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                                Summary

   The  second-order  furccs acting  on  a  cylindrical  body  which  oscillates  witlL  an  arbitrary

irequency  at  a  free surface  of  intinitely deep  water  arc  calculated  on  thc basis of  the  perturba-

tion thoerv.

   Thc  first and  second-order  boundary  value  problerris are  solved  by  the  Boun[lary  Element

Method  (BE]･l) which  inc]udes both  boundaries  ot  the body  aTid  the  free surfaces.  Thc  pressure

distribution including the quadratic  terms  o'E the Bernou]li  equation  is cvaluated  from  the

so]ution.  The  hydroclyJiamic  forces actin.a  on  the  bodiy are  obtained  by  the  integratioii along

the  instantaneous wettcd  contour  of  the  body. Finally, metions  o'f ti!e body  in waves  arc

determined  by  the solution  of  the equation  of  the  rnotlon  up  to the second  order.

   Experiments  are  carried  out  for the  radiation  pioblems  oE  the heaving and  swaying  oscil-

]ations, and  the  difiraction problerns ior a  fixcd  body  and  a  free fioating bedy  in steep  regular

waves,

   Those  results  are  discussed in comparison  with  the nurnerical  calculations.

  1. Introduction

  In the  field of  seakeeping  quality of  ships

in waves,  many  remarkable  achievements  have

been made  to predict the hydrodynamic forces
acting  on  ships  on  the  basis of  the linearized

wave  theory,  On  tlie other  side,  a  few researcb-
ers  have attempted  to the nonlinear  problems,
The nonlinear  forces have been  tbeught  to

be very  small  eompared  with  the linear ones

in this field, and  are  usually  neglected.  How-
ever,  they  sometimes  play a  primary  role  in
the problems  such  as  the driit forces, the

slowly  drifting oscMations  or  unstable  swaying

oscillations  of  a  mored  vessel.  Metions of  the

recent  ecean-platform  are  fairly different

from  those of a  traditional ship  that the non-

linear problems  seem  to be more  important,

  Kochini' derived the formulas of  the  steady

forces on  the twe- and  three-dimensional  body
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in vLiaves,  and  MaruoZ) showed  the  well-known

iormula  ot  the drift force, Ogilvie3) obtained

the second-order  steady  forces on  a  submerged

circular  cylinder  by  the per･rturbation method,

  LeeO  and  Parisisi) presented the complete

solution  of  the  second-o/rder  forces on  a

cylindrical  body  heaving  a,t the free surface,

Their formulation seems  to have  provided the
fundamentals oE  the imiestigations there-
after,  and  the theory was  extended  to  the fur-

ther problerns by Potashti), S6ding'), Masu-
inotoB)  and  Papanikolaou-Nowacki9).  KimtO)
and  Yamashita)') derived arL approximate  solu-

tion for tlie heaving  oscMation  of  a  two-

dimensienal body.

  On  the other  side,  there are  few reports  on

the  experiments  of  the  full second-order  forces
except  Tasai-Koterayamai2) and  Yamashitaii)

in the heaving  oscillations  oi  the two-dimen-
sional  problem.
  In this paper, the  author  would  summarize

the theoretical and  experimental  results  of
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tour papers en  the second-erder  forces acting

upon  a  cy!indrical  body  of  the radiations  of

swaying  and  heaving oscillations,  and  of the
diffractions of  a  fixed and  free-fleating cylinder

in "iaves.13,14715,le)

2. MathematicalFormulation

2.1 Botendazl, Conaitions

  Let us  $uppose  the metions  of  a  fioating
body in waves  as  shown  in Fig, 1. We  employ

two  coc)rdinate  systems,  o-xy  be a  right-

handed  coordinate  systcm  fixed in space  with

o-y  vertical  downward  and  o-ev lying in the
undisturbecl  free surface,  6-i;･e be a  system

fixed in the  body and  coincides  with  o-xy

when  the body  lies in a  position of  equilibrium.

