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Abstract

In this paper, a new efficient method to solve the structural optimization problems with the static and
dynamic constraints using Genetic Algorithms (GAs) was proposed. With this method, the static
equilibrium equation and dynamic equation have no need to be solved by conventional methods
resulting in saving the huge computing time which accounts for the most part of the computation in
structural optimization. In order to achieve this goal, the concept of generalized design variables was
introduced. The number of the variables becomes larger when the new method is applied to real-world
engineering problems. To save the computing storage, in this paper, the floating point representation
to the string of solution was used. Since many problems reach their optimal point on or near the
boundary of constraints, the boundary mutation was introduced to speed up the convergence of the
method. To improve the fine local tuning capabilities of this method, the non-uniform mutation was
also used. The effect of the boundary mutation and non-uniform mutation on the performance of the
GA was examined. A simple numerical example was given to illustrate applicability of this method.

1. Introduction

The calculus-based optimization techniques proceed
the search from one point to a better one. For the
structural optimization problems, most of the algorith-
ms requires a large number of structural re-analyses.
This repeated analyses tend to be too expensive for
practical problems. It consumes the most part of
computing time even though they always operate on
one point every step.

GAs are fundamentally different from the traditional
optimization techniques. It appears that they have
some advantages® in some aspects. For example, they
do not require any calculations of the gradient or
Hessian matrix of the objective function and con-
straints; they converge to the global optimal point
more easily ; they can handle the discrete problems; etc.
In the last few years, there has been a growing effort
to apply GAs to the structural optimizations'»*--6:19)
However in the application to structural optimization,
traditionally the structural analyses have to be done in
order to introduce the static and dynamic
constraints®®'®,  As pointed out in Reference [10], the
iteration number of structural re-analyses in GA
method is much larger than that in the multiplier
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method and consequently takes more computing time.
The reason for this is that GAs manipulate a population
of points in search space every generation. It is quite
difficult to apply the GAs to large-scale structures
because of this weakness of time-consuming. It seems
that GAs are inefficient compared to the calculus-based
optimization techniques.

Up to the present, it is short of efficient methods to
reduce the copious amount of computation time spent
on the structural re-analyses. In this paper, the attempt
was made to eliminate the need to solve the static and
dynamic equations by the conventional methods. First,
the concept of generalized design variables was created.
Then, the penalty method was introduced into the GA.
Based on these, the static and dynamic equations can be
included in the new objective as penalty functions.
These equations have no need to be solved by the
conventional methods. GAs will push the equations to
be satisfied with generations. This is one of the most
significant features of GA methods. Therefore in the
optimization process, only the structural stiffness and
mass matrices are necessary to be formed. They should
satisfy some conditions—the static and dynamic equa-
tions which govern the behavior of structure. If they
don’t satisfy the conditions, they will receive penalties
according to their degrees of violations. As the results,
with the generations, the optimal point can be found at
which the governing equation of structures must be
satisfied. This new method is quite simple and efficient
for calculation.
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2. Illustration of Problem

The design variables X describes the structure such
as the sizes of members of structure. Suppose the
displacements of nodes and the eigenvalues of the struc-
ture are Y and & respectively.The objective is to find
the design variables X to minimize the cost function of
structure under the static and dynamic constraints as
the following :

min 7(X) (1)
subject to constraints as helow :

(1) Static bending and shear stress constraints

Oi.max( )’)S 0,0 =12, n (2)

(2) Dynamic constraints

E(X)=ws for all i (3)
E(X)<w? for the first I eigenvalues (4
E(X)=w} forall i>] (5)

Admissible eigenvalue bands

/ \

0 . w2 (1)2 2
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Fig.1 Graphical representation of frequency
constraints

(3) Design variable constraints
-I'i,min§xi§xi,max Z=1, 2, AN (6)
In general, the maximum bending and shear stresses

in each element can be calculated by solving the static -

equilibrium equation as below :
K(X)Y=P (7)
&:(X) in formulae (3) to (5) can be calculated by
solving the eigenvalue problem as below :

