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) z, : Upper z-ordinate of the foil
Notation Cp : Drag coefficient

Catesian coordinates of the point of
observation

Cartesian coodinates of sigularity
point

Free-stream velocity

Fluid density

Perturbation velocity potential

Fluid pressure

Vapour pressure

Cavitation number o= —2pc/(pV?)
Angle of attack (clockwise rotation
taken as negative)

Half chord length

Half cavity length

Half cavity width

Upper and lower z-ordinates of the
foil-cavity region

* Researcher, Ship Research Institute.

C: : Lift coefficient
Cx : Moment coefficient about the rear
end of cavity for fully cavitated flow
and the middle point of the chord
for partially cavitated flow (clock-
wise moment taken as negative)
L=V =0/ =)
I=/ (I =)[(L—1L") »
E=(x—ux)co,
L=(x—x0)lc,
x ="+ 1")/2,
xo=(l1410)/2 .

The boundary-values of w and p in ap-
proaching the z-axis from the upper or lower
half-plane are denoted by ws+, p+ or w-, p-
respectively.
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Introduction

Present report is concerned with the prob-
lem of steady plane flow of a cavitating
hydrofoil, within the frame of the linearized
theory. The aim of this study is the de-
velopment of a theory which connects the
gap between the theories of partially cavi-
tated and fully cavitated flows.

When we treat a cavity flow as perfect
fluid flow, hypothetical images are needed for
various cavitation numbers. In this theory,
the idea of relaxing the closure condition of
a cavity is introduced. If the measured
cavity-length is introduced as a parameter,
one finds better experimental agreement for
lift. The theory is semiempirical and con-
tains constants or functions to be determined
by extensive experiments.

It is desirable to obtain analytical predic-
tion for cavity flow of a hydrofoil, and it
may be possible, if experiments are per-
formed systematically. It is hoped that the
present analysis may shed some light on
future development of the theoretical predic-
tion on a hydrofoil best fitted for cavity flow
in characteristics.

1. Velocity Potential

A hydrofoil is placed in the uniform flow
of a perfect fluid filling an infinite space.
The stream velocity is taken to be V. A
sketch of the cavitating hydrofoil is shown
in Fig.1. In linearized theory, the analysis

zZ
free stream direction

Fig. 1.

is simplified by fulfilling the surface bound-
ary condition on the r-axis rather than on
an approximate neighboring shape.

So, the velocity potential is given by

’

x
dx’

1 (-
O(x, 2)= 27rVS ¢ tan™!

30

_1_ 2 290_ PSRV RS TpY ) ’
+27rgllorll'dx In{(x—z')+2"}dx
(1.1)

In these approximations, we will require
that the velocity never differs too much
from the free-stream velocity and that the
slope of the body must be small. Therefore,
we may neglect squares and higher powers
of small quantities. Subsequently, we obtain
the linearized relation between the velocity
potential and the fluid pressure

o
= V—g;:-p/p (1.2)

from Euler’s equation of motion.

2. Boundary Condition

1f the median plane of the hydrofoil makes
a negative angle a with the free-stream di-
rection, the cavity should extend along a
portion of the upper side of z-axis. The
case that the cavity extends along all por-
tions of the suction side is termed fully
cavitated flow. So the case that the cavity
extends along a part of the suction side of
the hydrofoil may be called partially cavi-
tated flow.

The linearized boundary condition may be
stated as follows:

The velocity vector on the hydrofoil sur-
face is parallel to the surface. That is

00 dz

ELI‘I:O 0z o V d.ZC (2 1)
lim 22—y |
2——0 0z o dx

The pressure in the cavity is assumed to
be a constant, p.. That is

lim —pVngpc for h'<x<ly . (2.2)
z—+0 a.’B
The condition at infinity is
oD
o b =0. (2.3)
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(1.1) satsfies the above condition (2.3).

In order to hold a smooth juncture be-
tween the cavity wall and the hydrofoil sur-
face, the cavity should be formed so that
the following relationship is fulfilled.

ds

0z s, =0. (2.4)

The condition of smooth flow at the trail-
ing edge is

(p+=P-)le=1,=0 (2.5)

The author adopts a partly open, linea-
rized cavity model which was introduced by
A. G. Fabula [1]P. That is

Olzmty =01 . (2.6)

The open width 4; is determined empirically.

To solve the mixed boundary value prob-
lem, we must treat two integral equations
simultaneously. The key of the method is
to convert the two equations into one equa-
tion by eliminating an unknown function
among two unknown functions.

3. Integral Equation

In this section, we will derive an integral
equation for the solution of the boundary-
value problem given in the above section.