  I.et the displacement of  the motion  denote
xj(t>,  where  subscript  y', -Cl,2,3) refers  to sway,
1'ieave and  roll  rnotions  respectively,  then tlie
relation  between  the  two  systems  is as  fol-
lows:

     :[ll::.[:i:3,:l:.Il,7,::lli::2il
 
.
 I

                                    (1)
  Here, we  assume  the fioating body  oscillates

about  its equilibrium  position and  the drift
motion  is restrained,  that is, the external

force cancels  out  the drifting force acting  on  it.
  We  will  now  assume  that the fluid is ideal

(invicid, imcompressible) and  its motion  is
irretational, Hence there exists  a  velocity

potential ¢ (x,y, t) satisfying  Laplace's equa-

tion

Fig, 1 Coordinate  systems

I<yozul{A

   [L]/ v2op=dix=+ ¢ yv==O.  (2)
  The  liuid pressure P  (x,y, t) is determined

 by  Bernoulli's equation

     P== -pOo--S-p(7di)2+pgy+Po  , (3)

where  p is the fiuid density, g the gravitational
acc ¢ Ieration constant  and  l'o a  censtant  of

mtegratlon,

  On  the free surface  two  boundary  conditions

must  be jmposecl, If the  free surface  is des-
cribed  by  y='w(x,t), the  kinematic boundary

condition  i's

        D
     O='ilit'(YMny(X,t)):i]

¢ v- ¢ .op.-opt

          on  7t=w(x,t), (4)
and  the dynamic condition  i$ obtained  from
the Bernoulli's equation  en  the /[ree surface

where  the pressure sl]ould  be atmospheric

constant,  we  choose  as  P=-.Po

     v =ii  (
'die+

 S-vdivdi)
          on  y=op(x,  t). (5)
From  tlicse conclitions,  we  obtain  the non

linear free surface  boundary condition

   IF: o=--i-if((dii+S7di7o-gzi)

        =dise-gdiv+27 ¢ 7dit

           1
        +'2'Vop7C7di7di)

          on  y=  op(x, t). (6)

  It the body surface  is described by  C (x,y,
t)==-Co<nf, ij)=-O, the kinematic boundary  con-

dition on  it  states  that the fluid at  a  point on
the body must  have the same  velocity  com-

ponent  in the directien of  the nermal  to the
body.

   [Uj ¢ n(tt,y,g)=P"n(x,y.t)

                =Oo:7vz-  
Ooxt
 +Oeit 

OoYt

                 on  C(x,y, t)=O,  (7)
where  the subscript  n  denotes the unit  normal

on  body intu the fiuid.



The Society of Naval Architects of Japan

NII-Electronic Library Service

The  Society  ofNaval  Architects  of  Japan

Non-LUiear  Hydrodynamic  Forces Acting  en  Two-Dimensional  Bodies

  If the fluid has a  horizontal bettom at  y==

h, the  kinematic boundary  condition  is

  [B] di,(x,h,t)=O. (8)

  I.f it is infinitely deep, then

   [B] limOv=:O, (8)'
       Y-.e,

  The  remaining  boundary condition  is a

radiation  cendition  at  infinity, i,e., the waves

must  be propagating  outward  at  a  large dis-
tance from the body.

2.2 LinearixeaProblems

  The  problem formulated above  is nonlinear

and  the  boundaries in whi.ch  the velocity

potential is defined change  with  time. In
order  to reduce  the  nonlinear  boundary con-

ditions, we  assume  the potential di can  be
expanded  in a  perturbation serieg  in terms of

s:

    di(x, zt, t) =!:  Edi(i)(x,  y, t)

             +e2 ¢ [2](x,
 y, t)+O(s3) , (9)

where  E denotes a  small  perturbation parame-
ter and  may  be defined such  as  the ratio  of  the
incident wave  amplitude  to the liali-1)eam of

tbe  body.

  Simila]rly, the free suriace  elevation  is as-

sumed  to be expanded:

    op (x, t) =sop(i)(x,  t)

             +E221[!'(x, t) +O(e3) . (10)

  The  boundary cendition  on  the  free surface
can  be reduced  by  expanding  O(x,y,t>  in
Taylor  series  about  y==O  like as:

    di(x,op,t)=:e¢ Ci}(x,O,t)

             +E2{27(i)diY)(x,O,t)

             +di(:'C zr, O, t)}+O(e3) , (1 1)

  Then  we  obtain  the first and  second  or(ler

boundary  conditions  on  the free sur'face  as  :

[F]s: ¢ Sl)-g¢ }")==o
sE:  Of.7.)-gdiS2)

      =-2(disodis?+die)diS?)

