# 鋼材組織による溶接構造物の疲労寿命改善

**一 疲労特性に優れた船体用鋼板の開発 第3報** -

| 正員 誉田 登*1 | 正員 有持和茂*1 | 正員 廣田一博*2 | 正員 渡邊栄一*2 |
|-----------|-----------|-----------|-----------|
| 正員 多田益男*2 | 正員 福井 努*3 | 正員 北田博重*3 | 正員 山本元道*4 |
| 正員 高 允宝*5 | 正員 矢島 浩*5 |           |           |

Improvement on Fatigue Fracture Life of Welded Structures by Micro-structure in Steels --- Research on Extension of Fatigue Life of Ship Structure Part 3 ---

| by | Noboru Konda, <i>Member</i>    | Kazushige Arimochi, Member   | Kazuhiro Hirota, Member |
|----|--------------------------------|------------------------------|-------------------------|
|    | Eiichi Watanabe, <i>Member</i> | Masuo Tada, <i>Member</i>    | Tsutomu Fukui, Member   |
|    | Hiroshige Kitada, Member       | Motomichi Yamamoto, A        | Member                  |
|    | Yunbo Kho, <i>Member</i>       | Hiroshi Yajima, <i>Membe</i> | r                       |
|    |                                |                              |                         |

#### Summary

It is clear that detection of fatigue crack initiation in complex welded structures like hulls is quite difficult, and that the crack length at recognition is mostly long compared to that in mechanical parts. From these facts, not only stress reduction at critical area by design improvement, but also newly developed steels excellent for fatigue crack propagation resistance are desirable for structural integrity. Newly developed structural steel FCA, in which fatigue crack propagation resistance was controlled by metallic microstructures, was introduced in the part one within a series of our research. Various fatigue properties of FCA in air and in synthetic sea water were reported in the part two. As the continuous research after these two papers, fatigue properties of various welded joints with FCA are compared with those with conventional steel. From these experimental results, it can be clarified that the fatigue life extension effect by FCA is observed also in welded joint specimens and welded structural models as the same as FAC itself.

# 1. 緒 言

船殻構造の強度健全性を向上させるために、今までに 広い技術領域において絶間ない検討が進められており、

- \*1 住友金属工業株式会社
- \*2 三菱重工業株式会社
- \*3 日本海事協会
- \*4 広島大学大学院工学研究科
- \*5 長崎総合科学大学工学部

原稿受付 平成 15 年 9 月 26 日

その成果には多大なものがある。これらの検討の中で, 疲労破壊防止は今日においても極めて重要な課題のひ とつである。疲労破壊防止の主な柱は,危険部位で発生 する変動応力をいかに抑制するかという観点で行われ てきた。

それに対し,著者らは「疲労特性に優れた船体用鋼板 の開発 第1報」<sup>1</sup>において,疲労破壊防止を材料面か ら改善し得ることを提言した。すなわち,適切に制御さ れた金属組織では大気中の疲労き裂進展速度を抑制で きる旨を,その改善がによんとともに紹介した。また前報 <sup>2</sup>においては,この疲労き裂進展抵抗性に優れた鋼材の 大気中および人工海水中の疲労強度,ならびに人工海水 中の疲労き裂進展特性を評価し,いずれも優れた特性を 示すことを報告している。 194

#### 日本造船学会論文集 第194号

ところで、疲労特性に優れた鋼板も船殻部材として適 用された場合には、従来鋼板と同様、切断加工や溶接施 工が行われる。そのため、切断加工面を起点とする疲労 特性や、溶接継手の疲労特性なども評価しておく必要が ある。

本報告では開発鋼を溶接構造物に適用した場合にお ける疲労寿命改善効果を検討した。具体的には小型継手 として突合せ継手, ガセット継手を, また大型溶接構造モデ ル試験体として広幅片側ガセット継手, サイドロンジモデル試験体 を取上げ疲労特性を評価した。これにより, 鋼板母材の 疲労特性の改善によって, 溶接部を起点とする構造物の 疲労寿命をどの程度延伸できるかを実験により明らか にする。