Using (1.1) and (1.2), we have the follow-
ing expressions

w —-hm@
+_2—»+0 82
_ é do
v ot e
o= lim o
b ¢ ,_do
o 27:V§l T * d (3.2)
p+=lim pV@
z2—+0 a
A l' ’
b oV g Al
2 T lyoriy r—x

1) Numbers between square brackets refer to the
literature listed at the end of the paper,

p-=lim — pV——

2——0 x
L’ ’
__£¢_ pV § = gwix,—dx’. (34)
2w Jyoy T2
If we put
(z+—2z-)2=2Z, (z++2-)2=2 (3.5)
p-—p+=p, p-+p+=p, (3.6)
we get the equations
é
dx ?7rV §L1 r—x' raz’ -G
dz _do
de_dx (3.8)
p=pp (3.9)
— 20V (b do/dx’
=—— =" —dx’ 3.1
b T §z1 or 1y T—X' ¥ (3-10)
from (2.1) and (3.1)~(3.4).
If we write
Z'=(z+'—2-)2, z=Z'4+94, (3.11)
we have from (3.8)
do _,dz ., di
dr 4 dx +V dr (3.12)
We also put
2 =(z+'+2-)2=%*+ax
(3.13)
=%2'+6

for the convenience of following analysis.
For the case of the fully cavitated flow,
(3.13) becomes

=z =z*tax (3.14)

as we may put z'=0.
(1) Fully cavitated flow (L=, L</l’)
If we write

2V (hdr 1 )
o= i ——dz’ (3.15)
P*=D+pe=p+2pe+po (3.16)
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we get
20V (' dd 1
K e ’
pr=—""" §_1 e AT
where

t=(z—x)eo,  @/=(+B)2. (3.18)

In order to get the solution of the bound-
ary value problem, we must solve two in
tegral equations (3. 7) and (3.17) of two un-
known functions p and dé/dx’ simultaneously.
Fortunately, the analytical solution of the
integral equation of the same type with (3.17)
is known in the field of thin-airfoil theory.

When we introduce the juncture condition
(2.4), it is written

20V gg 1 /’ 1+¢ § 1-¢ »*
1+¢& &€
(3.19)

ds’ .

If we insert the above result in (3.2) in the
place of dy/dx, two integral equations (3.7)
and (4.17) are converted into an integral
equation of p The clear expression will be
shown in the following section.

(ii) Partially cavitated flow (h=10', I/ <)

In the case of the partially cavitated flow,
it is rather convenient to the analysis to
derive an integral equation of dé/dx than b,
because p is not continuous at the rear end
of the cavity.

When we introduce Kutta’s condition (2.5),
the solution of the integral equation (3.7) is

§12 dg;/dx "
Y% L, T
As pi=pe for h<z<h’, (3.21)1s written in
the form

(3.21)

_g___l §‘° d&/dx -
h

1 lz—- §‘2\/ z'—h doldx’ , ,

z—0 Li—x' x—X'
(3.22)

where
1 L=z (% [x'—L d¥/dx’ , ,
x— 11§ \/Zz—x rz—x' el
i

1 § 2 dZ’ /dx (3.23)

(3.22) is an integral equation of do/dzx.

4. Cavity Shape

Substituting (3.15) in (3.19), we get the ex-
pression of the cavity shape. To perform
the integrations, we use Poincaré- Bertrand’s
formula [2].

gt )
§ il Sy dt
,, b b i1
= —ﬂ‘(/i(tﬂ, t°)+ §adt1 —G:S'b—t(—o)(t%—ﬁdt ’
a<lte<b (4.1)

and an integral formula

given by
____2 L—x Lsz —h dijdx’ , , Sl 1-¢ 1 1 et
x— Zl § lz_x xT— x 1+E’ E_gl .Z‘o—x"+Co§'
(3.20) v/ X 41 e+ XV X1}
Inserting (3.20) in (3.3) in the place of &, Z{ for z”’<h or <z  (42)
we get 0 for hi<x'" <,
pr 1 [h—x §’z\/ =0 dz/dx’ difdx’ where X=(xo—x"")/co.
pV2 =7 Va1 Lh—x' x—x' r Subsequently, it is written in the form
do  dz do 1+& § 1— p /1+E
2 — 4 — _._:__ ! c
20V <d + dx) 20V de w ' 1-¢ J +" §—¢& g A —¢&
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20V 1+¢
T 1-¢

When L=l and lL<l’, the third term of
the right-hand side is equal to zero.
When we insert (4.3) in (3.2) in the place

b =
H\
L Ly xr Ir—X

/12;—-.’12: dz'
LW—x

for I/<x<l’. (4.3)

of do/dx, the integral equation of f) is written
down as follows:

1—¢"

27tpV§11.’L‘ x’

1-¢ = 1-¢

This equation is fit for solving the problem
of the fully cavitated flow as mentioned in
the above section.

We can also get the lower boundary z- of
the cavity by integrating (4.4) with respect
to z. In such a case the second term and

5(x>+2’<w>=z'<zl'>+_c_o_co_s:ﬂg

2rpV'?

C 1 [I¥E
' =5y 1—5§_1

pe [1+E V [1+¢ {S‘l' Slz } dz’ 1
7 iy st Vo v | B o B sl
Ly’ r XT—X

3

1-£ + /18187

P
d/
e ©
12'—.’1‘:'
L —x

1+¢&

dz’ . (4.4)

downward are to be omitted such that
x<li’ and I'<zx.

