テクノスーパーライナー(TSL-F)船体構造用 高強度ステンレス鋼のキャビテーション・エロージョン

特性試験

正員	松	尾	元	敬*1	正員	伊	藤		久* ²
	水	田	明	始*3 尼	正員	杉	本	広	憲 ^{*4}
	友	野		裕*5		柴	崎	公	太*6

Cavitation Erosion Tests of High Tensile Stainless Steels for the Techno-Superliner (TSL-F) Hulls

> by Motonori Matsuo, *Member* Akiyoshi Mizuta Yutaka Tomono

Hisashi Ito, *Member* Hironori Sugimoto, *Member* Kota Shibasaki

Summary

Cavitation erosion tests of high tensile stainless steels for the Techno-Superliner (TSL-F) hulls were carried out. The TSL-F is a new generation, high-speed, hybrid hydrofoil lift/buoyancy type vessel. The hull structure consists of an upper hull, lower hull, hydrofoils and struts which connect the upper hull to the lower hull and hydrofoils. A 13 Cr-5 Ni martensite, a 24 Cr-13 Ni austenite which is produced by a new thermo-mechanical controlled rolling process (TMCP) and a 22 Cr-5 Ni dual-phase stainless steel were examined, whose tensile strength ranged from 1078 MPa to 710 MPa, by three methods; i. e., a vibratory method, a high speed fluid channel method and the test using a 1/6 scale sea going test ship.

It became clear that these materials have better anti-cavitation erosion properties compared to other conventionally used structural materials such as a mild/high-tensile steel and have the same properties as 15-5 PH (precipitation hardening) stainless steel which is well known as a high tensile stainless steel and that the vibratory method and the high speed fluid channel method gave the same characteristics qualitatively. Finally, a rough estimation of the total life cavitation erosion of an actual TSL-F was done by using these three test results.

1. 緒 言

全没型の水中翼による揚力とロワーハルによる浮力によ って船体を浮上させて,海面を高速で航行できる複合支持

- *¹ NKK 船舶・海洋本部 (研究当時,現 NKK 総合設計(株))
- *2 NKK エンジニアリング研究所
- *3 川崎重工業(株)明石技術研究所
- *4 川崎重工業(株)船舶事業本部
- *5 日立造船(株)技術·開発本部技術研究所
- *6 NKK 船舶·海洋本部

原稿受理 平成 8 年 1 月 9 日 春季講演会において講演 平成 8 年 5 月 15,16 日 型の超高速船(テクノスーパーライナー:Fタイプ,以下 TSL-F)が,平成元年度から平成6年度にわたり,TSL研 究組合によって開発された¹⁾²⁾。TSL-Fは,Sea State 6以 下の状態で1000トンの貨物をウォータージェット推進に より50ノットのスピードで500海里以上連続航行可能な 性能を有しているものであり,従来にない新世代の水上船 舶であると言うことができる。著者らのグループは,TSL -Fの船体構造用材料の研究を実施し,各種の材料の中か ら,適用性の高い材料の選定と,それらの適用法等につい て検討を行った。

このような形式の船舶では,高速航行時やフラップ等の 制御時に没水部において発生の予想されるキャビテーショ ンが船体表面近くで崩壊することにより生じる船体材料の エロージョン(キャビテーション・エロージョンまたは壊 食と呼ばれる)が1つの問題であると考えられる。キャビ テーション・エロージョンの発生のメカニズムについては, いくつかの考え方があるが³³⁴⁾,キャビティが崩壊する時に 発生する衝撃圧力波の繰返し作用による材料表面の疲労が 原因であるとするのが現状では最も有力な考え方のようで ある⁵⁰⁻⁷⁷。