CK(X)U=&M(X)U (8)
3. GA Method with Conventional Re-analyses of
Structure

Genetic Algorithms (GAs)®*® are powerful and
broadly applicable stochastic search and optimization
techniques based on principle from evolution theory.
Recently, Genetic Algorithms have received consider-
able attention regarding their potential as a novel
optimization technique?®:5»19  Ag for the structural
optimization problems, it can be known from Section 2
that they involve a large number of constraints. In GAs,
constraint handling® can be done by penalty methods®
which use penalty functions as an adjustment to the
optimized objective function. Therefore, a constrained
problem is transformed to an unconstrained problem by
associating a penalty with all constraint violations.
Thus the formula (1) above is transformed into
optimization of the function:

F(X)=f(X)+ 580/ X) (9)

where p is the total number of constraints. 4. is a

penalty coefficient. @.{X) is a penalty term related to
the /-th constraint (7=1, -+, p).

Traditionally, in the applications to the structural
optimization problems, only the static and dynamic
constraints, and the domain constraints represented by
the inequalities (2) to (6) are introduced into the
new objective function with penalty terms when penalty
method is used. The penalty terms of the static and
dynamic constraints can be written as

@5(‘\.):{0 O':',maxé Ji,0

Iai.max - O‘E.Dlm Oimax > 0ip
[0 in admissible bands
“&—wil"  in forbidden bands
From Eq. 10 and Eq.11, it is known that if the con-
straints are not satisfied, namely the stresses of struc-
ture are larger than allowable stresses, or the
eigenvalues of structure fall in the forbidden band, the
candidate design will receive penalties. The stresses
and eigenvalues have to be calculated for every candi-
date design at every step. This procedure is natural for
designers because with the design variables fixed, the
stresses and eigenvalues are also fixed. Therefore the
exploration of the solution space is limited in the field
of design variables. This method has been applied to
some real-world engineering problems®®!% success-
fully. However it is more time-consuming than the
calculus-based optimization techniques. This weakness
limits its application to the large-scale real-world
engineering problems.

4. GA Method without Conventional Re-ana-
lyses of Structure

(10)

PH(X) (11)

The method described above has been investigated by
several authors. As already stated above, the problem
of this method is time-consuming caused by the struc-
tural re-analyses. To overcome this shortcoming, a
new method is proposed as below.

Displacement of nodes Y, eigenvector U and,
eigenvalue & above describe the behavior of the struc-
ture under certain conditions. They can not be chosen
by the designer. Therefore they are not be selected as
design variables generally. In fact, they are the func-
tion of the design variables X. They can be calculated
from Eq. 7 and Eq. 8. Since it is much time-consuming
to solve these equations, especially Eq. 8, we left these
equations unsolved, instead include them into the pen-
alty function. This makes us extend the concept of
“design variables”. Here the dependent variables Y, U,
& can be considered independent first, the dependent
relationship can be carried out by the penalty functions
of Eq. 7 and Eq. 8. In this study, the generalized design
variable vector Z is defined as below :

X
Z=1Y (12)
é

The structural optimization problem can be rewritten
as the following :
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min f(Z) (13)
subject to constraints:
(1) Static constraints
a) bending and shear stress constraints
O'i,max(Z)SGi,O i=1,2,-,n (14)
b) equality constraints

KZ)Y—-P=0 (15)
(2) Dynamic constraints
|K(Z)—&M(Z)|=0 (16)

(3) Design variable constraints
Zimin < 2i X Zimax l:]., 2, g (17)
Because Z includes the state variables Y and &, their
bound constraints should be determined according to
some experience. For the displacements of nodes, the
design regulation has such requirement. For the natural
frequency constraints, we know the forbidden band of
frequency before designing. According to this, a bound-
ary value of the constraints above can be determined.
Traditionally, Eq. 7 and Eq. 8 are not considered as
constraints. Every time, when the objective with pen-
alty terms is calculated, the equations have to be solved.
Since GAs operate on a population of candidate designs
for a certain number of generations, the static and
dynamic analyses will be done for pop—size X generation
times. This leads to the GA much time-consuming
compared to calculus-based optimization techniques.
To overcome this drawback, in this study, we use the
generalized design variables as the design variables.
Here Eq. 7 and Eq. 8 for structural analyses are rewrit-
ten as Eq. 15 and Eq. 16 which are considered as con-
straints. They are included in the penalty function
directly as below :
For convenience, assume
(D1, P2, Paor}) ' =K(Z)Y—P
then the penalty term of the static equilibrium equation
can be formed as ‘
dof
@se=i§l|ﬁilm (18)
The penalty term for dynamic eigenvalue equation is
Que=|K(Z)—EM(Z)|" (19)
As a result, the equations have no need to be solved
directly by the conventional methods. When the equal-
ity constraints are not satisfied in an approximate way,
the chromosome will be penalized. Obviously when the
penalties approach zero, the GA has the chance to find
the global lowest point within the design variables field.
With the generations, the GA can find the set of design
variables which make the objective reach the lowest
point and, at the same time, the constraints Eq. 15 and
Eq. 16 are satisfied. At the final, the optimal point of Z
can be found. The iteration process is self~correcting to
the equality constraints.

