl

i [ ﬁ 0@V Vo)
— G (x) - Vax(x)]lds

{ #8" (o) for ¢@
+ ir o
: f.L(G_’_TOVG'VXs)Wde forj=1, -, 6

(29)
For benefiting the discretization by higher order ele-
ments, we combine the above equation with a corre-
sponding integral equation obtained inside the body,
as Eatock Taylor and Chau'® did for the wave
diffraction in still water, and obtain a new integral
equation

[1— [ (50G—2itGo)dz dy) ()
+ [ 1622~ @)} s
=ir f; G mdl

- ir,/,/s‘F[Qfﬁ‘l)VzG Vax— GV Vax)ds
{ &8 (o) for ¢%°
+ z‘z- .——- cee
fL(G+70-vc-v;Cs)n,-ds for j=1, -, 6.

(30)
Since the derivative of the steady disturbance x on the
free surface decays rapidly with increasing distance
from the body, the integration on the free surface is
needed only in a small area around the body.

Because the calculation of the Green’s function is
very expensive and the unknowns are both on the body
surface and the free surface, it is not economic to use
Eq.(30) directly for practical application. Here the
perturbation method is introduced to expand the
Green’s function into Taylor series in terms of the
current parameter r

G(—1)=GO+ GV +0(72), (31)
where G'” is the same as the Green function for the
wave problem without current, and

GY=—2i*G" [owyoz. (32)
Substituting equations (5) and (31) into equation (30)
and collecting the same order terms in r, we can derive
two sets of integral equations as follows

[l—fjs.ve‘O’(x, ro)dxdy] $9( o)
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A0
+/_£B[¢§l°)(10)‘ #5(x)] agz ds (33) In'l[f-/;rGn¢(W(I)V?z¢“m*(r)ds]
10
—{ ¢6” fOI' d)&) :1””[__/’_/5; ¢(m)(1‘)v2(1‘0'V2¢“0)*(I)d5 (38)
N G®nds forj=1,-,6 .
/./s‘y ' + Go¢“°)(1“) 0¢ (l') d/]
for the zero order terms in 7; and C)-Cn on
for the integral on the free surface, where C; is a
[1—ffsuvyc‘“’a’xdy]#“)(u) contour at outer boundary of the mesh on the free
(0)
+/f [(15(“)(10)— (75“”(.1')] agn ds surface, and
SB o f/ Go[(8“°’-V)V¢‘“’)*]-nds
= [[[ 2 —{4092)~ 6 ) ds
Sp :/f [(71 5“0))(VG0'V¢“°)*)—(VGO' 6(10))
+ff (VG —2iGP) " ds S (39)
- rr (v¢(10)* . n)_ Go(a(lo) x 1’1) ,v¢(10)*]ds
+z'£ G nidl _f; Go(V 1% X §UY. g7
— z/f [ IOV, GO Vyy + GOV, "0 - Vaxds for the integral on the body surface, where 6=&+aX«x.
e n Furthermore, to remove CPV integrals, which appear in
. 0 for ¢b the discretization by high order elements, the following
YL (60 +-Lv60- s for =1, 6 relation
B 0
(34) ] 1699 Go- T §2%(2)

for the first order terms in z. The calculation of the
remaining Cauchy principal value (CPV) integrations is
conducted directly by a numerical method (Teng and
Eatock Taylor'®), in which a technique is applied to
separate out a singularity whose CPV integration van-
ishes, while assuring that the integration of the remain-
ing term is straightforward.

3.3 Second order steady potential

The second order steady potential satisfies the bound-
ary conditions

99" g (10) A2 1 (100 /7,2

on the still water surface, and

(20)m
a@an =—;—Re[— n'[(E”‘”-i—a/‘“” X.:L‘)-V]Vqﬂ(“”*

_IL_(a,(lO)X %)'[i0(5(10)+a(10) XI)_V¢(10)]*]

(35)

(36)
on the body surface, where * denotes the complex
conjugate. The second order steady potential comes
from the evanescent modes of first order potentials. It
always exists in current, even in the case where it
vanishes in still water, for example, a fixed uniform
cylinder.