Integrating (4.3) with respect to x from /4
to z, we get the expression of §x) as fol-
lows:

1-¢"

1+¢ et

ch 0

_—~ Sl In
47EPV2 -1

—1 12
x {cos™ (—&)—~/1— 52}+M{SL +S }
1
aw—Z{( + ]
Ty iy’
_ Iy —x’
X tan ‘<\/———ll,_x,

[l —x’ dz’
X 4 !’ 7

ll —x' dx

When L <1l’, the integral between the range
I/ and I in the last two terms of (4.5) is
to omitted. We can calculate the upper
boundary of the cavity by using (4.5) and
the relation z+=z-+22"+424.

5. The Solutions of the Integral Equations
We can convert the integral equations in

dz- x—h Co ta

pde' +

1§ —¢l pV?

2

cos‘l(—E)> dz' , ,
2 dx’ dx’

the same type as the integral equation of a
thin airfoil. So we readily get the solutions
by applying the results of the thin airfoil
theory to the integral equations.
(1) Fully cavitated flow (h=0', h<hL’)
Changing the variable from £ to x, we
get without difficulty, from (4.4)

(4.5)

A

p

L'—x

E;—_Z— n.‘OV-_Z—

4 & @ =0l — x’)—«/(m—ll)/(h’ —x)

dx’. (5.1)

X =2Vl =z @ — )
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Putting in the above equation

A+ 3)L2= (z—=0)/—x) ,

A(E)={dz-Jdx—cL(145)/4}l' — ),

PE)=p-(l/ —2)/(o V?)

we have

1 =t
AE)=—1 § EiCORT

T =

~
—] b T e

(5.3

This is the integral equation of the same
type as the thin airfoil theory. If we intro-
duce the trailing edge condition (2.5), the
solution is written in the form

I2-1+0)=+ (x—hL)l:—x) ,

BO)=+~—x)x—1) -(Z—a/2)/2,

A(@)——‘«/(lz—x)(.’c—h) -déldx ,

we have

1 1

BO)=——+ 46')

oo —-do’ .

(5.6)

This is also the same type as the thin air-

foil theory. When we introduce the junc-

ture condition (2.4), the solution is written
140 1-0' B@)

1
- e
—1

10=1415g 146" 6-¢’
5.7)

We can evaluate the cavity thickness by
(5.7), if the relation between the cavity
length and the cavitation number is deter-
mined. Substituting the solution (5.7) in dz/dx
in (3.20), we get the lift distribution 5 on
the hydrofoil.

6. Closure Condition—I

Referring (5.4) and (5.7), we see that the
hydrofoil characteristics depend only upon
the relation between the cavity length and

L=+ {l—1)[ls’—1,)

Wz 8L
o (A+Ey+4/Lt (5-2)
1 ‘—1—5§1 175 AGE)
112 1-& 5_25
(5.4)

We can evaluate the lift distribution 13 on
the hydrofoil by (5.4), if the relation be-
tween the cavity length and the cavitation
number is determined.

(ii) Partially cavitated flow (li=

Putting in (3.22)

I, L' <ly)

=~ =0~
L—x 8|
c  (+er+4r

(5.5)

the cavitation number which is determined
by the closure condition, except for the foil-
shape.

Experience seems to indicate that satis-
factory results will not be expected from
only one kind of cavity models in the whole
range of cavitation number. Therefore, it
would be better that we pick up the cavity
model or the closure condition which con-
tains some empirical parameters. A partly
open cavity model of which closure condition
is given by (2.6) seems to be suitable for
this purpose.

For the case of the fully cavitated flow,
the condition is written down in the form

1-¢ »
148

'ccw‘

pd&’ =0z

Co 1 .
20V? S_x ©.1
by using (4.5). Inserting (5.4) in (6.1) in the
place of p and performing the integration
by referring the integral formula, we have
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o=—~2La—-;4? %(«/ 1+LY+1)—

VS

This equation (6.2) gives the relationship
between the cavity length and the cavitation
number for the case of the fully cavitated
flow.

For the case of the partially cavitated
flow, the closure condition is written

16/ 2(1+L%)
L VI +1
{A+EYVT+LF —1)+2} dz*
(1+E)y+4/L? iz ©2
R 3 A () N—
52_&1 750 S_l Troypra®- €3

Inserting (5.7) in (6.3) in the place 4 and
performing the integration by referring the
integral formulas, we have

& w1+ 1) 22
- 4(1+1%) 1+
2 __1 924 2
S ¢1 0 (1+60{A+)IV/IFIF —1 —2v/ 1+ +1} 246. 6.4)
146 {1+6)*+4/1%)*
The equation (6.4) gives the relationship be- Cp Drag
tween the cavity length and the cavitation 2T oV
number for the case of the partially cavi- 1 dz- dzs
tated flow. = oV { S p- -—dx+g b+ d.; dx} .
7. Drag (7.1)
The drag coefficient may be defined as This may be converted in
1 dz- L db
Co= Ve { S p- Iz dx+ S p+ dx 28 1'p+ iz dx}
_ 1 g N " lgorly’ dZ
—— { \ b dx+g b-da— zpwz} (7.2)

where the upper range of the integral /; or

I’ denotes I; for la<ly’ and [y for L<l'.
1 1 iy A
Co= o Vi { 2o V2 S pdz
2 (l,orl, =
_ 20V g sorly dz dx
T dx

J4

The integrants of (7.3) being antisymmet-
ric with respect to x and x’, the first and
second terms of right-hand side of (7.3)
vanish, if p and dz/dx have not singularities
in the range h<x <l or Iy'.