5. Penalty Method for Structural Optimization

The optimization problem described above can be
generalized as follows:
min f(Z)
subject to constraints:

g(Z)<00 i=1, -, m

h{Z)=0.0 j=1,-,p
The inequality constraints include Eq.14 and Eq.17.
The equality constraints include Eq.15 and Eq. 16.
When penalty method is used to handle these con-
straints, the objective function with penalty terms is the
same as Eq. 9. For the constraints above, the penalizing
function can be written as the following form:

o 9{(Z)<0 .
“"‘<Z>“{1gi<z>|m 9(2)>0 @0
@(Z)“{m,-(znm (2] > e

where m can be 1 or 2. ¢ is the criteria used to avoid
oscillation in constraint violations from one iteration to
the next. Z include the design variables X, the dis-
placements of nodes ¥ and the eigenvalue &:.

6. Boundary Mutation and Non-uniform Muta-
tion ’

In addition to the elitism, simple crossover and uni-
form mutation, which are commonly included in practical
applications, the operators of boundary mutation and
non-uniform mutation are introduced in this calcula-
tion.

Since the optimal solution in structural optimizations
lies often on or near the boundary of the constraints, it
is essential to introduce the operator of boundary
mutation to hasten the rate of convergence. With this
mutation, the mutated x. is changed to be either right
bound value or left bound value with equal probability.

The non-uniform mutation is incorporated in this
study to improve the fine local tuning capabilities of this
GA. It works as follows. Suppose variable x. is selected
for this mutation, the result of this mutation is:

x;={xk+d(t’ right(k)—xz) if y=0
xutA(t, xe—left(k))  if y=1
where 7 is a random binary digit. ¢ denotes the number
of generation. #ight(k) and left(k) are the right bound
and left bound of xx. Function 4(¢, y) is taken as the
following form :

b
At y)=y- r'(l——%) (23)
where # is a random number between 0 and 1, 7 is the
maximal generation number, and & is the coefficient for

this mutation determining the degree of non-uniform-
ity. In this study, d=2.

(22)

7. Numerical Example

Structural model in Fig. 2 is taken as the example to
test the method.

7.1 Optimization under Dynamic Frequency Con-
straints

The cross-sectional areas of the members determine

the volume as well as the stiffness and mass of the

structure when the material and geometry are fixed. In

this study, b1, bs, bs are fixed as 0.1m, 0.1m, 0.18m
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Fig.2 Structumal maodel

respectively. i, x2, xs are selected as the design vari-
ables shown in Fig. 2. The domain constraints of x1, Xz,
x3 are from 0.1 to 0.7. The forbidden eigenvalue band
for this example is [2000, 4000]. The goal here is to find
out the ‘best’ chromosome—the set of generalized
design variables, namely x1, X2, I3, and the correspond-
ing eigenvalue &;, under the dynamic frequency con-
straints to minimize the volume of the structural mem-
bers by using the proposed GA directly.

Four approaches shown in Table 1 were calculated
and were run on HP715/100. All runs were performed
with the following GA parameters: pop-size=50, the
probability of crossover p.=0.8, the probability of
uniform mutation p»=0.08, the probability of boundary
mutation psn=0.06, the probability of non-uniform

mutation pu»=0.05 and the coefficient for non-uniform

mutation 8=2. The results of the four approaches are
summerized in Table 2 and Table 3. The “generation
number” in Table 3 is the final generation number at
which the optimization process is stopped according to
the termination condition.

