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Summary

The second-order forces acting on a cylindrical body which oscillates with an arbitrary

frequency at a free surface of infinitely deep water are calculated on the basis of the perturba-

tion thoery.

The first and second-order boundary value problems are solved by the Boundary Element
Method (BEM) which includes both boundaries of the body and the free surfaces. The pressure
distribution including the quadratic terms of the Bernoulli equation is evaluated from the
solution. The hydrodynamic forces acting on the body are obtained by the integration along
the instantaneous wetted contour of the body. Finally, motions of the body in waves are
determined by the solution of the equation of the motion up to the second order.

Experiments are carried out for the radiation problems of the heaving and swaying oscil-
lations, and the diffraction problems for a fixed body and a free floating body in steep regular

waves.

Those results are discussed in comparison with the numerical calculations.

1. Introduction

In the field of seakeeping quality of ships
in waves, many remarkable achievements have
been made to predict the hydrodynamic forces
acting on ships on the basis of the linearized
wave theory. On the other side, a few research-
ers have attempted to the nonlinear problems.
The nonlinear forces have been thought to
be very small compared with the linear ones
in this field, and are usually neglected. How-
ever, they sometimes play a primary role in

the problems such as the drift forces, the

slowly drifting oscillations or unstable swaying
oscillations of a mored vessel. Motions of the
recent ocean-platform are fairly different
from those of a traditional ship that the non-
linear problems seem to be more important.
Kochin® derived the formulas of the steady
forces on the two- and three-dimensional body
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in waves, and Maruo® showed the well-known
formula of the drift force. Ogilvie® obtained
the second-order steady forces on a submerged
circular cylinder by the perturbation method.

Lee® and Parisis® presented the complete
solution of the second-order forces on a
cylindrical body heaving at the free surface.
Their formulation seems to have provided the
fundamentals of the investigations there-
after, and the theory was extended to the fur-
ther problems by Potash®, Soding™, Masu-
moto® and Papanikolaou-Nowacki®”. Kim'®
and Yamashita'™ derived ar approximate solu-
tion for the heaving oscillation of a two-
dimensional body.

On the other side, there are few reports on
the experiments of the full second-order forces
except Tasai-Koterayama'® and Yamashita'®’
in the heaving oscillations of the two-dimen-
sional problem.

In this paper, the author would summarize
the theoretical and experimental results of
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four papers on the second-order forces acting
upon a cylindrical body of the radiations of
swaying and heaving oscillations, and of the
diffractions of a fixed and free-floating cylinder
in waves, '8 14,15,16)

2. Mathematical Formulation

2.1 Boundary Conditions

Let us suppose the motions of a floating
body in waves as shown in Fig. 1. We employ
two coordinate systems, o-ry be a right-
handed coordinate system fixed in space with
o-y vertical downward and o-x lying in the
undisturbed free surface, 6-Ty be a system
fixed in the body and coincides with o-zy
when the body lies in a position of equilibrium.

Let the displacement of the motion denote
x;(¢), where subscript 7=(1,2,3) refers to sway,
heave and roll motions respectively, then the
relation between the two systems is as fol-
lows:

2(t)=12% cos xs(t) —¥ sin s () + x1(¢)

Y(t) =Y cos 23(t) 4 Z sin 2s(¢) +2:(¢) .
(1)

Here, we assume the floating body oscillates
about its equilibrium position and the drift
motion is restrained, that is, the external
force cancels out the drifting force acting on it.

We will now assume that the fluid is ideal
(invicid, imcompressible) and its motion is
irrotational. Hence there exists a velocity
potential @(x,y, f) satisfying Laplace’s equa-
tion

Fig. 1 Coordinate systems

The fluid pressure P (x,v, t) is determined
by Bernoulli’s equation

1
P=—p@i—5p(y®)+pgy+Po,  (3)

where p is the fluid density, g the gravitational
acceleration constant and P, a constant of
integration.

On the free surface two boundary conditions
must be imposed. If the free surface is des-
cribed by y=7(x,?), the kinematic boundary
condition is

D . .
0= (=1, 1)) =Py~ Batga—1:

on y=y(x,1),

(4)
and the dynamic condition is obtained from
the Bernoulli’s equation on the free surface
where the pressure should be atmospheric
constant, we choose as P=P,

f);z—é—(@g—i—é*V@V@)

on y=ny(x,1) . (5)

From these conditions, we obtain the non
linear free surface boundary condition

D 1
[F:f OZAD—<@H‘§I7(D[7@—QZ/>

:@n”*g@y—i‘QV@V@&

1 ,
+§I7Q5V(l7@l7@)

on y=n(x,1?) . (6)

If the body surface is described by C (x,v,
t)=Co(Z, y)=0, the kinematic boundary con-
dition on 1t states that the fluid at a point on
the body must have the same velocity com-
ponent in the direction of the normal to the
body.