Applying Go as Green’s function, the integral equation
for the second order steady potential can be written as

@(zom(xo) +f-[sg%§l__0[ @(zo)m(xo) — @(zo)m(x)]ds

= —Re[f/; -—%—{_n.[(g(lo)_*_a(lo) X.Z‘)'V]VQS“O)*
+(a/“°) X %)'[i6(5(10)+a(1°‘x I)“V(ﬁ“o)]*} Gods]

—Z—ZJm[ I #%0(2)V367%(2) Gods]

(37
The integral equation also includes second deriva-
tives in both the integral on the free surface and the
body surface. To get rid of second derivatives, follow-
ing transforms are used

—(VGo+ 8NV ¢ (x0) - m)
_ Go(a“m X n) -V¢“°’*(xo)]a’s

- ﬁ Go(V $99% (220) X 599) - g1 =0 (40)

is added to the integral on the body surface, and it
yields

/’/S'B[(a(lﬂ).v)vqs(lo)*] - nds

://S.E[(n- SUOY(V Go+ (V $0V* (1) — V 10%(220))

= (VGo- 8"")(V 9% (2) —V ¢""*(x0)) - m)
= Go(@"" X 1) (V$19*(2) =V 19*(20)) 1 ds

— { G4 () =T 4z x 3] di (41

Then, integration can be done in a straightforward
manner.

4. Hydrodynamic force

The hydrodynamic forces and moments on bodies can
be obtained by direct integration of the hydrodynamic
pressure on body surface. This method is called as the
near field method. When approximating to the first
order in terms of current parameter 7, the leading order
exciting force in terms of wave slope € can be written
as

F(l): _pfj;ERe[(idqs(l)

+ UVxs: Ve I nds (42)

The first order force in wave slope is usually divided
into exciting force and hydrodynamic coefficients,
which correspond to diffraction and radiation poten-
tials, respectively. The hydrodynamic coefficients sat-
isfy the Timman-Newman relation®*®

Fir)=oay+iwss;

:ff;‘ggbinjds:f:ii(—f) G, i=1,--,6)

which can be used to check the correction and the
accuracy of obtained potentials at first order of wave

(43)
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slope.
The equation of near field method for the second
order mean drift force is
FR=F?+FP+FR+FP+F@ (44)
where %, I, Fi?, F¥ and F¥? are defined by

Fi=—p [ Re[-F¥ 1% (V45 + 20V 609)] nds
FP=—p | UVxevg@mnds

Fiv=—£ [[ Reliovg-(9+a" % (z~z))n
+ioa"* X ng™]ds

FP= _%AWPRQ[(I}‘_IL‘)EP)*EG(”
+(Z/f—.1/c)5§”*5é”
— g (EPE - )2

F'(‘?):ﬁzg—f Re[—%—é‘“”’g’““’*Jrz-é’“‘”:‘”’*
Cs

FEHED +(y — yo) 60 — (2 — 2c) E0) | ndl
: (45)

(xe, Yo, 2c) and (zs, yy, z,) are the coordinates of centres
of gravity and floatation, Aws is the area of waterplane.

For fixed bodies, the application of the above equa-
tion is not a difficult job. However, when bodies are
free to move, the multiply of the first derivatives of first
order potentials will introduce some difficulty. The
multiply in Ff® can be represented as

(104, 7 A(11) _ 9pUP* ggiv
fﬁsw vé ”ds*fﬁﬁ[ ok oh

N a¢(10)* a¢(ll)=ki a¢(10)* a¢(11)j‘
T o on on B (46)

by two independent unit vectors # and # in the plane
tangent to the body. The normal derivative of velocity
potential ¢"" is a combination of m;, terms, which
includes second derivatives of steady potential on the
body surface. Thus, to apply the near field method to
compute the second order mean drift forces, a direct
evaluating method for the second derivatives of poten-
tials on body surface has to be developed.

As in still water, a far field method can also be'

developed for the horizontal modes of mean drift force
upon using the principle of conservation of momentum.
This method can avoid using the second order deriva-
tives of the steady potential on body surface and is
believed to give more accurate results. Nossen et al®
have obtained the far field equations for the case of
infinity water depth, and Grue and Biberg!” got the
following equations
2
L~ [T (Cotnticos 0
~ +2rsin® 0)|H(6)[*d6

+2C,(Eh)cos B Re[S]}
—Fy—zz -%{ﬁzn(cg(ulh)sin ]

0.
—2zsin 8 cos §)|H(8)*d8
+2C,(kh)sin 8 Re[ S1}

ot =iz [ G

—2r cos Q)Iaf;z[H(H)—a—%%gi]dﬁ

—2[(] —C—/‘i a;,i")r sin B Im{S]

+(Cy(kh)—27 cos B)Im[S’]}

(47
for finite water depth. The parameters in the above
equation are defined by

S=\/EZ e M H*(+2¢" sin B),

kh "(48)
cosh*&h’

gv tanh(vh)= v, »i=v(1+27" cos 8),
where H is the distribution of scattering wave ampli-
tude at infinity.