本論文では、このようなキャビテーション・エロージョ ンの発生のメカニズムに関する流体力学的な問題や材料に 生じるエロージョンの金属学的な問題には立ち入らず、材 料試験片または船体表面に発生するキャビテーション・エ ロージョン現象に着目し、それに対する耐性を材料特性の 1つと考えて, TSL-Fの没水構造部への適用性の評価のた めにマクロに検討することとし, 現時点で最も適用性が高 いと判断される3種類の高強度ステンレス鋼について、キ ャビテーション・エロージョン性を磁歪振動法および高速 流体試験法により検討した。また、実船の6分の1のスケ ールで建造された実海域模型船®)を用いて, 翼面でのキャ ビテーション・エロージョン試験を実施した。実海域模型 船では、幾何学的条件と流体力学的条件が実船 TSL-F に 近いと考えられるので、実海域模型船による試験結果と前 記の磁歪振動法および高速流体試験法による試験結果を利 用して、実船の TSL-F での高強度ステンレス鋼のキャビ テーション・エロージョン性についての評価も試みた。な お,実船での評価については,不確定要素が多く定量的な 判断は難しいので、ここでは1つの参考データの提示と考 えた。

2. 供試材料と試験概要

2.1 供試材料

TSL-Fの概念図を,Fig.1に示す。TSL-Fでは上部船体 構造は主としてアルミ合金,FRPが用いられる。一方,水 中翼,ロワーハルおよびストラットなどの没水部構造は, 高速で推進するため塗装が剝離することが予想されるた め,無塗装が前提となる。したがって,一般の炭素鋼およ び低合金鋼は耐食性の点で問題があるため,高強度ステン レス鋼の適用が考えられている。ここで言う高強度ステン レス鋼とは,金属組織的に分類すれば,マルテンサイト系,

Fig.1 General layout of the TSL-F vessel

 Table 1
 Chemical composition and mechanical properties of the stainless steels examined

Matenal		Chemical Composition(wt%)				Mechanical Properties			
	Metal Structure	с	Cr	Ni	Mo	Tensile Strength (MPa)	Yield Strength (MPa)	Elongation (%)	
13Cr-5Ni(K)	Martensite	0.02	12.98	5.25	1.05	1078	960	21	
24Cr-13Ni(Y)	Austenite	0.02	24.28	12.83	0.80	947	757	36	
22Cr-5Ni(U)	Austenite+Fernte	0.02	22.35	5.85	3.10	710	507	45	
SU\$304	Austenite	≦0.08	18~20	8~10.5	•	≥520	≥205	≥40	

オーステナイト系,および二相系(フェライト+オーステ ナイト系)それぞれ各1種類,合計3種類である。比較の ために,代表的なステンレス鋼であるSUS304(オーステ ナイト系)を併せて,Table1に化学成分と基本的な材料特 性を示す。以下必要に応じて,これらの高強度ステンレス 鋼をそれぞれK,Y,Uと略記する。

これらの鋼種は,強度レベル,耐食性および施工性にお いてそれぞれ特色を有しており,没水部の各部分の必要特 性に合わせて使い分けられることが考えられる。

2.2 試験方法の概要

各材料においてキャビテーション発生により生じるエロ ージョン量については、その材料系の有する特性により変 化することが知られており、これまでに多くの研究がある。 また、評価方法についても多くの方法が提案されてい る⁹⁾¹⁰⁾。しかし、これまでの研究例からは、材料間の相対的 な比較はある程度可能であっても、キャビテーションの発 生条件や材料成分系の相違がある場合では、耐キャビテー ション・エロージョン性の定量的な推定などは困難な状況 にある。

そこで、本研究では3種類の試験を組み合わせることに より TSL-F の没水部への使用が考えられる高強度ステン レス鋼の評価と、実船での損傷量の推定を試みた。まず、 第一の試験方法として,試験時間が比較的短く,試験片の 寸法が小さく採取の容易な磁歪振動法により、各候補材料 の相対的耐性の評価と、従来から知られている材料との比 較を行った。この方法では、母材のみならず、例えば継手 部の溶接金属と熱影響部 (HAZ) に分けて試験評価が可能 である。第二の方法として、より実環境に近い評価法であ ると考えられる高速流体試験法による検討を行った。この 方法では、試験時間が長くかかるため、多種類の材料評価 には適しないので、高強度ステンレス鋼等の母材に限定し て試験を実施した。また、これらの試験方法の比較は、共 通の材料を用いた試験結果により行った。さらに第三の方 法として、予め磁歪振動法および高速流体試験法で評価を 行った純アルミニウム(A 1050 P-H 112) 製の試験片を用 いて TSL-F の実海域模型船で発生するキャビテーション によるエロージョンを測定することを試み、この結果と純 アルミニウムの磁歪式および高速流体式での損傷速度を基 に、TSL-F実船での高強度ステンレス鋼の耐キャビテー ション・エロージョン性の評価を実施した。使用した純ア ルミニウムの化学成分と基本的な材料特性を Table 2 に