[H1 (Dn(x,y, If):Vn(x,y,t)
_Ox ox _8& oy
T om Ot On Ot

on C(x,y,H=0,

(7)
where the subscript # denotes the unit normal
on body into the fluid.
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If the fluid has a horizontal bottom at y=
h, the kinematic boundary condition is

[B] @y(x,h,t)=0. (8)
If it is infinitely deep, then
[B] lim @y=0. (8)
g/v)QO

The remaining boundary condition is a
radiation condition at infinity, i.e., the waves
must be propagating outward at a large dis-
tance from the body.

2.2 Linearized Pyoblems

The problem formulated above is nonlinear
and the boundaries in which the velocity
potential is defined change with time. In
order to reduce the nonlinear boundary con-
ditions, we assume the potential @ can be
expanded in a perturbation series in terms of
&

D(x,y,t)=eDV(x,y,1)
+e0%(x,y,)+0(7) . (9)

where ¢ denotes a small perturbation parame-
ter and may be defined such as the ratio of the
incident wave amplitude to the half-beam of
the body.

Similarly, the free surface elevation is as-
sumed to be expanded:

(x, t)=en(%,1)

Fep®(z, £)+0(e) . (10)

The boundary condition on the free surface
can be reduced by expanding PD(x,¥,?) in
Taylor series about ¥ =0 like as:

D(x,7,t)=eDV(x,0,1)
+ e {(yPDP(x, 0, 1)
+PD(x,0,4)1+0(e) . (11)

Then we obtain the first and second order
boundary conditions on the free surface as:

[F] e: OP—gdP=0
& PP —gDP

= —DLPP+BPDY) | (12)

00 (59— 013

Further, we will assume the body motions
are also small as the amplitude of the incident
waves and expand as:

xj(t) =ex$(f) + 2P (¢) +0(c*)
(7=1,2,3).
Therefore Eq. (1) can be reduced as

(13)

r—T=e(x’—yrd)
+ez<x§2)—gx§”—-%z§x§m> +0(e?)

y—f=e(af>+F2()

+ez<x§”+92x§”—~;g}x§m> F0(e?) .
(14)

Now, we expand both sides of Eq. (7) in
Taylor series about its mean position

@n(l’, Y, t)
=OP(%, Y, 1)+ (x— )DL+ (v —Y) DSy
+ 0P (%, Y, t)+0(e?)

+52<aeg2>+azoagl>——§-yoagl>2>} +0(e) |

(15)
where oéj:a—txj (1=1,2,3).
And using the following relations
_6.55———_?_?_2 TH
an " a5 Y=Y 6
00 "
on s ’

we transform Eq. (15) to tangential and normal
components of the body surface and obtain the
following results™.

[H] c: OP=f®
e DP= [P+ afOCP— 2P
_f(l)d)glz — d(llmgl)

on Co(x,y)=0, (17)
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where The first and second order boundary value
a=FT' +Gy, b=F§ —jz, problems in infinitely deep water are sum-

_ _ " merized as follows:
c(n):w’xgn)_|_y'xgn)’ &Z("):C(n)—l— bxg l))

K= 2P —F 20, fP=h® — g First order problem
(n=1,2) (L] pPe™(x,y)=0,
And we can use the following relations

7] (Kt 60@ 0=0,

PP =— DL v

P (18) [H] ¢P=1i0f® on Co, (23)

P0=0p— L g [B] (@, 0)=0,
p

R) {biﬂK}@u>(_+_w,y):0,

l/pzilgl/_gliﬁll;
p: radius of the curvature.

Neglecting the transient response, we may where K= g —Qﬂ/ A, A: wave length,

expand the velocity potential associated with [R] is well-known as Sommerfeld’s radiation
the each harmonic components using the condition.

fundamental angular frequency of the incident
Second order problem (:p®—¢®)

wave
o oo L 2 (Z) -—-O ,
D(x,y,t)=Re{ > > ™ (x,y)e™ " . L] 7o a)
n=1 k=1
19 IF {4K+—5~—»}¢~><x, 0)=0(),
Further we can reduce the combination of »
and % in Eq. (19) as is already proved by Lee* [H] ¢=/]"+- (-”(I)C(D"xmﬁf’m
B(2,7,() = Re{ege™" —f“’so%%d(”soéé’) on Co,
+82(0¢(2)+2€D(2)62mz)}+0(53) , (20) [B] 305,2)(13',00):0 i
and @ is also proved to contribute only to o . \ B
the mass transport of the fluid and not con- (K] iﬁ}iﬂK} 9P (£ o0, ¥)=0,
tribute to the pressure or the force of the (24)
body, then we will omit hereafter. 0