S _ b
y X r—x

Inserting (3.7) in (7.2) in the place of dz/dx
and (3.10) in (7.2) in the place of p, we have

A

dx’

iy or 1y’
g dz/dx (7.3)
x—x'

4

' - 2pc52 } .

According to the thin airfoil theory, it is
verified that the first term vanishes, in spite
of the fact that p has a singularity at a
leading edge in general. The second term
does not vanish, because dz/dx has a sigu-
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larity at the end of the cavity. The im- in the form
proper integral can be performed by means
of the similar process to the thin airfoil
theory.

When we write
_ - (i) Fully cavitated flow
dojdz=A«&)/v' T-§ + Ai(&) (7.4) When we perform the integration of (5.4),
where &=(z—av')/c, x'=(l'+1")/2, the final remembering (5.2), the expression for the
expression of the drag coefficient is written lift distribution is written in the form

CD=7I'A02(1)CO/6+052/C (7.5)

8. Hydrofoil Characteristics

—F ~JI+LE+1 o~ JTCTT
i R VE S Cy |0+ 2 T -1)-2)

Z(JT?LF—I) ”

+—"2—{L(1+5)+

L 8o 1—ug \/1+ 1 de*
aL¥(h'—x) ¥ 1+5 2 (1+5’)2+4/L2 2% dx’

ds’ . 8.1)

Integrating (8.1) along the chord, we get the expression for the lift coefficient C:

o= 1" b nCO(«/_l—i-_L_—z—l).(_aL) 16cv' v/ 1+ L7 —1
o S pV? c(1+L% * 2 v 2cL?

v IFE (WIFLD+D)(A+E)—2 dz* . ’
XS —F {tEraary  dz© (8:2)
In a similar way as the calculation of Cz, rear end of the cavity Cx
we get for the moment coefficient about the
1 Co? T
L A— — 14 L2 a—aL
Cn=5 V?S Bt ) dr=gy e (2 LNl —a o L)+ AL+ L a0 L}
_ B4ed? Sl 1+5 1
Lic 1—5 {(1+E)2+4/L*Y
{Jz«ﬂ/ i —1 {1-(VIFL+1A+5)2) LY~/1+11 -1
L{1+E)*+4/L*} 8/ 2(1+L%
—— = dz* -
x{~/ T+L*(+/ 1+ L —D+ L2+ 1+ L (1—1—:)/2}} dz d= (8.3)
If we change the variable z into Z by + 1 Sl P(E") . (8.4)
using the relation (5.2), the slope of the up- a(ly —x) Yoo EHE+2 ) ’

per boundary of the foil-cavity region is

expressed in the similar form to (5.3) Inserting (5.4) in (5.3) and (8.4) in the place

of P(5) and performing the integrations, we
dz+ oL(1+ %) get for the slopes of the upper surface and

dx 4 the lower surface
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dz- JE=T1 ST _
- T+ L7 —1{al(1+5
dz ‘/~+1 2~/2~/1+L“ V1t {aL(1+5)+0}
+~/ VAL +1{oL(1+5)2—2a}]+a
8¢ \/E—_‘l g 1¥E 1 1 dz* .,
YDt —o) Y E+1 1—& (\+E P44/l E—E& dx'
for £>1 (8.5)
dz+ %—3 s/___—_—____—_ —-
—_— 1+02 =1 {aL(14+5)—
dr 41 2«/2~/1+L21 V1t {aL(1+5)—0}
4V VIR 41 {oL(1+5)242a}]+a
8¢o T3¢ [11& 1 1 dz*
A/ = ds' . (8.6
5+1S_1 1—5 (+Ey+4[F E+5 12 dx’ (8.6)

ing (8.5) and (8.6) with respect to x

w ¥l —x)
Substracting (8.5) from (8.6) and dividing

z-/dz is known for £<1, because £<1 cor
it by 2, we have

d
responds to x<ls.
The cavity shape is obtained by integrat

iz 1 1 [JI¥LF -—1[
z 148 E-T +/E+3
i = T 7ErY 2y [T V)
x{ —(J1+L2+1)} 2V E—=1 —-~/5+3)
a(~/ T+ LT 1+L2 +1) _g_H_ ) 1
x{ 2 ) |7 wl¥ly'—2) VE+T
dz*/dz i¢5—1_~/5+3 U5 tfor 551, (87
XS 5 (rey il |25 iz a s Pre>l. @D
2/2_d2 g

=lim 7075 e

A1) which is needed for the calculation
of the drag, is deduced from (8.7). Since 2y
g A1) from (7.4). When z—/0’, 14+E5-00, JE-1
+/EF3 02/EFT, VEFI /5430, (£

limy/T—€ =2/ 2/{L(1+5)} by (5.2),
+ 54+ 2(E—E)—>(5+1) and VE-1-~ZF+1
Applying these characteristics to (8.7), we

z—ly’
results
0(1)-—11m«/1 5—
x—ly!
* get
VI -1 o VIFLT+1
A== (e g
B 2J2S 1+&" 1 dz* .., 8.9)
L VY 1—-5 (1+5)2+4/L* dx '