5. NUMERICAL RESULTS

The theory described in the foregoing is applied to
develop a general numerical procedure for computing
the wave run-up and forces on a three dimensional body
in a weak current.

Figure 1 shows the convergence with radius of the
mesh on the free surface for each component of second
order mean drift force on a restrained truncated cylin-
der. Index r denotes the total force. The cylinder has
a radius a and draft 7/e=1, and is in a water depth of
hla=2. The calculation is made at #2=1.5 and Froude
number (Fr=U/+/ga) 0.10. A positive current velocity
is defined such that the waves propagate against the
current. It can be seen that truncating errors are not
very big when radius R/a of the mesh on the free surface
is larger than 2, and very small when R/ is larger than
4.

Figure 2 shows the comparison of each component of
the wave damping of the same truncated cylinder,
obtained by numerical differentiation of each term of

t"=1/Cy(kh), Co(kh)=tanh kh+

F(z) 2F L N & 7
X .
2
gpA‘a 1L B
My
(o] — ek e RAR LA ATARI RN AR AR A AT drrransnnani
1k - o -
J A
Fpet--
2F Fy B b
Fp ¢
3 ! 1 ! Il
o] 2 4 6 8 10
Ri/a.

Fig.1 Examination on the convergence with radius of -
the mesh on the free surface for second order
drift force on a truncated cylinder at F»=—0.10
and ka=15.
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second mean drift force. It can be seen that the domi-
nant contribution comes from the water-line integral
and the body integral of the first order potential. At low
frequency, the term from the second order mean poten-
tial is very small, but it increases with the increase of
wave frequency and is not negligible at high frequency.

Figures 3 and 4 are the cross coupling surge and heave
added mass and damping coefficients of an hemisphere

8 ‘ | | | '
-8
e g J
Bx 6 B-*-—'"--E*-"'“"B-
Aza‘/g—a R e J
p&: 4 dro G e
2 L_,,'__x__,‘___-e-’/ —
e +
0 dmrembnranbnra e . _;
By —o--
- -
-2 --&---@__\u s
--~$~\_o A
4+ o -
A1 l I . I
1 1.2 1.4 - . 2
ka

Fig.2 Examination on the contribution of each term
of the wave damping of the truncated cylinder.

0.14 T T T T T T T T

012 4

ﬂu

pa’ 0.1 |

0.08 -

0.04 -

0.02 - .

0 ! I 1 1 L L L !

02 04 06 08 1 12 14 16 18 2
ka :
Fig.3 Cross coupling surge-heave added mass of an
hemisphere of radius « in a water depth of
hla=2

0'4 ¥ T T ¥ ¥ | T T

035 | -
byy(1) =eeme

_b‘l 03k by(-v) .
pa’ygla .
0.25 - -1

02 F -
0.15 | -
0.1 + -

0.05 - E

1 1 1 1 1 ] 1 il

[
02 04 06 08 1 k1.2 14 16 18 2
a

Fig.4 Cross coupling surge-heave damping
coefficients of an hemisphere of radius
a in a water depth of h/a=2

at Froude numbers of *£0.1. The reason we chosen
these values is that they are zero in the still water
problem and only come from the disturbance of the
steady flow, so the calculation of those values are very
sensible to the methods used, and can show their availa-
bility more clearly. From Figs. 3 and 4 it can be seen
that the added mass and damping coefficients, ai(U)
and bis(U), in the following current is close to the added
mass and damping coefficients, @s1(— U) and bs(— U), in
a corresponding reverse current. Timman and Newman
relationship is satisfied very well.

Figure 5 shows the comparison of the second order
drift forces on the fixed hemisphere by the near field and
the far field method at F»=—0.1. It can be seen from
the comparison that the good agreement exists between
the two methods.