# 2. 実験方法

#### 2.1 供試材

供試材は降伏応力 350MPa 級の Steel A~F の計 6 種 類であり,各供試鋼板の化学成分,機械的性質をそれぞ れ Table 1, Table 2 に示す。Steel A~C<sup>3</sup>および Steel F は従来鋼, Steel D および E は疲労き裂進展特性に優れ る新たに開発<sup>11,21</sup>した7エライト/<sup>4</sup> け小二相鋼板である。

Table 1 Chemical compositions of

|       | materials tested (mass%) |      |      |      |              |
|-------|--------------------------|------|------|------|--------------|
| Steel | С                        | Si   | Mn   | Ceq  | Remarks      |
| А     | 0.15                     | 0.17 | 0.99 | 0.32 | Conventional |
| В     | 0.18                     | 0.28 | 1.23 | 0.40 | Conventional |
| С     | 0.10                     | 0.23 | 1.34 | 0.33 | Conventional |
| D     | 0.06                     | 0.44 | 1.55 | 0.37 | Developed    |
| Е     | 0.06                     | 0.44 | 1.55 | 0.37 | Developed    |
| F     | 0.09                     | 0.23 | 1.46 | 0.35 | Conventional |

| Table 2 Mechanical properties of | Table 2 | Mechanical | properties | of |
|----------------------------------|---------|------------|------------|----|
|----------------------------------|---------|------------|------------|----|

|       | ]     | <u>materials t</u> | tested (L-direction) |
|-------|-------|--------------------|----------------------|
| Steel | YS    | TS                 | Plate thickness      |
|       | (MPa) | (MPa)              | (mm)                 |
| Α     | 352   | 477                | 12                   |
| В     | 378   | 524                | 12                   |
| С     | 395   | 489                | 12                   |
| D     | 491   | 590                | 25                   |
| Е     | 476   | 579                | 25                   |
| F     | 476   | 535                | 25                   |

# 2.2 プラズマ切断条件

船舶をはじめとする大型構造物用鋼板の切断法に広 く用いられ始めているプラズマ切断法を取上げ, プラズマ切 断面を起点とする疲労特性を評価した。プラズマ切断法は 従来のガス切断法に比べ,切断速度が約5倍と速く,か つランニンガコストも低いという利点 ⑴~♡)がある。他方,プラス マ切断面を破壊起点とする疲労強度は,機械加工面を起 点とする疲労強度に比べ著しく低下する場合のあるこ とが矢島らの研究 ¹♡によって解明されている。

本検討でのプラズマ切断は,電流 240A,電圧 139V で, 切断速度は直線部 2380mm/min,曲線部 2750mm/min の条件で施工した。電極はハフニウムで, アシストガスとして酸素 を使用した。

#### 2.3 溶接条件

溶接継手,溶接構造モデルの溶接条件を Table 3 に示す。

| Table 3    | Welding conditions     |
|------------|------------------------|
| CO2 gas s  | shield arc welding     |
| Wire       | DW-100 (\$\$ 1.4mm )   |
| Current    | 270 A                  |
| Voltage    | 28 V                   |
| Speed      | <b>30 cm/min</b>       |
| Gas rate   | 25 L/min               |
| Leg length | $6 \sim 8 \mathrm{mm}$ |

# 2.4 試験片

7<sup>°</sup> ラス<sup>°</sup> マ切断面の疲労試験には Fig.1(a)および(b)に示 す試験片を用いた。これらの試験片の最小断面部の応力 集中係数 Kt は Peterson 線図 <sup>11</sup>より 1.1 であった。また, Fig.1(c)に示すように7<sup>°</sup> ラス<sup>°</sup> マ切断による円孔切欠き材も 準備し応力集中部を起点とする疲労特性も検討した。