(ii) Partially cavitated flow
On using (3.20), we have

Inserting (8.9) in (7.5) in the place of Ad(1)
we get the expression of the drag coefficient.
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1 [ls,  2(W x—0L dd 1 1+¢ dZ
Co=—vr S ddz=—= S ; \/—_zz—x 2 4 28_1 Ve (8.10)

where {=(z—xd)/c, To=(L+1])/2.
Substituting (5.7) for dé/dx in (8.10), we get

Ci=

nol(v1+1"—1) gl I+ dZ , 8
2(1+1%) 1-¢ dzx N 2D/1+ T

XSI =6 (1+0){Q+0)WV/1+I+1 +2J¢1+12‘—1}Zd9
140 {140y +4/I*)y '

(8.11)

For the moment coefficient about the lar way as the calculation of C;, it follows
middle point of the chord Cu, from a simi- that

1 s
Cu= WS dde= S Adx+g VTS

=ZIS 1—-60 (1+0)i:®(0) Zd@-{—g JI=e
1

dz’ dc
140 (1+4+6)'+4/1* d

nwol?

mw VIETE 41 2ms® —ms®

nol®
16

X{7%2(2)(21722(2)—”22(3))+—%(7121(1)——7122(1))(27722“)——77’12”’) . (8.12)

o0V ST —1 (2ms D —ms®)}+

By making use of (5.7), we can deduce the expression for the cavity shape

dé o[*{(14+6) +-4/I*

—_ — — 1 (2)
dx I6/1-er e
(140)+4/1? Sl 1-0’ 146’ Z ,
v oo ).V ire Qrertar e-o% ®.13)
A1) is written in the form pressed by Polynomials in x
ds We can find a simple method for the cal-
A°(1)=161§1 — 1€ culation of the hydrofoil characteristics, if
the hydrofoil shapes are expressed by poly-
4 a0 nomials of the form
\/1+12 Lmll d «/1 2] (8.14)
. ' dz* - lyy—xz\®» =
ince - B Bl R
s S (52 )
1—£=/I"(1—0)3+0)/{(1+6)+4/I*} . ©.1)
Substituing (8.13) in (8.14), we get the ex- '
pression of Ad(1). _z { 8co/(cL?) }"
= 2 Ty ap /L ©-2)

9. Calculating Method of the Characteristics
of the Hydrofoil of Which Shape is Ex- or
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% m
cfiz — 5 g or i
X n=0 dZ' 4
2 yLr ) dr = 2% (9-6)
m Co \ ™ n n=
=3 an ){— = 9.3)

=0 ( ¢ (1+")2+4/L25 for the partially cavitated flow.

for the fully cavitated flow, where (i) Fully cavitated flow.

A=(14L%/2)/(1+L?) and Inserting (9.2) in (6.2), (8.2), (8.3), (8.9) and
2 - (8.1) in the place of dz*/dxr and performing
dz = 3 L' +a (9.4) the integrations by using the characteristic

£ a=t functions shown in the Appendix, we have
a’”’ 1
= = 7= . 2 Snl (9.5)
=—2aL—i —‘32—(J T+ )2+ L)W V1T —1
TI7% < 2o \" o S Zey @)
X{(WIFLT=1) 3 tn . mA,4+2 S ta . mn+2 , 9.7
n=0 n=0
1= —n/Lt (v TFLF —1)(a—0oL/2)—a(l+ L)Y/ 1+ L —1 (+/Z L)
x [(J T30 +1) % tn< ZCC" ) M, —2 z t,,< >"m,<}32} , 9.8)
Cu=n/8LY) [(L*+2{a(L*—1)+aL}+2(1+ L)¥*a—0oL)]
—47r(1+L2)2/L4[ J—JJ 1+ -1 Z tn< >n1n§}123
—— 2¢q
2 (2)
4~/_~/J1+L +1 1:20tn< . > m,
LW IFD -1 » (i) -
T /Il e ) e
LV VIFDP N VTFD+2) &, [ 2 > . }
167/ 2(1+L) 2 t"( c ) M) (9-9)
A==~V TF+L =1 |V T+ {at+a(~ T+ LT +1)/(2L)}
Lz 200 >n (1)
75(}&( o msyy (9.10)
and _
1 1—=2

26‘0
< c ) B )+J2J1+L2 145

p 2 [I=F m
oV? —12'—.1,‘\/ +5 Eotn
X[V~ TFLE =1 {aL(1+E)+0}2+~ Y I+LE +1 {aL/4-1+5)—a}]

If m is not a small integer, the above ex
pressions are not suitable for the numerical

(9.11)