The second order incident wave potential is ~Where Q(x)= o {2(7e®)? —¢ (el + KeP) )
expressed as follows, if it is infinitely deep,
2.3 Pressure, Forces and Moment

Solving the boundary value problem of
Eqgs. (23) and (24), we obtain the distributions

Waw . ..
5?61): w_e Ky+iKz ,

e2pfP=0, (21) of the velocity potential and the pressure.
o Let expand the pressure and the hydro-
—g‘ZK =2m[A dynamic forces in accordance with Eq. (20)
The free surface elevation in this case is given P(x,y, t)=Re{p®+ep®@p™ |
as +Ez(op(2)+2p(2)612m)}+O(83) ,
No(x, )= Re{y{Pe*" F(t)=Re{FP+eFPeiot
—1—62’}]82)6"2‘”}-{—0(63) , -I—GZ(DFS?)—!—2F§2)6i2‘”1‘)}+0(€3) ,
eniP=—awe™" , ' (22) (25)
ezngz)__Ka?u o where subscript % of /cp(”_and xF® denotes the
2 frequency parameter of e,
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Pressure on the body surface are deter-

mined by Eq. (3) as follows:

PV=pgy ,
P =—1pwe®+ pg (2P +2a8°) ,

op(”ZPQ <0$§2)+fo$§2)>
1 )2 1 (Df2
— g PIYIZC =PVl
~ =T Y
2p(”=pg(zx§+:§2x§) —i2pwgo(”

1 _ 1
_Z_pgyxgnz "ZP( Fe®)?

_1pw

5 (=)’ +(y—9)eP}

(26)

where ¢™* denotes the complex conjugate of

(D
(2

We will calculate the potential distribution
and its derivatives on the body surface from
the solution of the first order problem as

follows:
(Pe) =)+ ()
=(/O)+ )

(2= Z)p®+ (y— P = F OO+ P

:f(l)f§1)+d(1)¢§l) .

(27)

The forces and moment are obtained in the
following form by integrating the pressure
along the body surface at instantaneous posi-

tion and wetted contour.

Fit)=— S s PP %xj(t) ds

(28)

where C(f) denotes the wetted contour; C(f)=

Co—AC(1).

AC(t) may be expanded with the same
perturbation series as Eq. (10) and we take into
account this effect in the hydrodynamic force
to the accuracy of the second order and obtain

Fy
Pl
F,

(P—Py)

c(t)

— Y —exVE — e (X — (1/2) 25 )
T — O — Py + (1)) x| ds
a-+ecP+e(c®—nPxsP)

:SCO (P=P)

— 7§ —exPT — e (,x8% — (1/2) §*7')
&' —exY —e(xPy 4+ (1/2) x§2) ¢ ds
a+ec®+e*(cP—hPxd)
—3
— P—P T’ s
Sw(z)( o) & tds+0(e?) (29)
a
Second term of the right hand side of Eq.
(29) can be calculated by applying Leibniz’s
rule as

ox;
_ P—p)\2Y
Swm( 0) o ds
D) 1 6'55‘]}
- P'—P d - T
So ( 0 y{y' on {w,0
() 1 aggj}
— P—Py)dy| —=r—~—
So ( ) y[y, on -0
\ 1
=~——pg£ [7*20) tan ot
b-tan ot
1
—7r2(t){—tan a~ | +0(e) , (30)

b-tan o~
where

rEf)=eix’+ bmgl)_%SD(l)(i b, 0)} giot

=relative wave elevation from ¢ =0.
a* denotes the angles of the intersection be-
tween hull-side and the free-surface as shown
in Fig. 1.

In Eq. (80), we find that the angles of the
intersections at free-surface do not effect to
the horizontal forces in the second-order
theory.

The aforementioned formulation can be sim-
ply applied for the radiation problem of j-
mode, if we substitute the following equations.

aw:.:vg'l):dj

o (31)
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2.4 The Equation of the Motion

The inertia forces with respect to the origin
o fixed on the body are determined with the
consideration of displacements of the motion
in Eq. (1). Equating them to the pressure
forces of Eq. (28), we obtain the following
results.

First Order

M (&° —yeiisP) =F{°
MiEP=F®»
IEP 4 Moyexs® — M (yedP +9xP) = F{P
(32)
where

M=pA; mass of the body per unit length,
I= g Sp(.%‘2+y2) dx dy=Mrs*;

o

mass moment of inertia of the body with
respect to the coordinate origin,
(xe,ye)=(0,ye); center of gravity of the
body.

Quasi-Hydrostatics of the second order

We have assumed the external force which
cancels out the drifting force. Let the Dy
denote the external force as follows.