_ テクノスーパーライナー(TSL-F)船体構造用高強度ステンレス鋼のキャビテーション・エロージョン特性試験 321

Table 2Chemical composition and mechanical prop-
erties of the pure aluminium examined

	Chemical Composition (wt%)							Mechanical Properties	
Material	Si	Fe	Cu	Mn	Ma	Zn	Ti	Tensile Strength	Elongation
								(MPa)	(%)
A1050P-H112	0.10	0.27	0.01	<0.01	<0.01	<0.01	0.02	95.1	50
								·	

示す。

3. 磁歪振動法による キャビテーション・エロージョン試験

3.1 試験方法

耐キャビテーション・エロージョン性を評価する方法の 中で、材料間の比較検討を行なう方法として、磁歪振動法 が広く用いられている。本試験で用いた対向型磁歪振動 法¹¹⁾の試験装置の概要を Fig. 2 に示す。本試験法は、液中 のステンレス製のホーンに高周波振動を与え、これにより 発生するキャビテーション気泡の崩壊衝撃圧力波により、 ホーン先端に対向して設置した平板状の試験片表面にエロ ージョンを発生させて評価を行うものである。ASTM (G 32) ではホーン先端に試験片をネジ止めにより固定して直 接評価する方法が規定されているが,この方法に比べて, 対向型では試験片の振動がなく加速度負荷が生じないこ と,また試験片にネジ加工を行なう必要がないため,表面 処理材や難加工材の試験評価が可能であるという利点があ る。試験片は 25 mm×25 mm で厚さ 2~5 mm とし, FRP 製の試験片を除き表面粗度を同一条件(▽▽▽)に仕上げ た。試験時間については、これまでの同種のステンレス系 の材料の評価結果12)を基にして20時間とし、試験片の重 量を測定して試験前後での損耗重量を求めた。

Test Piece Size 25mm×25mm×5mm Frequency 19 kHz

Fig. 2 Vibratory cavitation erosion testing device

3.2 試験結果

磁歪振動法による TSL-F 用高強度ステンレス鋼等の材 料評価結果を Fig.3 にまとめて示す。試験においては重量 変化のみを計測したが,材料間の比重差を考慮して重量を 損傷体積に換算した。これを基に、Y 鋼を基準とした相対 エロージョン率を計算して示してある。本図には比較のた め、同一の試験機により実施した一般構造用鋼 (SS 400), 高張力鋼(HT 90), SUS 304 および 15-5 PH 鋼(析出硬化 型高強度ステンレス鋼)等の結果を併せて示した。また、 CFRPは、翼のフラップなどでの使用が考えられるので、 試験材料に加えた。なお、純アルミニウムは、前述の2つ のキャビテーション・エロージョン試験法および後述する 実海域模型船試験を通じて共通材料として使用したもので ある。TSL-F 候補鋼材の中では Y 鋼が最も優れた耐性を 有しており, K, U 鋼の順となった。材料の耐キャビテーシ ョン・エロージョン性については、表面硬さの影響ととも に、衝撃圧力による加工誘起変態による衝撃力の吸収も大 きく作用することが知られている。このことが今回の試験 結果でも示されており, Y 鋼は表面硬さにおいては K 鋼や 15-5 PH 鋼より劣るが、組織がオーステナイト相であるこ とから,3種の材料中では最も優れた耐性を示している¹³⁾。 また, Fig. 3 中の Weld Joint とは, 各種溶接法での溶接金 属と HAZ の平均値を示したものであり, Y 鋼および K 鋼 では継手部では母材部よりも耐性が全体的に劣ることが明 らかになっている。さらに、キャビテーション・エロージ ョンを防止する方法としては、部分的に表面改質を行なう ことも可能であり、本試験でもコバルト合金をプラズマ粉 体肉盛り溶接することにより Y 鋼を大きく上回る耐性が 得られることが確認された(Fig.3の Cobalt Base Alloy 参照)。