We can get the similar expressions of
dz-/dxr and dz:/dxr in a similar way as above.
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calculation. The expression (9.3) is needed efficient is expressed in the form
for this case and, for example, the lift co-
Cr=—n/L*-(v/ 1+ L —1)(a—aL/2)—7r(1+L2)~/~/ 1+L2 -1/~ 2L)
X {(J 1+L%+1) % anSP,—2 Z anS%Y, } (9.12)
n=0
where
1/ 2c0 \¥(* (4/L*y(1+cos 0y 1 4/L* ik
() —— o —
S“‘n< ¢ ) So (L4 cos 0P +4L7 |1~ (rcosor+aiir) ©.13)
It is hoped that the tables of S will be (ii) Partially cavitated flow
constructed in future. We know the integral formulas
lgl bbbl BB
T )/ 103 =0
1¢(r ¢" 1-¢
—\ ——d{U=hatftn- i
” S—l o—C At =ha+ 18+ -+ L 14¢
where (9.14)
0o 1 1.3.5--.(n—1)
ba= S_M/l = O W
hnz—&{l—(—)"} .
Inserting (9.4) and (9.5) or (9.6) in (3.23) _i bh—x n
in the place of d#'/dx and dz'/dx, and per- 7:1 xz—h ,120 0l (9.16)
forming the integrations by using (9.14), we  where
have
dk—_—-— 2 t_] bJ—k—1+ Z tJ b_}—}c
Lh—zx —1 j=k+1
' b= = fr= 2 Sjbj—k—1 (9.17)
(9.15) j=k+1
or ge= j:%-rl 05 hj-x,  ¢r=0.
B Lh—x . o . v Inserting (9.15) or (9.16) in (6.4) and (8.11)
Z=—a z—0 Y- h nz()d b= Zo gab in the place of Z, we have
2l(VIFIE+1) 4 & 14D N2 I/14D % 4T
IETT /A4 1 ¢ JItD -1 JIEF -1 =77
I/ I+17 -1 = .
t o) & 9-18)
or
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_2l(YIHTHY) 4 s 4D V2D L T
V14T -1 7¢I+ -1 V14 -1 5"

2 7 r ,
s 21'(://11;*112 51 £ 612 5 0t 9.19)

n=0 n=0

and

71.'0'[(\/ 1+71* —1) rwa(/1+1% 4+1) mo
2(1+1?) 1+12 2r "go ta' (bn+br+1)

Cr=

zl rl? r=1
YIS ITE . Zd”T to v 2

T (9.20)

or

wol (v I+17 —1)  wa(/ T+17 +1) mo
2(1+[2) - 1472 —21 25 tn (bn+bn+l)

rl xl?
Y TZVITE . Zd"T + 2~/‘2‘~/1+17{

Cr=

=0
S G T® —2 3 0, 1D (9.21)
n=0

azo
where
TP =1V VI —1 QTS =T =27/ V1T I +1 QTR — TSH)
LPO=IVVIFT 1 QLG = LY 27V I+ TT +1 LY~ L)
TO=IVVTIFT +1 QT =T +2v/ VTI+ T —1 QTS - T55) (9.22)
LPO=IVVTIFT +1 QLY — L)+ 2/ T+IF —1 QL —LEE)
Grn=gn+2/n-1n(2/I)-0n )

and

’ r(x j 2 k
Tﬁf{.:l(-%> S (14-cos 0) {1_ 8/1 } 0
: I*) Yo {(1+cos 0y +4/1%) (1+cos 0):+4/1?

(i)T (14-cos ) {1_ 8/I*
So {(1+cos §)*+4/1*}" (14-cos 0)*+4/1*

(9.23)

|
}kln(l—kcoso)do. )

If we introduce m,"’ and a function defined where xC, denotes the binomial coefficient.

by If % is not small (e.g. £>5), it is better to
3 . form the integration of (9.23) by means
ne in (1 per . g
xﬁj)—l<%> S (1{_*(—1?8(:2)5 OI)IZ(JFZ};?}S”(}) do of numerical computation than to use (9.25).
0 : If it is assumed that the hydrofoil is a
(9.24)  fga¢ plate and then 6,=0, it follows from the
T and LY) are given by above expressions that
k N _——
= 3 (= 2)nCpmd, | o=—ila (9.26)
”f° (9.25) Cr=—nacjc-(«/ TFLF —1)
» 1§))] J’
p§o< 2MCorisy for the fully cavitated flow and
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—alo=(~"TFIF —=1){2I(/T+1* +1)}
Cr=—ma(~/ 1+1% +1)
(9.27)

for the partially cavitated flow.

Geurst [3], [4], [5] solved the similar pro-
blem using the technique of conformal map-
ping and he assumed that the cavity is
closed. His results are as follows:
for the fully cavitated flow

——a=£tan—r— \
2 2
(9.28)

o —ra 5

"= siny/2-(1+sin 7/2)

where
¢ _l4cosy T
Co - 2 =C0s 2

and for the partially cavitated flow

a 1 r l—siny/2
—==Ztant. o
2 21 ny/2 7
o +sin y/ 5 9.29)
CL=—“7Z.'(X<1+ sin r/2 >
where
Lo _ a2l
- =CO0Ss 5
Since
¢ h=L D —COSZL
Co - 12'-—11 - 1+L2 o 2
and

Sinl-——}—
2 V1+LE

for the fully cavitated flow and

Lo _ I —1 _ I? —cost L
c L—-hL 1+ 2
and
sin L= 1—-
2 V14D
o S IFLE+1

for the partially cavitated flow, (9.26) and
(9.27) agree with (9.28) and (9.29) respective-

ly.