突合せ継手, カ セット継手, 広幅片側カ セット継手とサイドロン ジ モデル試験体の形状・寸法を同じく Fig.1(d)から(g)に示 す。広幅片側カ セット継手には Fig.1(f)に示すように、疲労 き裂の起点となるように機械加工切欠きを設けている。 なお, サイドロンジモデル試験体の形状は造船研究協会第 220 研究部会(SR220)で採用された形状と同一である。



(a) Plasma cut plain specimen (In air)



(b) Plasma cut plain specimen (In sea water)



(c) Plasma cut notched specimen







(e) Gusset welded joints



(f) One side wide gusset welded joints



(g) Side longitudinal stiffener type structural

welded model

Fig. 1 Size and shape of test specimens

#### 2.5 疲労試験方法

プラズマ切断部を起点とする疲労試験は、大気中および 人工海水中にて実施した。両環境とも荷重比は0.1 であ り、繰返し速度は大気中では約 5Hz,人工海水中では 0.17Hz としている。

溶接継手の疲労試験はすべて室温大気中で実施し,荷 重比は0.1 とした。突合せ継手, ガセット継手では最大変位 が初期値に対し1mm増した時を破断寿命と定義した。 なお、突合せ継手、ガセット継手とも最大変位が1mm増大 した時点では、疲労き裂の投影面積が断面の約80%以上 を占める程度まで進展していた。また,広幅片側ガセット 継手, サイドロンジモデル試験体では疲労き裂長さを定期的に 観察し,き裂が主板あるいはフェース材の全幅に達した時を 破断寿命とした。

### 3. 実験結果

### 3.1 プラズマ切断材の大気中疲労試験結果

プラズマ切断面を起点とする大気中疲労試験結果を Fig.2 に示す。プラズマ切断面における疲労強度を鋼材間 で比較すると,開発鋼の Steel D の疲労強度が最も高か



Fig. 2 Fatigue test results of plain

specimens in air

Fig.3 にはプラズマ切断で円孔切欠きを設けた場合の疲労試験結果を示す。切欠き材においても開発鋼の Steel E は従来鋼の Steel F に比べ疲労特性にすぐれていることが判明した。



Fig. 3 Fatigue test results of circular notched specimens in air

#### 3.2 プラズマ切断材の人工海水中での疲労試験結果

人工海水中におけるプラズマ切断面を起点とする疲労 試験結果を Fig.4 に示す。

プ ラス マ切断面の疲労強度は、Steel A~C でほとんど相 違が見られなかったが、開発鋼 Steel D はこれら従来鋼 より高強度であることが示唆される。



Fig. 4 Fatigue test results in synthetic sea water

# 3.3 小型溶接維手の疲労試験結果

疲労特性に優れる開発鋼を用いた溶接継手の疲労強 度を従来鋼のそれと比較する。

Fig.5 には突合せ継手の疲労試験結果を示す。開発鋼 Steel D の継手疲労強度は従来鋼のデータバンドの上位に 位置しているのが判る。

次に, Fig.6 にはガセット継手の疲労試験結果を示す。この継手形式では開発鋼 Steel E と従来鋼 Steel F で有意な相違は認められなかった。



Fig.5 Fatigue test results of butt welded joints



Fig.6 Fatigue test results of gusset welded joints

# 3.4 大型溶接維手の疲労試験結果

広幅片側がセット継手の疲労き裂成長曲線の測定結果を Fig.7 に示す。本試験では供試材にかかわらず切欠き先 端から発生した疲労き裂は主板の板厚方向に進展した 後,幅方向に進展していた。全幅まで進展するのに要す る寿命を破断寿命として表したSN曲線をFig.8に示す。 開発鋼 Steel E は従来鋼 Steel F に比べ破断寿命が大き く改善しているのが判る。また,Fig.9 には両鋼の破面 を比較している。ほぼ等しいき裂増分毎に導入したビーチ マークより,き裂進展時のき裂形状は開発鋼と従来鋼で違 いがないことが確認できる。