Fig. 3 Results of cavitation erosion test (Vibratory cavitation erosion testing)

4. 高速流体試験法による キャビテーション・エロージョン試験

4.1 試験方法

高速流体を実際に作り出してキャビテーションの発生状 況を調べる研究やそれによるエロージョンのメカニズムを 検討する研究はこれまでに多く実施されている14)~18)。著者 らは、それらの中から、文献 14)の方法を参照して、Fig. 4 に示すような装置を開発し、キャビテーション・エロージ ョン試験を実施した。本装置の試験部分は、2 cm×4 cmの 矩形断面の管路となっており平行部の長さは試験部分を含 めて 200 mm である。最高流速は、この断面に対する最大 流量として 50 ノット(約 25 m/秒)を発生させることがで き,また,タンク内部の圧力を加減することが可能である。 試験片は、この管路の1つの壁面(4 cm 幅の壁)を利用し て,管路壁面位置に試験片表面が一致するように取り付け る方式としている。試験片の形状は、試験面が4cm×10 cm で板厚5mmの平板である。キャビテーションは, Fig. 5に示すように、試験片上で流れの上流側に管路断面全高 さにわたり一辺15mmの正三角柱の障害物を取り付け, 強制的に発生するようにした。Fig.6は,三角柱の後方に発 生したキャビテーションの様子を示すストロボ写真であ る。また,試験片の表面には、キャビテーションの崩壊に 伴って Fig.7 に示すようなエロージョンが生じる。このエ ロージョンの評価量としては,試験片の重量変化を用いた。 試験流速は、実船で想定される 50 ノットで一定とし、試

Fig. 4 High-speed flow channel

Fig. 5 Test section

験計測の容易さのために、できるだけエロージョン量が大 きくなるようにタンク内圧を調整して、その圧力のもとで 実施した。Fig.8は、純アルミ試験片で実施したキャビテー ション・エロージョン試験の結果(キャビテーション数と エロージョン量の関係)を示す。ここに、キャビテーショ ン数は、(1)式で定義している。以下の試験は、Fig.8の最

Fig. 6 Cavitation after the triangular obstruction

Fig. 7 Example of cavitation erosion (pure aluminium, 4 hours)

Fig. 8 Relationship between cavitation erosion and cavitation number obtained by high-speed flow channel (pure aluminium, 4 hours)

_ テクノスーパーライナー(TSL-F)船体構造用高強度ステンレス鋼のキャビテーション・エロージョン特性試験_323

大値に相当する流速(50 ノット)と圧力の条件で実施した。 なお、使用した液体は、試験槽(ステンレス鋼製)と各種 試験片との電食を防止するために、真水とした。

また,試験時間は,純アルミニウム試験片の場合では4時間,ステンレス鋼の場合では286時間~382時間であり,重量変化が十分に測定できる時間とした。

キャビテーション数 $\equiv (P_3 - P_v)/0.5\rho V^2$ (1) ここに、 P_3 :試験体前方での圧力

- Pv:液体の飽和蒸気圧
 - *ρ*:液体の密度
- V:試験体前方での速度

4.2 試験結果

Table 3 に各材料の Y 鋼を基準としたエロージョン速 度 (エロージョン体積/時間)の比率を示す。本試験法によ る各材料の耐性の優劣は,前章の磁歪振動法の結果とほぼ 対応している。

Table 3 Cavitation erosion volume loss ratio of the materials obtained by the high-speed flow channel testing