10. Closure Condition—II

Since flows with cavities of finite length
do not exist in the frame of inviscid flow
theory, several flow models have been pro-
posed in an attempt to represent accurately
the physical flow. As they have the same
boundary conditions, except for the closure
condition, the various theories produce simi-
lar results, regardless of the model used.
However experimental results seem to indi-
cate that the use of a sort of model is not
physically justifiable in the whole range of
cavitation number. Especially, the flow model
theories seem to break down for cavity
lengths near to foil chords. It rather seems
to be realistic and suitable to aid the de-
signer that we develop the theory of which
closure conditions are selected as a function
of the cavitation number to agree with ex-
perimental data.

In this paper, the author proposes to select
the cavity open width d: to agree with ex-
perimental data.

For the case of a flat plate, we have

@ 1
o 2L—4/n- (¥ T+LY —1)5*
JI+LT+1
=L IT D +)—drlir 0D
for ¢i/c>1, and
_x_ JIFTT -1 02
o AW T A D=4

for c¢i/c<1, from (6.2) and (6.4), where d*=
—d2/(car)-

If we put
ek T \ (o Eueoc)
0% = 4F1(Co/c) (Z-i— 11 L* (10.3)

and insert it in (10.1) and (10.2), we get

T 2L(VI+L +1)— LR {2+kF/1+L*%)}

for ¢i/c>1 (10.4)
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o VIFIT -1 ,
o 2l I +)—(L+ IR {2+kF/(1+L%) for arje<l (10.5)
where )
F)=1, Fl)=1, 11. Numerical Examples
I In Fig. 2 the lengths of the cavities
L¥*=N(L=0)/|l =1

measured by a few researchers are plotted
as a function of ¢/(ap—e), in which as is the
angle of attack at zero lift. If Fi and F:
o 1 take the values indicated in Fig. 4 and %
;c/_l=m-. (10.6) takes —8, the equations (10.4) and (10.5)

o= agree with the experimental results, and
then lift~¢ curve agrees with experimental
information in outline as shown in Fig. 3.

and Fi, F; and % denote empirical factors.
So we have

£ is determined by contrasting (10.6) with
reliable experimental data.

50 x
bl ax
x
4t
|
|
|
o
!
|
{
| %
— §#0
» l|| — &= }Theory (flat plate)
3 r °
f<‘l © -a-8 }Si[berman
x“ X -q=tar'02 (flat plate)
1 4 —g=2%"3and 6 Msijer
“o . (Symmetrical foil) }Experiment
| & —(@-ae)=3.65  Numachi, Tsunoda
| Chida L.
‘\ Chydrofoil Oss)
2t
1k
0 L \
0

S
=
&

T ag-a)
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—— Theory (flat plate, §*+0)
o —a=8 Parkin(flat plate)

Co
m@od) A - (g-a,)=3.65"(Numachi
50f Tsunoda ( 0y )
Chida

0 5 10 15 o
Qo-a
Fig. 3.
s
10
0— 1 L 1 L
0 1 2 3 4 Co/C
Fig. 4.
/
F.F F F, .

!
4 Co/C

Fig. 5.

o: which is evaluated by using the values of and (9.18) or (9.19),
Fi and F: indicated in Fig. 5 is shown in

Fig. 4. 0'=—2aL—é- ";w I+L —1)+2Lu(L),

As the wake thickness will correspond to ! for cofe>1 ALD)
instability of cavitation, the estimation of ’ :
wake width will be important in real prob- 2l(vIFIT+1) 4 & 1412
lem of cavitation. The evaluated value of 957 /J112 -1 =« ¢ ~1+1% -1
§: will be useful for the estimation of the
wake width of real flow. 2u(DI(/ 1417 +1) for fe<1

When the hydrofoils have camber and JI+IE -1 ’ Co/e<2 -
thickness, we may write, referring to (9.7) (11.2)
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We can evaluate gz by the rest terms of the
first and the second terms in the right-hand
side of (9.7) and (9.18) or (9.19). pis a func-
tion of L or I, and also it tends to a finite
value, when ci/c—1, because it is proved,
through the recursions formulas, that m$’(L)
and TR(L) tend to 1/L3+/? as L—co.

If we insert a—g in (10.1) and (10.2) in the
place of a, we can carry out the evaluation

Co/c
1.0

Experiment
0 —gq=1"
05F A

for a hydrofoil 'with camber and thickness
by the same way with the case of a flat
plate.

In Fig. 6 we show a result of the evalua-
tion with respect to a hydrofoil expressed
by the equations

Z'/c=0.04{0.3+/1—C +0.71—-*)*/*},

#)c=0.04(1—L2) .

Fig. 6.