サド ロジ モテ ル試験では Fig.10 に模式的に示すように, 廻し溶接余盛り止端から疲労き裂が発生し, フェース材の板 厚,幅方向に疲労き裂が進展した。フェース材の板厚貫通後 は疲労き裂進展速度は著しく増加した。Fig.11 には疲労 き裂成長曲線の測定例を,また Fig.12 には全幅まで進 展するのに要する寿命を破断寿命として表した試験荷 重と寿命との関係, SN 曲線を示す。

本試験からも鋼板母材の疲労特性を改善することに より,溶接構造物の疲労寿命を顕著に改善できることが 明らかとなった。 鋼材組織による溶接構造物の疲労寿命改善



Fig.7 Fatigue crack propagation behavior of one side wide gusset welded joints



Fig.8 Fatigue test results of one side



Fig.9 Fatigue fracture surface of

wide gusset welded joints







Fig.11 Examples of measurement in fatigue crack propagation behavior in structural models



Fig.12 Fatigue test results of structural models

# 4. 考察

## 4.1 プラズマ切断面を起点とする疲労特性

プ ラズマ切断面における疲労強度が機械加工面に比べ 低下する理由に関して既に検討されており <sup>3</sup>, 切断部の 組織・残留応力や, 切断面の微細な凹凸による局所的な 応力集中が影響していると考えられている。この内, 切 断部の組織は鋼材の成分や組織に依存する。

プラズマ切断部の材料特性を把握すべく金属組織を観察するとともに,硬度分布を測定した。

板厚中央部での金属組織の観察例を Fig.13 に示す。 Steel A では切断面から約 0.45mm の範囲で金属組織の 変化が見られ、別途観察した結果、切断面から約 0.13mm の範囲は焼入れされマルテンサイトやベイナイト組織となっていた。 Steel B~Steel D に対しても同様にこれらの領域を測定 した。

次に、マイクロビッカース硬度計を用いて、押付け荷重 300gf (2.9N)で切断面から母材の方向に硬度分布を測定した。 なお、端面からの硬度分布測定では表面にニッケルめっきを 施してから樹脂に埋込み測定精度を高めている。測定位 置は組織観察と同じく板厚中央部である。Fig.14 に硬度 分布を示すように、いずれの材料においてもプラス、マ切断 面に近づくほど急峻に硬度が高くなる傾向にあった。そ の中で、開発鋼 Steel D は切断面近傍の硬度が比較的低 く、硬化深さが深くなっている点に特徴がある。 198

これら材料特性と DI 値と言われる焼入れ性指数<sup>12)</sup>と を比較すると, Table 4 に示すように, DI 値 が高い材 料ほど硬相領域が広くなり, かつ表層の最高硬度も高く なる傾向が認められた。

以上より,開発鋼 Steel D のプラズマ切断部の疲労強度 が優れているのは,まず、疲労き裂が熱影響部を過ぎた 母材部での疲労き裂進展抑制効果によるものと考えら れる。次に、Steel D では鋼材成分系(DI 値)に依存した 焼入れ性による適切な硬度(強度)上昇による疲労き裂発 生の遅延効果も重畳していると思われる。



(a) Steel A

(b) Steel D



near plasma cut line



from plasma cut line

 Table 4
 Effect of DI on microstructure

| and hardness near plasma cut line |      |               |            |
|-----------------------------------|------|---------------|------------|
| Steel                             | DI   | Hardened area | Maximum    |
|                                   | (mm) | (mm)          | Hv (300gf) |
| A                                 | 16.8 | 0.13          | 370        |
| В                                 | 24.3 | 0.23          | 500        |
| С                                 | 18.9 | 0.17          | 330        |
| D                                 | 23.3 | 0.26          | 370        |

#### 4.2 継手形式による疲労破壊挙動の相違

サイドロンジモデル試験では開発鋼適用による疲労寿命の 延伸効果が明瞭に表れたのに対し、ガセット継手の試験に おいては開発鋼(Steel E)と従来鋼(Steel F) において疲