Material	Erosion Volume Loss Ratio (Y = 1)
13Cr-5Ni (K)	4.35
24Cr-13Ni (Y)	1
22Cr-5Ni (U)	3.83
A1050P-H112	12000

4.3 磁歪振動法との試験結果の比較

磁歪振動法と高速流体試験法で求められたキャビテーション・エロージョン量を,Y鋼を基準とする体積比率で換算して相関を示したものが Fig.9 である。本図は,中間データがないのでその領域での精度には問題があるが,本図に示したような1つの直線で近似できそうである。これによると,高強度ステンレス鋼では2つの試験法による結果

Fig. 9 Comparison of the volume loss ratios between two testing methods (24 Cr-13 Ni is chosen as a unit measure)

の差は大きくないが,純アルミ試験片では約18倍の差が生 じている。この理由については,磁歪振動法では,定常期 まで進行した状態でエロージョン量を比較しているのに対 して,高速流体法では,純アルミ試験片ではエロージョン 形状がきわめて凹凸の激しい状態となったために,キャビ テーションの発生と崩壊がより厳しくなったためではない かと考えられる。

5. 実海域模型船による

キャビテーション・エロージョン試験

5.1 試験目的

実海域模型船試験は,実海面を航行させることにより TSL-F 船型の推進性能,運動制御性能,構造応答等の基本 特性の把握及び確認を行い,要素研究の補完と実用化にお ける設計技術を完成させることにその主目的があった¹⁰。 また,重要な試験項目として水槽試験では実施が困難なキ ャビテーション特性の調査があり,翼走時の主翼とセンタ ーストラット部は,キャビテーションの発生が予想される 箇所であることから,水中カメラによりキャビテーション の発生の有無の観察が試みられた¹⁰。実際に実海域での試 験において,主翼のリーディングエッジやフラップのヒン ジ部近傍からキャビテーション気泡の発生が確認されたの で,キャビテーション気泡が崩壊すると思われる部分に試 験片を貼付して,どの程度のエロージョン量が生じるかを 調べた。

5.2 試験方法

キャビテーション・エロージョン量は極めて小さいと予 測されたので、測定用の試験片の材質は耐性の小さい純ア ルミニウム (A 1050 P-H 112) とし、Fig. 10 の様な形状に 作成した。この形状は、予め高速流体試験装置を用いた予 備検討により、試験片自身によるキャビテーションの発生 がないことを確認して決定した。試験片は水中 TV カメラ

Fig. 10 Test specimen for the 1/6 scale test ship (Pure aluminium)

324

Fig. 11 Test specimens set on the 1/6 scale test ship

の観察結果を基に主翼のリーディングエッジやフラップの ヒンジ部にあわせて Fig. 11 のように配置した。また,比較 のためキャビテーションの発生がないロワーハルの上にも 試験片を配置した。なお,試験片の貼付に際しては,主翼 のステンレス鋼(Y鋼)との異種金属腐食の発生を防止す るために,ガラス繊維布を試験片と船体との間に入れ,電 気絶縁性を確保した。試験片に生じるキャビテーション・ エロージョン量の測定では,重量測定が困難なためその表 面粗度の変化に着目することとし,模型船を海上から陸上 へ上架した時(1週間おき)に金属微細組織の複製(レプリ カ)用の樹脂により,試料表面の転写試料を作製した。な お,比較のためK鋼および CFRP を用いて同様の形状の 試験片を作成し,Fig. 11 に示す位置に貼付した。

5.3 試験結果

試験片の貼付には、耐水性を考慮した接着剤を使用した が試験途中での試験片の脱落も多く発生した。Fig. 12 には 試験期間を通じてレプリカを採取できた試験片(A2, A5, A 7)の中心線平均粗さ(Ra)の航海時間による変化を示す。 試験片の表面粗さはキャビテーションの発生が生じない A7位置の試験片以外では、航海時間に比例して大きくな っている。試験後回収した試験片の走査型電子顕微鏡 (SEM)観察により、試験片には腐食は発生していないこと を確認しており、この表面粗さの変化は翼部に発生したキ ャビテーション気泡の崩壊によるエロージョンであると推 定できる。なお、A7では、本来はキャビテーションが発生 しない箇所であるため,腐食や生物付着等の影響のみが見 られるものと考えられる。しかし、時間経過とともに粗度 が減少し、再び増加した結果となっている理由はよくわか らない。レプリカ採取時の方法に問題があったとも思われ るが、測定期間を平均してみれば他の試験片A2および A5とは明らかに異なっているので、ここでは、測定誤差の 範囲であると考え、平均的にはほぼ変化なしであると判断