(33)

4

Mgyaoxs®= > oI'§”(n)

n=1

If the external force are provided by the
restoring force of a mooring system, it may be
expressed in the form.

Dy =hott® (34)

where

k: spring constant of the mooring
system,

ox$?:  drifting displacement in sway.

Further, let us define the sinkage force (Sr)
and the steady heeling moment (Hwm) as fol-
lows:

Sy =2pgbexs?

4
= >3 oI'P(n) +2pgboxs”

n=1 (35)
Hu=Mg GMoxs>

4
=21 FP(n) — Mg yaoxs®
n=1

These steady forces may be obtained from the
drift displacement of the motion in the free
floating problem in waves.

Hydrodynamics of the second order

Although the heaving equation is influenced
by the first order rolling motion, the swaying
and rolling equations are the same as the first
order case.

M (&P —yaoi?) = 31 . FP(n)
n=1
M{zéégg)_é-y@{xngr@gnm J

5
=>1.FP(n)
n=1

I8+ Mgy eoxs® — M (Ye 2+ g2287)

=>1.F®(n)

n=1

(36)

3. Solution of the Problem

3.1 First Order Problem

The boundary value problems formulated
in the preceding chaper can be reduced to the
first order theories which have been solved by
making use of the methods of multi-pole
expansions, Green functions and variational
method.

However, in the second order problem there
appears inhomogenous boundary condition
on the free surface. This means that we must
evaluate the potential and its derivatives to
calculate the pressure distribution on it and
also evaluate their contribution to the body
by integrating over the free surface. These
processes may be simplified by applying the
Boundary Element Method (BEM) which
enable us to deal with the free surface as same
as the body surface.
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As for the problem treated here, Yeung'”
showed the numerical examples and found its
satisfactory accuracy in the two and three
dimensional radiation problems. He obtained
the solution by integrating all the boundaries
around the domain in which the potential
satisfies Laplace equation. We will formulate
the same problem by a slightly modified ap-
proach.

The potential can be expressed in the fol-
lowing form by applying Green’s theorem.

o(P)=o Sowwmi(g;,so(Q)—so(Q)—%)
log #(P, Q) ds(Q) , (37)
where
= (2,9), Q=(=v") and r*=(@—a")V+(y—y')"

C,F,R* and B denote the each boundaries on
the body, free surface, right and left radiation
boundaries and bottom of the fluid.

Now, we will decompose the first order
potential into the following terms.

=000 L0 g0+ KN 509 (38)

ﬁynzxgvaw,

where subscript j=(0,1,2,3,4) refers to the
incident wave, sway, heave, roll and diffrac-
tion respectively,
¢81):e-1<y+i1{x ,
aw=amplitude of the incident wave,
w=angular frequency of the incident
wave,
g=gravitational acceleration,
K=w*/g=wave number.

The boundary conditions for each subpro-
blems are rewritten as:

(L] p*¢(x,y)=0

w]{K+;-¢w@m=o
[H:I ¢(1)—%1’] for ]:1,2,3
%ﬁﬁ(j”: —5;;9758” for j=4

P
(B] o 4(z,0)=0
K] {-ai }¢‘”(+°°y)—0

(39)

For a problem symmetrical with respect to
y-axis, let ¢s(x,y) be a source potential placed
at the origin. Then ¢s(x,y) can be expressed

by
$sP)=g-\ ., (59s(@)

—$5(0) - log 7(P, Q) s(Q)

Ll pe™coskx , . -
=¥ —_r dk+ie ™ cos Kx |
(40)
where 39 denotes the Cauchy’s principal value.

Asymptotic expansions for ¢s and ¢¢° are
well-known as“®:

¢S (P) e KTk

as Xt oo
PP(P)—iHE (K)e ™% a3 g £ oo

(41)
where

0 0 X
Hf (K) — S . <_a_1:;¢gl) _ ¢51)T§;> 6—-Kyj:1Kx dS ;
0
Kochin function.

Let ¢~(P) be a new potential defined as
follows:

$u(P)=¢(P)—Hi¢s(P) , (42)
then, at infinity
¢n(P)—0 as x—>too ,

If we take the radiation boundaries R* far
from the body and the problems are restricted
in deep water case, the integration on R* and
B will vanish and we obtain the following
equation.

pr(P)=y- | (Srbe(0)=dx(0)5

‘log 7(P, Q) ds(Q)
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L0 (el
2 Yerr\On "’ ' on

log 7 ds—-QLH?(K)

SC+P<6%¢S ¢s >log7ds (43)

Thus we obtain the following integral equation
making use of the free surface condition and
taking into account log 7 becomes singular
when P approaches the boundaries.