労寿命の顕著な相違は認められなかった。そこで、ガヤッ ト継手試験における繰返し数と表面き裂長さの関係を観 察し、破断寿命のほぼ等しいサイドロンジモデル試験のき裂成 長特性と比較した。疲労試験での応力範囲Δσはサイドロン ジモデル試験体で89MPa, ガセット継手で147MPa である。 Fig.15 に示すように、疲労き裂はいずれの継手でも極め て初期に発生しているが、これらのき裂は廻し溶接余盛 り止端で観察され、極めて浅くアスペクト比の大きなき裂と 推定される。その結果、深さ方向にき裂が成長するまで 疲労き裂長さは約20mm で停留している。したがって, 実質的にはこのき裂長さからの新たな成長時がき裂発 生と見なせる。このように定義した疲労き裂発生後の疲 労き裂成長挙動が、小型がセット試験では開発鋼と従来鋼 で大きな相違がないのに対し、サイドロンジモデル試験では開 発鋼の優位性が顕著に認められた。この相違は継手形式 によるものと推定される。つまり、小型がセット継手では 主板でのみ荷重を受持っているのに対し、サイドロンジモデル 試験体では荷重経路が多いため,発生部位の局所剛性低 下によりき裂発生後は他の部材が荷重をより多く分担 していると思われる。

これに関連し、Fig.16 には小型ガセット継手とサイドロンジ モデル試験体で余盛り止端から 5mm 離れた位置における ひずみ測定値の変化をき裂長さを横軸にとり比較して いる。サイドロンジモデル試験体では初期ひずみが高いにも係 わらず早期にひずみが低下しており、き裂が発生したフェ ース部材以外の部材で荷重は分担されていると思われる。 一方、ガセット継手では主板でのみ荷重を受持っており、 き裂発生後もひずみレベルは高い。この違いによりサイドロン ジモデル試験体のような大型試験体では疲労き裂進展寿 命の延伸という開発鋼の特性がより顕著に発揮された ものと考えられる。なお、実構造物においてはサイドロンジ モデル試験体と同じように荷重経路が複数であるのが一 般的である。

疲労破壊挙動における継手形式による相違を考察す べく、本研究で供試したサイドロンジモデル試験体、および全 長 700mm、ガセット長 300mm のガセット継手に対し、き裂 寸法と線形弾性応力拡大係数の関係を FEM(使用コード MARC2001)にて解析した。き裂形状については、破面 観察結果に基づきアスペクト比を定め、(表面長さ、深さ)で (2,0.5), (4,1), (24,6), (48,12)の4水準の寸法を設定した。 Fig.17 には FEM の分割図を示す。

止端から 5mm 位置のひずみ解析値の変化を求め Fig.18 に示す。本解析結果からも、サイト・ロンジ・モデルではき 裂の発生により荷重経路が変わり、ひずみが減少してい ることが判る。

次に、解析結果から、き裂前縁に沿った各位置の応力

拡大係数を比較したところ,今回設定したき裂形状では 表面での応力拡大係数値が最も大きかったので,以後の 考察では表面での応力拡大係数値を使用する。き裂半長 と応力拡大係数の関係を Fig.19 に示す。ただし,本図 では,き裂が最も小さな(2,0.5)においてガセット継手の応力 拡大係数とサイドロンジモデル試験体のそれとが一致するよ うに両継手形式で負荷荷重を設定している。

Fig.19より,き裂成長に伴う応力拡大係数の変化は継 手型式によって異なり,サイト・ロンジ・モデル試験体では荷重経 路が多いため,き裂の成長に伴う応力拡大係数の増加が 小さいことが判る。このため,実質的な疲労き裂発生後 最終破断に至るまでの疲労き裂進展寿命が総寿命に占 める比率は、サイト・ロンジ・モデルでは大きくなり,開発鋼の寿 命延伸効果が顕著に表れたものと考えられる。



Fig.15 Comparison of fatigue crack propagation behavior between two types of welded joints