Fig. 12 Mean roughness and navigation time relationship

した。

一方、実海域模型船でのキャビテーション発生率につい ては、ビデオ観察データを解析した結果、試験片の貼付期 間中(平成6年7月20日~同年9月9日)の航海において, 船速35ノット前後での航行時間の約6割3分の時間比率 にわたり、翼またはフラップのヒンジ部近傍でなんらかの キャビテーションの発生が見られたので、航行時間に対す るキャビテーション発生率を0.63とすることとした。この 値は、実海域模型船試験の性格から、各種の試験航行デー タの入手のために通常の航行条件の範囲外での試験条件が 多く含まれていることに加え、材料の適用性を調べるため に特殊なステンレスハニカム材などを使用して製作された ために, 翼の製作精度が実船レベルよりも悪いということ もあり、実船レベルよりもかなり高いものと考えられる。 ここでは、上記の航行時間の内、船速30ノット以上で航行 した時間の 0.63 倍の時間においてキャビテーションが発 生したと仮定し、計測位置 A 2, A 5 の平均粗さ Ra の変化 率を求めた。その結果,実海域模型船での平均損傷速度は, 純アルミニウムで、0.025 µm/時間(A 2 位置)、0.015 µm/ 時間(A5)となった。

6. 実船でのキャビテーション・エロージョン量の 推定

キャビテーション・エロージョンを支配する主要因子は, キャビテーション数,キャビテーションの種類,気泡核の 密度であると言われており,さらに,流速,キャビテーシ ョンの発生時間,含有気体量,温度,スケール効果などさ まざまなものが影響する。ここで,実船でのキャビテーシ ョン・エロージョン量を推定する上で最も大きな問題は, 実海域模型船での平水状態での標準速度(約35ノット)で の水中翼レベルでのキャビテーション数が約0.7 であるの に対して,実船 TSL-F では約0.5 (速度=50ノット)であ る点である。このキャビテーション数の差を考慮する妥当 な方法は現状では見あたらない。このため、キャビテーシ ョン数の相違およびその他の不確定因子については無視せ

__テクノスーパーライナー(TSL-F)船体構造用高強度ステンレス鋼のキャビテーション・エロージョン特性試験_325

ざるを得ず,その代わりに,流速の影響およびキャビテー ション発生時間,および試験に用いた純アルミと高強度ス テンレス鋼の耐性の比率等については過大に評価すること によって,実船レベルでのキャビテーション・エロージョ ン量を推定することが実際に取り得る方法であろう。した がって,ここでの検討は,現時点においては1つの試行と 位置づけることにより,今後の参考としての意義があると 考える。以下では,次式によって実船レベルでのキャビテ ーション・エロージョンの評価を行った。

 $(TCE)_{s} = T_{0} \times R_{c} \times (CE)_{M} \times (CE_{X}/CE_{AL}) \times (V_{s}/V_{M})^{n}$ (2)

- ここに, (*TCE*)s: 実船 TSL-F の翼部のキャビテーション・エロージョン量
 - *T*₀: 実船 TSL-F の一生における全航行 時間
 - *Rc*:実船 TSL-F でのキャビテーション 発生率
 - (*CE*)_M:実海域模型船試験で計測された純ア ルミ試験片のエロージョン速度
 - (*CE_x/CE_{AL}*):対象材料と純アルミのエロージョン
 速度の比
 - Vs:実船 TSL-F の速度
 - VM:実海域模型船の速度
 - n:キャビテーション・エロージョンに 与える速度の影響度を表す指数