mpP(P)+ SG+F¢§”~6—6%~ log 7 ds
KS ¢ log r ds—H7 (K)
F o
-{ﬂqﬁ +g 1) ilo rds
s c+r S on &
KS ¢slogrds—g —a—gbslog'rds
F c on

:Soa(;gbgv log 7 ds . (44)

Similary, for anti-symmetry problems let
¢o(x,y) be a horizontal doublet potential

placed at the origin
¢D(x»y)
_LS
2m JorrirE+ B

0 9
<%¢D— ¢D—07> lOg rds

1 ke ™ sin kx ok
§0 e dk—iKe ™ sin Kx ,

— 4 Ke—KvFiks

o

as xr—>+ oo |

(45)

Therefore, we introduce the following poten-
tial
U
P(2,y)= ¢ — 1 Hi (K)po(r,y) , (46)
and the same procedure as used in the sym-
metry problem will be applied.

The similar procedures can be applied to the
diffraction problem if the potential is split
into two parts, symmetry and anti-symmetry
with respect to y-axis.

3.2 Second Order Problem
We will decompose the second order poten-
tial into three components in the second order

boundary value problem of Eq. (24), and

normalize as

@(2) — €0(2) + b@<2)+f§0(2)

= g+ T g 1), (@)
where
np®; second order potential due to the
motion of bi-frequency
»p®; due to the second order body
surface condition
7¢®; due to the second order free surface

condition.
Then, the force due to these potentials are also
split into each terms as:

2FP(5) =2 (M) +:FP(B) +2F(F), (48)
where

2FP(M); second order force due to the
motion of bi-frequency which
produces the added-mass and
damping forces of 4K v

:FP(B); due to the second order body
surface condition

FP(I); due to the second order free

surface condition.

Therefore, the boundary value problems for
each three potentials are rewritten as:

(L] p«p®=0 (r=m, 0, f)

7] 4R o, 0, 19%)

=(0,0,q()  on y=0
(H] (o™, 5, 76) = (5, 19, 0
on Co
(5] )=0,  (=mbf)

(i=m, 0, f)
(49)

where

g(x)=—=2(¢®) + @ (P50 + K¢i)
=qo(x) +igs(%) ,
IO =4KfP|an®

79 = KEOE0 —F0 0 — FOGL—dOGED
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The problems for ng® and »¢® are the same as
the first order problems in Eq. (23), by replac-
ing K to 4K. The essential difference between
the first and second order problems appears
in the problems of y¢® which must include the
boundary condition on the free surface. How-
ever, it may be solved easily by applying the
BEM described in the preceeding section in the
same way as used in the first order problems.

Now, we consider the pressure distribution
on the free surface, g(x). In the radiation pro-
blems of a single mode, we obtain the poten-

tial and the pressure distribution from Eq.
(38) and (49):
PO=KZPP  (j=1,2,3),
qs() = KH{=2(P$°)* -+ ¢ ($50 + KPG) t -
At a large distance from the body, these terms
can be expressed in the asymptotic expansions.
¢$_1)__>,l'H‘:7{:(K)g—-K1/?iK‘Z‘
as x—+oo (50)
g;(x)—0
In the case of a symmetric body with respect
to y-axis it can be simply shown by the sym-
metry relation

9,(2)=¢,(—) . (51)
Moreover, we find the following relation for

radiations of a single mode oscillation of a
symmetric body

"2 (x,y)=hP(—2x,y) . (52)

Therefore, the hydrodynamic forces caused by
»p® and yp® always act as vertical forces
even in the swaying or rolling oscillations.

Nextly, we consider the incident wave
problems, in which the potential far from the
body may be expressed as:

3
¢(l):6—f(y+ilfx+1/'<Hit+KZ a‘/.gl)H]i>
=1
—KyFiKx

‘e as xr—>t oo,

Therefore, we obtain

3
g(x)= ~—’£8K2<H4+ +K>) 925-”]:@)
i=1

as x—+oo | (53)

g(x)=0 as x—-—oo

The complex constant of the pressure on the
free surface of the weather side appears from
the standing waves made by the interaction
of the incident waves and the reflected waves.

The forces are given in the non-dimensional
form.

Fo 0%,
Y8 2 P A (O%aatd
IPE)= ==\, $75ds
(7=1,2,3) . (54)

For the evaluation of this term, we introduce
three potentials which satisfy the following
boundary conditions.

(L] p*¢i(x,y)=0
(7] {4K+5‘?y~} $7(2,0)=0

D p 0
H] 5 1=,

(B 5-47(,00)=0

[R] {%imK}w(im,y):o

These can be identified as the first order
radiation potentials of wave number of 4K.
Then, we choose the free surface instead of the
body surface for the integral path by apply-
ing Green'’s theorem™.