(a) Side longi. model (16208~18847 Elements)



(b) Gusset welded joints (13103~14367 Elements) Fig.17 Mesh models for FEM



Fig.18 Relationship between crack length and FEM results on strain near bead toe



crack size and stress intensity factor

# 5. 結言

疲労特性に優れた開発鋼を用いて、切断や溶接などで 熱履歴を受けた後の疲労特性を評価した。

その結果,開発鋼の疲労き裂発生特性は,前報で報告 したように機械加工面を起点とする場合に優れるだけ でなく, プラズマ切断面を起点とする場合にも優れている ことが判明した。疲労特性に優れる理由は,適切な焼入 200

れ性に基づく硬度分布にあると考えられる。

また,開発鋼を用いた継手疲労強度は,継手形式によ り寿命延伸効果が異なり, ガセット継手に代表される小型 継手では改善効果が限定されるのに対し,実構造物を模 擬したサイドロンジモデル試験体に代表される継手形式では, 開発鋼の適用により構造疲労寿命を大幅に改善できる ことが明らかとなった。寿命延伸効果が顕著であった理 由は,全寿命の比較的初期に疲労き裂が発生し,疲労寿 命の大部分を疲労き裂進展寿命が占めているためであ る。

なお,本開発鋼を船殻に適用した場合には, プラズマ切 断面疲労試験やサイドロンジモデル疲労試験で認められた寿 命改善効果が発揮されるものと推定される。今後,本開 発鋼を実船へ適用した場合のメリットに関し,定量的な検討 を進める予定である。

本開発鋼適用による寿命延伸効果は船殻構造だけに 限定されるものでなく、海洋構造物を始め、橋梁、建設 機械等溶接構造物一般においても同様に発揮されるこ とが期待される。

#### 謝辞 辞

本研究を推進するにあたり,精力的に実験を進めて頂 いた当時の広島大学工学研究科大学院生 小岩哲也氏, および広島大学工学部学生 長友武雄氏には,この場を 借りて厚くお礼申し上げる。

# 参考文献

- \* 首田登,有持和茂,藤原知哉,永吉明彦,稲見彰 則,山下正人,矢島浩:金属組織制御による鋼材 の疲労き裂進展特性の改善一疲労特性に優れ た船体用鋼板の開発

   第1報一,日本造船学会論 文集,第190号
- \* 留登,有持和茂,鈴木秀一,渡邊栄一,多田益 男,山本元道,高允宝,矢島浩:海水中疲労特性 に及ぼす鋼板組織の影響 -疲労特性に優れた 船体用鋼板の開発 第2報-,日本造船学会論文 集,第191号
- 5) 矢島浩,高允宝,西川和人,山本元道,誉田登, 渡邊栄一,堀口秀樹:プラズマ切断部の大気中・海 水中疲労強度に関する検討(その2),西部造船会 会報,第101号(2001), pp.223-231.
- 4) 中野悦男:プラズマ切断,溶接技術,5月号 (1988), pp.148-154.
- 5) 中野悦男:プラズマ切断,溶接技術,6月号 (1988), pp.115-121.
- 6) 中野悦男:プラズマ切断,溶接技術,7月号 (1988), pp.130-136.

- 7) 中野悦男: プラズマ切断における高精度加工の現状, 溶接技術, 5 月号 (1994), pp.77-82.
- Ho, N-J, Lawrence, Jr., F. V. and Altstetter, C. J.: The Fatigue Resistance of Plasma and Oxygen Cut Steel, Welding Research Supplement (1981), pp.231-236
- (社)日本溶接協会編, プラズマ切断の基礎と実際, 産報出版 (1983)
- 10) 小岩哲也:鋼構造部材プラズマ切断部の大気中・海 水中疲労強度に関する研究,広島大学修士論文, 2000 年 3 月
- 11) Peterson, R. E.: Stress Concentration Design Factors, John Wiley & Sons, 193, p.28.
- 12) 井上, 第131·132 回西山記念技術講座