全航行時間 T_0 は, 就航年数を 20 年, 就航率を 0.5 とす ると 87600 時間となる。また, キャビテーション発生率 R_c は,実海域模型船で計測された値 0.63 をそのまま用いるこ ととした。なお, キャビテーションが発生してもそれが必 ずしもエロージョンには結びつかないが, ここでは全てエ ロージョンを起こすと仮定した。

(2)式のように、キャビテーション・エロージョン量が 時間に比例するという考え方は、エロージョンの指標とし て MDD 値 (Mean Depth of Deformation)を用いると時 間に比例すると考えてよい¹⁹⁾ことに基づいている。ここ に、MDD 値の定義を(3)式に示す。

$$MDD = (1/S) \int_{S} |\Delta Z| dS$$
 (3)

ここに、S:測定の対象とする平面領域の面積 *Δz*:初期平面からの凹凸量

MDD 値は、キャビテーション・エロージョンの初期の段 階では、材料表面が体積変化を伴わない塑性変形により凹 凸が生じると考えられているため、平均粗さ (Ra) と同じ 量であるので、(*CE*)_M としては、5章で求められた純アル ミ試験片表面の Ra 値の変化速度の最大値として、0.025 μ m/時間を使用した。

また,純アルミと検討の対象である高強度ステンレス鋼 とのキャビテーション・エロージョン速度の比 (CE_x/CE_{AL}) は、磁歪振動法または高速流体試験法による 結果を利用できるが、ここではより厳しい評価を行うため に、磁歪振動法による結果 $(CE_x/CE_{AL})=2.59/656$ (K 鋼)、 1/656(Y 鋼)、4.31/656(U 鋼)を用いた(Fig.3 参照)。

キャビテーション・エロージョンに対する流速の影響に ついては、一般に、同一キャビテーション数においては、 エロージョン速度は流速の n 乗に比例すると言われてい る¹⁸⁾²⁰⁾のでこれを利用した。n は通常 5~8 程度とされて いるが、ここでは最も厳しい値として n=8 を使用した。な お、スケール効果については、次元解析の結果、無い¹⁹⁾ と 言われているので無視した。

以上により, 実船 TSL-F レベルでの 20 年間の翼表面で のキャビテーション・エロージョン量を推定した結果, 20 年間において, K 鋼で 96 μ m, Y 鋼で 37 μ m, U 鋼で 160 μ m という値が得られた。

船体の表面粗度は、船体抵抗を増加させないためにある 程度に抑える必要があるが、たとえば通常の船舶では新造 時で平均粗度 Ra \approx 100 μ m 程度であるようである²¹⁾。これ は機械仕上げのレベルで言うと、 ∇ の2倍~4倍程度の凹 凸量であり、各高強度ステンレス鋼はすべて20年間でこの 程度の表面粗度変化に抑えられると考えられる。なお、溶 接部については、母材よりも耐性の劣るものがあり、3 鋼種 の溶接部で最も悪い K 鋼では152 μ m/20年となり、母材 に比べるとやや注意が必要であろう。

以上,粗い推定ではあるが,実船 TSL-F での翼部のキャ ビテーション・エロージョン量の一応の推定値が求められ た。この結果が,どの程度妥当なものであるかは議論の多 いところであるが,全体としては安全側の評価になってい るであろうと著者らは考えている。

7. 結 言

磁歪振動法と高速流体試験法により TSL-F の没水部船 体構造に適用性が高いと考えられる高強度ステンレス鋼の キャビテーション・エロージョン性を調べることにより, これらが,従来の慣用材料の中で最もキャビテーション・ エロージョン性の高いと考えられている SUS 304 や析出 硬化型高強度ステンレス鋼の代表的な材料の1つである 15-5 PH 鋼に比べてもほぼ同等の耐性を有することがわ かった。また,両者による実験結果は,材料間の優劣にお いて,定量的には差があるが定性的には同じ結果が得られ た。また両者の相関関係を提示した。

また,実船 TSL-F の 6 分の 1 のスケールモデルによる 実海域模型船によるキャビテーション・エロージョン実験 を実施し,翼表面に生じたキャビテーション・エロージョ ン量を測定した。