S%fw -é%azj ds
:Soofgb@mz ds
| 0P s |, 8005, s000) d
(et gogn) ay
| q)graa
| pogr—mrgnay. )

It would be little difficult to understand of
the radiation condition imposed on R* for
7¢®, because the pressure distribution on the
free-surface, g¢(x), nondecays and lasts at

NI | -El ectronic Library Service



The Society of Naval Architects of Japan

32 Yusaku Kvozuga
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Fig. 2 Second-order boundary value problems

infinity. However, let us introduce an ideal
wave-maker which could absorb the reflected
waves as shown in Fig. 2, then the radiation
condition for y¢® could be understood on R*
far from the wave-maker. Therefore, we could
drop the integrals on R* because of the radia-
tion condition for ;¢® and ¢F. The first
integral on the free-surface in Eq. (56) will
oscillate depending on the location of the
wave-maker by the asymptotic behavior of
@7 . However, we could estimate practically
it as the mean value of the integral as:

0
@_- 4.
Soofgb o Zjds

=(mean value of) {— SFq(x)qu dx} .
(57)

In the three dimensional problems, Molin'®
derived the same procedures and obtained the

second order wave forces upon fixed axisym-
metric bodies without any difficulties.

In this study, the second order forces due to
the nonlinear free surface condition are evalu-
ated by Eq. (57) making use of the wave-free
potential aforementioned. Consequently, they
can be obtained by the solutions of the first
order problems without solving the second
order boundary value prolems.

In the radiation problems, the second order
forces are obtained by two methods, the one
by the direct solution of the second order
boundary value problem, and the other by Eq.
(57). They show good agreement each other.

All the quantities are non-dimensionalized
as follows.

Radiation
x;j(t)=aj; cos i, (2=1,2,3)
JE=|F®(pgbia:)~ cos (wt+ %)
(7=12.3)

e=aj[b

—1
o= 1F) g paac
[ = [ F | (pgas)™ cos (201455

(59)
Diffraction
ﬁ(t) = — <Clw CcOS U)i—*—ga’wz Cos 20)t>
Ezﬂw/b
T =25 (@) cos (0f-+a)
(7=1.2)
T = 250 (K aw) ™" cos (wi+asP)
(7=3)
TP =[P lbsla) " cos Qui+aP) | (59)
(j=12.3)
F=FPl(pgbiau) cos{wt+69)
(=123)
1 o
ofP=0F <'2'"pgﬂw2> (7=12.3)
o= 12 F|(pgaw’) ™ cos (2wt +35)
(7=123)

where b; denotes as: bi=b:=b, bs=0* (b=
half-beam at waterline)
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4. Experiments

All the experiments were carried out in a
small tank (LxBXD=9mx1.2mx1.2m)
of the Defense Academy as shown in Fig. 3.
Five models whose cross-sections are shown in
Fig. 4 were used and their principal dimensions
are shown in Table 1.

Forces were measured by a three-component
load-cell in the radiation problems and in the
diffractions of fixed cylinders. In case of a
free floating cylinder, motions were measured

Beach Wave Maker
7] |
Q ; . Model
<O
= [H
I e Wave Gauge
~J
il =
:&‘&-‘& L__J 7 E
4000 =
O
9000
Fig. 3 Experimental set-up for the diffraction
problems
§-1, Semi-Circular 52, Lewis-form
5-3, Lewis—form S-4, Non Lewis-form

7p=.185

S-S5, Lewis-form

Fig. 4 Model sections used in the experiments

and those records were analized by the Fourier
Analysis.

Typical measured records and the corres-
ponding calculations are presented in Figs. 5

Table 1 Principal dimensions of the models
Item s-1 5-2 5-3 s-b 5-5
Section hemi- Lewis Lewis triang. Lewis form
circle form form & R.B.
Half-beam/Draft 1.0 1.0 1.083 1.083 1.25
Sectional .185 1.0 .537 2537 .95
area coef. (.96)
Length (m) .6 .6 .6 .6 .6
. (.3) (.3) (.3) (.3)
Breedth (m) .216 .19 216 216 2
(.2)
Drait (m) 2108 095 L 1 .08
(.1)
Dispiacemt.{Kg) 10.99 10.83 6.98 6.98 9.12
(5.45) (5.76) (3.49) (3.49)

c-1 c-2
Center of gravity : 0G/b | .031 L1563
Metacenter height : G4/b | .080 .232
Radius of gyration: rG/b 1.18 .781
Heaving resonence : Keb 15 W75
Rolling resonance : K3b 056 .3k0