From Table 3 and Table 2, it can be observed that the
computing time with the proposed method is reduced
considerably. Approach B uses only 396 sec to reach the
optimal point, by contrast, 1852 sec is spent by
Approach A even though 867, the required generations
to converge to the optimum by Approach B, is much
larger than 212 by Approach A. From this, it should be
known that the structural re-analyses take up the most
part of computing time in structural optimization using

Table 1. Four GA Approaches
. structural boundary nonuniform
method representation re-analyses | mutation mutation
A biﬁary O X X
B float X X X
C float X X
D float X C O

method ( :;I) ( :12) ( );13) (rajl.\') 2 Ulz.lrt‘:l; ;'e d?;fc?ebr{ce
exact | 0.1000 | 0.1410 | 0.1000 [ 401431 | 049130 | 0.0000
A 0.1019 | 0.1385 | 0.1033 | 402340 | 0.49662 | 1.0828
B 0.1090 | 0.1408 | 0.1000 | 4017.61 | 0.5010 | 1.9743
C 0.1036 {01420 | 0.1000 | 4051.90 | 0.49656 | 1.0706
D 0.1000 | 0.1421 | 0.1000 | 405337 | 049276 | 0.2970
Table 3. Comparison of the four Approaches

methed] (= | g | oumer | diftence | 00°5) | resive
A 1852 57 212 1.0828 0.000 60
B 396 4 867 19743 | 1.221 0
C 108 4 233 1.0706 0.013 0
D 78 4 153 0.2970 5.121 0

classical GAs.

The results of Approach B and Approach C indicate
that the boundary mutation makes a great contribution
to convergence for this problem. Approach C with
boundary mutation converges at generation 233. How-
ever Approach B find the optimal point at generation
867. From Table 3, it is also observed that the introduc-
tion of the operator of boundary mutation for this
problem also improves the accuracy of the GA. The
objective differences to the exact solution for Approach
B and Approach C are 1.9743% and 1.070694 respective-
ly. The non-uniform mutation is responsible for the
precision. Obviously from the Table 3, the GA using the
non-uniform mutation clearly outperforms the other
one with respect to the accuracy of the found optimal
solution. The objective difference to the exact solution
is only 0.297% at iteration 153 for Approach D.

Floating point representation to solution saves the-
computing storage greatly. For this numerical exam-
ple, in Approach A, there are three variables x1, X2, Zs.
If the precision of five digits after the decimal point is
required, the length of the binary solution vector is 57.
However for the floating point representation used in
the proposed method, although the number of the
extended design variables i, xs, X3, &: is larger, the
length of the string to a chromosome is only 4.

All the methods converge to the optimal solution with
a certain precision. In the proposed method, all the
chromosomes are in the infeasible field. However the
GA pushes them to the point which almost satisfies the
constraints at the final generation. At final, the error is
small enough and the more feasible point can be
achieved when the number of generations increases.
Table 3 shows that the sum of the penalties for any
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method is very small when the GA approaches the
optimal point. Table 4 represents the eigenvalue error
caused by the equality constraints. & is obtained by the
proposed methods directly. & is calculated from zi, X2,
23 obtained by the GA methods, which are shown in
Table 2. It is clear that the new method indeed forces
the equality constraints to be satisfied with an accepted
accuracy.

7.2 Optimization under Static Constraints

The same structure under the static constraints was
investigated. The load is shown in Fig. 2. All by, bz, bs
are taken as 0.02m. The allowable bending stress is
18kgflmm?®. x1, 22, X3, O1, 02 are selected as the general-
ized design variables. The domain constraints of xi, Xz,
Z3 are the same as above. Both the domain constraints
of 8, @ are from 0 to 0.3X10™%. Through the proposed
method, the optimal point, a set of x1, X2, x3, 81, &, can
be found automatically.

The same four approaches were carried out with the
same GA parameters as before. The results are shown
in Table 5, Table 6 and Table 7.