これらの結果を使用して、実船 TSL-F レベルでのキャ ビテーション・エロージョン量の推定を試みた。 326

報 榜

最後に、本研究は、造船業基盤整備事業協会の助成金と 日本船舶振興会の補助金、ならびにテクノスーパーライナ ー技術研究組合の組合員各社の賦課金により実施されたこ とを付記し、さらに、実験計測に関して(株)ジャパンテク ノメイト、川重テクノサービス(株)のご助力を得たことを 記して、これらの関係各位に深く感謝の意を表します。

参考文献

- TSL 技術研究組合, テクノスーパーライナーの研究 開発状況, 日本造船学会誌 785 号 (1994)
- 山中直樹,新形式超高速貨物船「テクノスーパーラ イナー」,生産と技術,第47巻第2号(1995)
- 藤川重雄,赤松映明,キャビテーションによる壊食のメカニズム,ターボ機械,第12巻第5号(1984)
- 4) 島 章, 冨田幸雄, キャビテーション気泡の崩壊に よる衝撃圧の発生機構と損傷ピットの形成, 日本機 械学会誌第 90 巻第 819 号 (1987)
- 5) 岡田庸敬,キャビテーション壊食に対する材料の強
 さ、ターボ機械第12巻第5号(1985)
- 6) Hokkirigawa, K. et al., Several Aspects of Fatigue Failure Caused by Cavitation Erosion, Proc. of Int. Symposium on Cavitation and Erosion in Hydraulic Structure&Machinery, Nanjing, China, (1992) pp. 249-254
- 7) 森 啓之他, キャビテーション気泡崩壊圧と壊食量 に関する一考察, キャビテーションに関するシンポ ジウム(第8回), 日本学術会議(1995)
- そクノスーパーライナー技術研究組合、"海の新幹 線"テクノスーパーライナー「疾風」「飛翔」の実海 域模型船, Marine' 95, 1.2 (1995)
- たとえば、岡田庸敬、キャビテーション・エロージョンと工業材料(1)、機械の研究、第41巻(1989)

- たとえば、遠藤吉郎、キャビテーション・エロージョンに対する強さと試験法、機械の研究、第21巻 (1969)
- 11) 松村昌信他 対向型磁わい振動法試験における損傷 機構,日本機械学会論文集(A編),47 (1981)
- 12) Noriyuki Kamoi et. al., A Study on the Welding of High-Strength Stainless Steel for the Ultra-Speed Hydrofoil, Journal of Ship Production, Vol. 9 (1983) P 33
- 13) 宇佐見賢一他、ステンレス鋼の耐キャビテーション・エロージョン性におよぼす金属組織と合金元素の役割,鉄と鋼、75 (1989)
- 14) 北島 晟, 岡部義信, 秋元徳三, ポンプのキャビテーション損傷評価手法, 電力中央研究所報告: T 87019 (1988)
- Gehring, Jr., G. A., Corrosion of Alminum Alloys in High Velocity Seawater, CORROSION MARINA (1980)
- Selim, S. M. A. and Hutton, S. P., Classification of Cavity Mechanics and Erosion, Proc. of 2 nd Int. Conf. Cav., I Mech. E. (1983)
- 17) 岩井善郎他, キャビテーション気泡崩壊圧とエロージョン, 日本機械学会論文集A編54巻500号 (1988)
- 18) 村井 等他, キャビテーション損傷の速度依存性に 関する研究-シート・キャビテーションについてー, キャビテーションに関するシンポジウム(第8会), 日本学術会議, (1995)
- Kato, H., A Consideration on the Scaling Laws of Cavitation Erosion, Int. Shipbuilding Progress, Vol. 22, No. 253, (1975)
- 大場利三郎, キャビテーション強さとエロージョン, ターボ機械第 13 巻第 10 号(1985)
- 21) 瀬尾敏一他, 試験船だいおうによる抵抗推進性能の 実験, 日本造船学会論文集, 第142 号 (1977)