Kote) Figures in perenthesis mean dimensions of the model used iz the

radiation prcblem,

] A/\A%;:;
_va\/v
A A A
“wwww
[ ANAWAWA
AVAAVIRVIRV/

5

Fig. 5 An example of the experimental records of
a swaying circular cylinder (Kp==1.2)
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® . SWAYING MOTION (Kb =
1 Xy

L2) HEAVING MOTION (Kb = 1.2)

B ettt ——t g
= 21 3T

1
T
4LTT 3TE'
-1 -1
VERTICAL FORCE
Ez Ez‘. £=.6
m VERTICAL FORCE 28gbeX, — /
N /
a TR e
-1
-14

Fig. 6 Calculated second-order forces of a swaying

Fig. 8 Calculated total forces of a heaving circular
circular cylinder (Kp=1.2)

cylinder (Kp=1.2)

£=12
~2 WAVE (Tw=.579, Kb=1.2)

WA
IAVAEVIAVERY

SWAY FORCE

FORCE(F) /\ /\ /\ /\
1:“9 M\ m/ \/ VARVARY

-1
\‘\W/ W \j\ll \// ec -1 7 kg HEAVE FORCE
-1

NN S

5}&71 YAVE (1a) | \/ &\/ \/ \/

£
=.6, Kb

B/\/\/\/“
AV VARV

n
N

5 on HEAVE (T

i

1L.2)

a7

7|

ﬂ

2|

S - x18%kg-m  ROLL MOMENT
VA VAR VAV
- o
» m + m + ./-.i\ + 1
) S W/  «\/
Fig. 7 An example of the experimental records of -5
a heaving circular cylinder (Kp=:1.2)

Fig. 9 An example of the experimental records of

a fixed Lewis-form cylinder in waves (S-5
Kp=1.2)
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2y
7 INCIDENT WAVE (Kb = 1.2) e
= € EXP. CAL
10—
|- 2 o
o G 3 A
1 % 4 v
,N <o o
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R | s S R R
o <& O
/ <
0 0 b 1. 1.5 2.

\ 7 ,L
V=t
6

ROLLING MOMENT (.8, -.285b)

Fig. 10 Calculated wave-exciting forces of a fixed
Lewis-form cylinder in waves (5-5, Kp=

1.2)

through 10. In the radiation problem of the
swaying oscillation, the second-order forces
are observed directly in the vertical force as
shown in Fig. 5. Comparing Fig. 9 with Fig.
6, one would find that the calculation agree
with the experiment. In the heaving oscilla-
tion, measured force contains all the forces
including inertia-one. One would find that both
wave-forms of the vertical force show a
similarity each other as shown in Figs. 7 and
8, although it would be complicated to com-
pare the second-order forces in those figures.
In Fig. 9 and 10, the measured and the calcu-
lated time-histories of the diffraction forces
of a Lewis-form cylinder are shown.
4.1 Radiation Problems'®

The second-order forces acting on a circular
cylinder swaying in the still water are shown

Fig. 11 Second-order vertical steady-forces of

a swaying circular cylinder

5 |55
€ EXP. CAL
PR S ——
4| 2 o
3 &
4 v
5
8
2 g 2 °
q g [}
4
1 < o 1|
o]
ol ¢ ©
0
0 5 1 15 2. Kb

Fig. 12 Second-order vertical oscillating forces of
a swaying circular cylinder

in Figs. 11 and 12, the former shows the verti-
cal steady-force and the latter shows the verti-
cal bi-harmonic component. The experiments
would verify the validity of the present theory
from these results. The second-order forces
on a symmetric cylinder in the radiation pro-
blems of a single-mode oscillation always act
as vertical forces. In Figs. 13 and 14, the
second-order forces on a heaving circular
cylinder in the still water are shown. Experi-
ments agree well with the calculation except
the bi-harmonics in the higher range of wave-
number (K»>1.5), where the viscous effects
might appear because the progressing waves
reach the limit of the wave-height.
4.2 Diffraction Forces on a Fixed Cylinder'®
The second-order wave-exciting forces of the
bi-harmonics in sway and heave on a fixed
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FFig. 13 Second-order vertical steady-forces of a
heaving circular cylinder
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Fig. 14 Second-order vertical oscillating forces of
a heaving circular cylinder
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Fig. 15 Second-order wave-exciting forces of a
circular cylinder

circular cylinder is shown in Fig. 15. The
calculation for the vertical force would be
found to agree well with the experiments but

L <181
x"/"&/yil__.__._»_-«—.oza

0 05 T
U

Tig. 16 Ratios of the second-order wave-exciting
force to that of the first-order as a func-
tion of the amplitude of incident waves
(5-1)

those for the horizontal one show a little differ-
rent tendency with the experiments in the
higher range of the wave-number.