The computing time is also reduced greatly. How-
ever it is not difficult to understand that the efficiency of
reduction of computing time to the static constraint
problems is less than to the dynamic constraint prob-
lems when the system becomes complex. The reason
behind this is that the dynamic analysis is more time-
consuming than the static analysis. For the dynamic
constraint problems, several eigenvalues must be calcu-
lated when the methods with structural re-analyses are
used in order to make sure that no natural frequencies
fall in the forbidden band. This needs to solve the

Table 4. Error of the eigenvalue

metod | &g | &y | difere | Py
A 4023.40 | 4023.40 0.000000 0.000
B 4017.61 4016.43 0.029379 1.221
C 4051.90 | 4051.90 0.000000 0.013
D 405337 | 4052.40 0.023936 5.121

Table 5. Results of the four Approaches

1 X2 13 O max obj error error
(m) (m) {m) kg/mm2 m? obj % a%
exact | 0.1000 1 0.1366 0.1386 17.990 08801 0.0 0.0

A {01000} 0.1368 0.1383 17.977 08799 0.0227 0.072

B [ 0102} 0.1330 0.1372 17.829 08833 0.3636 0.895
C | 01000 0.1364 0.1368 18.163 08756 053113 0.962
D [ 0.1000| 0.1370 0.1366 18.061 {08767 0.3863 0.395

eigenvalue problem, which results in a tremendous
amount of computation to a large-scale system. How-
ever for the proposed method, just the calculation of the
determinant of a matrix is needed. The eigenvalue is
one of the generalized design variables. Only one
variable is enough for any complex system. For the
static constraint problems, there is no need to solve a
system of linear equations. However the computation
effort to do this is not as time-consuming as to solve a
large-scale eigenvalue problem. Moreover the number
of the generalized design variables in the static con-
straint problems becomes much larger than that in the
traditional method because all the displacements of
nodes are taken as the independent design variables.

The boundary mutation in this numerical example
produces little effect. This operator is designed for the
problems in which the optimal point is reached on or
near the boundary of the constraints. In the dynamic
constraint problem described above, three of four gener-
alized design variables meet or approach their edges of
domain constraints. For the static constraint problems,
since the displacements are introduced into the general-
ized design variables, generally the optimal point has
little possibility to be on or near their edges of domain
constraints. It seems that the more the number of
variables which approach the edges of their domain
constraints at optimal point, the more useful this opera-
tor is. The operator of non-uniform mutation also
enhances the accuracy of the proposed method from 0.
5113% for Approach C to 0.3863% for Approach D
shown in Table 6.

Table 7 shows the error of displacements. & with
superscript G represents the displacement obtained
from the proposed method directly. 6 with superscript
X represents the displacement calculated from x1, 2, x3

Table 6. Comparison of the four Approaches

method CPU string | generation '%vobj penalty %
time (s)| length | number | difference | (10-'0) | feasible
A 85 57 179 0.0227 0.000 80
B 24 5 2772 0.0363 9.702 0
C 24 5 2675 0.5113 9.822 0
D 19 5 1912 0.3863 9.877 0

Table 7. Error of displacements

method o7 Hg o{ ay % difference
1%y | (10 (10 (o i 5’

A 4513 -1.724 4.513 -1.724 0.00 0.00

B 4.776 -1.725 4.694 -1.703 1.75 1.29
C 5.000 -1.776 4.600 -1.751 8.70 1.43

D 5.000 -1.773 4.585 -1.737 9.05 2.07
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through structural analysis. It is observed that the
differences between them are large, especially for 4.
However the stresses and the optimal point are not
sensitive to them for this example. The errors of the
objective and stresses are all below 19§ shown in Table
5.

8. Conclusions

1) The proposed method was successfully applied to
structural optimization problems without the need to
solve the structural equations by conventional methods.
It seems that the GA provided in this paper has a huge
potential to solve structural optimization problems in
an efficient way. The calculation is simple and the
search can reach the global optimum. All the work
needed is to form the stiffness and mass matrices. After
that, the new method can find the global optimal point
automatically.

2) The proposed method save computing time
significantly. This method overcomes the drawhack of
the traditional GA method in the applications to struc-
tural optimization. The floating point representation is
suitable for real-world engineering problems.

3) The boundary mutation and non-uniform muta-
tion improve the GA significantly for some of structural
optimization problems. The boundary mutation speeds
up the convergence of GAs considerably for the real-
world engineering problems whose constraints are
active at the target global optimum. From this study,
we know that the GA with non-uniform mutation
outperforms the ones without it.

4) The proposed method is more efficient to
dynamic constraint problems than to the static con-
straint problems.
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