In the calculation it is assumed that 6:=0.
This hydrofoil is similar to the profile which
was tested by Meijer [6]. The theoretical
results agree with experimental data in out-
line, except for cavity lengths near to foil
chord.

In order to know the tendency of §;, much
more experiments are wanted.

12. Other Partially Cavitated Flow (L<l’)

In this section we treat the cavity flow
problem that the cavitation occurs at an in-
termediate position of a chord. In these
cases we know three kinds as shown in
Fig. 7 (a), (b), (¢).

We omit the detail descriptions regarding
the case (c), because the problem can be
solved by the same way with the fully cavi-
tated flow, if we regard the length 7\/\’ as
the chord.

In the following analysis, it is assumed

0.10 o 0.15
— -
LI/ELQL;\L
2
(a)
[ L I
1(* \j
ty
(k)
Ly
(c)
Fig. 7.
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that the location of the separation point 4’
is already known.

(a) bL'<l,
If we write

(A+s) 2=+ (I’ = 1)[(l-—11") (12.1)

we have, from (5.6)

B@)=—- § 1 3(99), de’ (12.2)

since do/dx=0 for —1<O<s.
Introducing a new variable 2 defined by

(O—s*)[s0=2 (12.3)
where
(1+s)2=s*, (1—s)/2=s50,
we have

1 Y 4)

Z——-— ! 12.4
B(®) L rd (124)

where
B(A)=B(@=siA+s*), 4=4(@=s02+5s*).

As the equation (12.4) is the same type with
the equation (5.6), the problem can be solved
by the same way with the partially cavi-

J=~ =00 =), (1-0)J2=~(l'—x)/(x— 1) }
A¥O)=(x—Nh)do/dx ,

B¥0)=1/2(Z*—a/2)x—1),

we get the integral equation of dé/dx from
(12.6)

1t 4%e).

BX0)= -0

——de’ . (12.9)
This is the same type with the equation
(5.6). So the problem can be solved by the
same way with the partially cavitated flow
shown in the preceding sections.

In order to simplify the calculation of the
case that the cavitation occurs from the in-
termediate point of the chord, tables of new
characteristic functions must be costructed.

tated flow shown in the preceding sections.

(b) >0k

We may write [y’ for the upper range of
the integral equation (3.7), because dz/dr=0
for the range <z <ly. The solution of the
integral equation is written in the form

é 2 lz —x §‘2 =l dilds’
= dx’ .
-1 L'—x x—x'
(12.5)

We must notice that this solution is applied
for the range Li<x <.

Inserting (12.5) in (3.3) in the place of qAS,
we have

pv 1 -z (Y |x =l dz/dx -
sz— T §

x——h L—x' x—x'

Ly’ dgo/dx »
- § (12.6)

If we write

— iy’ ’r__ 57 ’
/z x 2 x, h dz/dx; dz’

L'—x x—x

L' Az ’

T Jy x—x

and

(12.8)

The actual location of the separation point
depends on several physical parameters.
However, in order to predict the location,
we may adopt the rather simple condition
that the pressure must be a minimum in the
foil-cavity-wake region. As the minimum
pressure generally occurs at the leading
edge in the linearized theory, some con-
trivance must be done for the prediction of
the separation point. The support of non-
linear theory will be required for the weak
point of the linearized theory, after all.
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Appendix. Characteristic Functions
. 1/ 4\ 1 (1+EY -
mI(Ly=—(—" S dz
L) 7:<L2> S_M/l—ﬂ {Q+Er+4/L1)"
i(f>(5)=-1-< 4 > gl 1 A+E7Y 1 =
g a\ L) V. /1=E"% {Q4+E")2+4/L) E—5
VI+L +1 2 [JI+LF -1
o (L vy il 7L (1) _____ y T~ T2
mPL)= v 20+ L% mL)= 2(1+L7)
2 /1T 2 TL72
msP(L)= 3L _*;1?1 +“£21)+L mi” m§ (L= L *ﬁff;; L m§P
2 4 2 4 2 2
m® (Ly= 1L'4-55L +§126(1 f(L %2+7)~/ I+L m®
4 2 2 2
D (L)= 5L'+15L +§§ﬁ%z+5%/ LD SJE
i(E)y=—1 iPE)=—@2+5) for |5|<1.

i(E)=—1+(E+1)WVE-T ,

recursions formulas of m{’ and "

#2(5)=—(2+5)+(E+ 1V F =1

for £>1.

= —8/L2 (k—1)m{2 )+ {42k — 1)1 +2/L2) 4+ 2}m$” —8k(1+1/Lym2, .

8/L2+(2k —5)(k—3)m® s —{16(k—2)}/ L2 —1+4(2k — 51 +2/L)} mi2,
+8(k—2){(2k—5)(1 +1/L?)+ (2k—3)(1+2/L2)} m2, —16(k—2)(k— 1)1+ 1/L*)m” =0

D=gjL2- (M —m{ P}
i) = 4L i0A(5) + 1 {Q+EmP +mPY
) (1+2)*+4/L* 1+5)*+4/L*
(2)
(5 4/L2 “1i21(5) 1 1 @ ) )
5 — + 2+ 4/ L w2 —4/ L emy ) .
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