In Fig. 16, the ratios of the second-order
force to that of the first-order are given as a
function of the amplitude of the incident
waves. From these results, one would find
that the second-order forces are in proportion
to the square of the amplitude of the incident
waves and therefore, the second-order forces,
particularly in the virtical force, would be-
come important for the large wave problems.
4.3 Effects of Angles of the Intersection of the

Body and Free-surface'®

In this section, the hydrodynamic effects of
angles of the intersection between hull-side
and free-surface, so-called the Wedge-effects'®,
are investigated in the radiation and the
diffraction problems. Models, S-3 and S-4
have the same beam/draft ratio and the sec-
tional area, S-3 intersects at right-angles at
free-surface, on the other side, S-4 intersects
at half of right-angles. Therefore, the first-
order hydrodynamic characteristics are almost
the same between two models.

In Fig. 17, the Wedge-effects appear in the
second-order vertical steady-force in the sway-
ing oscillations, where they act as an upward
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Fig. 17 Second-order wvertical steady-forces of

swaying cylinders (S-3, S-4)
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Fig. 18 Second-order wvertical steady-forces of

heaving cylinders (S-3, S-4)

force for S-4. The results for the heaving and
diffraction cases are shown in Figs. 18 and 19.
The calculations seem to agree with the experi-
ments. The Wedge-effects also appear in the
second-order bi-harmonics, but they are not

SINKAGE FORCE

2.8 02 5-3  S-4
CAL —
€=.05 & 4
= _1 o ®
EXP , . 15 o *
4 = v AN
1.8 e v °
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6 © § by *
o]
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Fig. 19 Second-order vertical steady-forces of fixed
cylinder in waves (S-3, 5-4)
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e Q A
I
1.5 Kb 2.

Fig. 20 Drift-forces of a fixed and free-floating
Lewis-form cylinder in waves (S-5)

so dominant in the total force that the effects
are unclear in the experiments.
4.4 Second-Order Motions in Waves'®

Nextly, the results of the second-order mo-
tions of a free-floating Lewis-form cylinder
(S-5) in waves are shown in Figs. 20 through
24. Steady-forces of a free-floating cylinder
are obtained from the mean drifts in the ex-
perimental records multiplied by each restor-
ing-force coefficients as shown in Figs. 20 to
22, together with those of the fixed condition.
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Fig. 21 Second-order vertical steady-forces of a
fixed and free-floating Lewis-form cylinder
in waves (S-5)
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Calculations for those steady-forces are found 00l g ‘o 1,
. . .0 L]
to agree with the experiments. The steady- 0w oS 1 15 Ko
i . . : o b
heeling angles of a floating-body in waves are T O
M . T [e]
observed in the experiments of the smaller RN
GM condition (C-1), as are predicted by the N |
. (o} L]
calculation. 0 P -
. . L]
On the other side, the second-order bi- N . . °
harmonic motions in sway and heave are shown \ S
in Figs. 23 and 24, where the calculations re- - *

spond largely near the first-order resonances
of the heave and roll motions. Although ex-
periments give a small value at the low fre-
quency range, general tendencies seem to be
similar to the calculations.

Iiig. 24 Second-order heaving-motions of a Lewis-
form cylinder in waves (S-5)

5. Conclusion
The first- and second-order forces on a

NI | -El ectronic Library Service



The Soci ety of Naval

Architects of Japan

Non-Linear Hydrodynamic Forces Acting on Two-Dimensional Bodies 39

cylindrical body in waves are calculated on the
basis of the regular perturbation theory along
with the previous pursuers.

The second-order boundary value problem
of the radiations could be solved without any
difficulty, while some considerations should be
paid in the diffraction problems. The second-
order solutions of the diffraction problems
strongly depend on the truncation of the free-
surface condition. However, the forces acting
on the body due to these potentials could be
obtained reasonably by the mean value of the
integrals on the free-surface applying Green’s
theorem. Consequently, the second-order
forces can be obtained by making use of the
first-order solutions without solving the second-
order boundary value problems.

The Boundary Element Method which in-
cludes both boundaries of the body and the
free-surfaces is applied to simplify these pro-
cedures, then it enables us to deal with the
free-surface as same as the body surface.
Those numerical results show good agreement
with other theories.

Experiments are carried out for not only the
radiations of heaving and swaying oscillations
but also the diffractions for a fixed and a free-
floating body in waves. Generally speaking,
the present theory shows good agreement with
experiments of all the problems, although the
second-order forces are very small in the ex-
tent of the phenomena treated here.

Therefore, we conclude that the present
theory can be utilized for the purpose of the
predictions of the hydrodynamic forces and
the ship motions in wave.

The remaining interests should be turned
toward the extremely large amplitude pro-
blems and the transient problems. It is hoped
that further investigations of such problems
will be performed in the future.
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