Figure 6 shows the comparison of the first order
exciting force on a uniform circular cylinder of radius a
in a water depth of #/a=1 with Matsui et al’s?'® ana-
lytic solution. In the calculation, a mesh of 16 (4
(circumferentially) x4 (depthwise)) elements on a
quadrant of body surface, and 32 (4 (circumferentially)
x 8 (radially)) elements on a quadrant of free surface
are applied. The comparison shows that the agreement
with Matsui’s analytic solution is very good. Fig.7

04 T T T T T T T T
0.35 | i
FP
VELL- A -t - T
gpAZa 03 - ® b-u@_\&“ E
025 | ~° 7o
.'°’
02 P .
0.15 I3 far field ----- -
near field o
01 f < .
0.05 [ 4
O 1 L ] 1 1 1 1 L
02 04 06 08 1 12 14 16 18 2
ka
Fig.5 Comparison of second order drift force on the

hemisphere by the near and far field methods

3.5
F

gpda® ° [
25

0.2. 04 0.8 0.8 1 1.2 1.4 1.6

Surge exciting forces on a uniform cylinder of
radius a in a water depth of Z/a=1.

Fig. 6
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shows the comparison of the second order mean drift
force at different Froude number. The comparison with
Matsui’s analytic solution shows that at low frequency
the two results agree very well, but at high frequency a
little difference exists. It seems that the difference
comes from the methods used in the calculation of wave
forces. Matsui’s method is to get them by the Taylor’s
expansion with the forces and its derivatives at zero
current speed, but ours is to compute them directly at a
given speed. Due to the nonlinearity of the dispersion
equation with current speed and relatively stronger
effect of current at high frequency, especially in an
opposing current, our results diverge from Matsui et al’s
at high wave frequency and are not symmetric about
the one in still water. From Figs. 6 and 7, it can also be
seen that the current effect on the second order drift
force is significant, but the effect on the first order
exciting forces is relatively weak.

Figure 8 is the wave damping of the cylinder, which is
obtained by the numerical differentiation of the mean
drift forces at Fr==0.05 with respect to body moving
speed. It can be seen that the wave damping reaches its
maximum at about #2=0.7, and then oscillates with the
increase of wave frequency.
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Fig.7 Second order mean drift forces on a uniform
cylinder of radius « in a water depth of hia=1.
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Fig.8 Wave damping of a uniform cylinder of radius a
in a water depth of #/a=1, obtained by numeri-
cal differentiation of the mean drift forces at Fr
=+/-0.05.

Figures 9-11 show the comparison of the mean drift
forces of present calculation by the far field method
with Kinoshita et al’s® experimental results of an array
of four restrained cylinders. The cylinders are with
radii of @ and draft 7/a=2, and are located at corners
of a square with side length of 5a. Figs.12-14 show the
comparison with Kinoshita et al's® freely moving exper-
iments. The geometric factors of the cylinders are the
same as the restrained case, and the inertia factors used
in the present calculation are the same as Kinoshita et
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Fig.9 Comparison of wave drift force on four
restrained cylinders at Fr»=0.05.
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Fig. 10 Comparison of wave drift force on four
restrained cylinders at F»=0.00.
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Fig. 11 Comparison of wave drift force on four

restrained cylinders at Fr=—0.05.
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Fig.12 Comparison of wave drift force on four freely
moving cylinders at F7»=0.05.
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Fig. 13 Comparison of wave drift force on four freely
moving cylinders at F»=0.00.
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Fig.14 Comparison of wave drift force on four freely
moving cylinders at F»=—0.05.

al’s experiment. It can be seen that the present calcula-
tion has a good agreement with the experiments no
matter in the restrained or freely moving cases.

Figures 15 and 16 show the wave drift damping,
obtained by numerical differentiation of the mean drift
force at Fr==20.05. It again shows that good agree-
ment exists between the present calculation and the
experimental results, and negative wave drift damping
appears at about kz=0.8 both in experimental and
calculated results.

Fig. 15 Comparison of wave drift damping of four
restrained cylinders.
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Fig.16 Comparison of wave drift damping of four
freely moving cylinders.

Conclusions

1. All components of second order drift forces con-
verge quickly with the increase of the radius of the
mesh on the free surface. Truncating errors can be
neglected when R/a is larger than 4.

2. When wave frequency is not very high, the contri-
bution from the second order mean velocity potential is
very small for the near field method. However, at high
frequency, it is not negligible.

3. Timman-Newman relationship is satisfied very
well and good agreement is found from the comparison
of the first order exciting force with Matsui’s analytic
solution. It states that the method for the first order
potential is correct and accurate.

4. Good agreements are found between the present
calculation and the experimental results on an array of
four restrained and freely moving cylinders. It vali-
dates the application of the present theory. Negative
wave damping is again found at some wave frequency.
It may induce big response of the system. Special
concern is suggested to be paid for complex structures.
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