        + ¢ tL)(disl,)-e¢ :l) ･

(12)

                                    25

  Further, we  will  assume  the body motions

arc  also  small  as  the amplitvLde  of  the incident

waves  and  expand  as:

    xj  (t) =r  sxS･i)(t)  +  s2x}Z)<t)  H-･O(e3)

         (]' 
--

 1, 2, 3) . (13)
Therefore Eq.  (1) can  be reduced  as

     e-  hi =e(xf'}-il  xrEi))

          -i-E2(xE2)-yxy)--IYrexsin)+o(,3)

    y-ti=e(xSi)+texF,i))

          
-l-
 eZ (xE2)+ a-: xS2) 

--;gxSr)2)
 
-s-O(E3)

 .

                                  (14)
  Now,  we  expand  both s/ildes of Eq, (7) in

Taylor series  about  its mean  position

   ¢ n(x,  Zt, t)

      =  di#'Chi, Y, t) +  ( c-  hi) diS,?, +  (y-9) diI,?.

        + ¢ s,2)(re, g, t) +o(ss)

      =  ( g,X-,
 -s  oO. tixsi)) IE(siifi)-yrii:i))

        +E2(al･E2)-ijcbSL)-thirdSi)2)l

        +  (g/
--

 +  ,-ooi,. hi .si)) [, @g)+ te cbEi))
        +E2(alY)+ te cbS,i)--Ii-grdSi)2) l +O(e9) ,

                                  C15)
       ,o

where
 

mj=-bz-xj
 (1'=1,2,3).

And  using  the  following relE.tions

     a -. o-               -t

    on 
M=it

 Y-y

     o-  om  -

    
-O'i-,

 
'Y
 
=-

 tt,-Xi 
-x,

 ,

we  transform  Eq.

following resultsT).

   [H] E:  ¢ Ei)=fli)

       s!:  diif)=ff2)+xSi)

(16)

              (15) to tall,gential and  normal

components  of  the  body  sur'Eace  and  obtain  the

        Cii)-xg)dig.r)

  
-f(i)¢ Sl?--d(i)thE;,?

on  Co(x,y):=O, (17)
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where

    a==hinf'+yg',  b=hiv-g:-,',

    c(n)=re'x?O+ij'x{,n),  dl(n)=cCn)-E-bxgfe),

    h(n)=g'xlvt)-hi'xSn), f(m･)=hC")-axSiL)
             (n=1,2)
And  we  can  use  the following relations

    dif,i.'=-¢ Eg'--Los,o
               p

             1
    diF,2=:di/Ais'--difi'
             P

     l!1) =tt'g"-g,te,t;

    p:

  Neglecting the 
'

expand  the velocity

the each  harmonic

wave

    di(x, y, t) =  Re I.XO=O, ill.lr.,
Further we  can  reduce

and  k in Eq, (I9) as  is

    di(X,Y,t)=Re{spCi)e'`-t

and  og(2)  is also  proved
the mass  transport of  the
tribute to the pressure
body, then

  The second  order  incid
expressed  as  follows, if it 

'

          '

    egso..  
ZgaW

 e-Kv+iK.,
           w

    s2qS!)=  O ,

    e)2

    
-tt-

 
=K=2nlA

The free surface  elevation

as

    opo(X,t)=Re{･vSi)e`""`

           +e2vS!)

    s21Si) r=  -  a,.  eiKx  
,

           Ka?w

    
E211S2)=-

 2--ef2Kx ,

Yusaku

(18)

       radius  of  the  curvature.

              translent response,  we  may

                 potential associated  with

                  components  using  the
fundamental angular  frequency of  the incident

                              tAte#)

                     
cn,go{")(x,y)e

 S -
                                 (19)
                    the combination  of  n

                  already  proved  by I.ee`'

           
-1-EZ(oeo(2)+EsoC!)e'ntCO`)}+O(E3)

 , <2e)
                    to contribute  only  to
                      fiuid ancL  not  con-

                    or  the forcc of  the
         we  will  omit  hereafter.

                    ent  wave  potential is

                    is  infinitely deep,

(21)

in this case  is given

e'/!`"L}+O(sS)  
,

(22)

KyozvKA

   The  first and  second  order  boundary  value

 problems in infinitely deep water  are  sum-

 merized  as  follows:

   First order  problem

    [L] F2g<i)(x,y)=O,

             0}         (

    [F] iK+oy)g(i'(x,o)==o,
    [ILI] qf,i'=iofCi' on  Co, (23)
    [B] q;i'(x, oo)=O,

         (0  )

    [R] i'b.±iKl･g(i'(± oo,gy)==o,

           Q)2

 
where

 
K=

 
-g-=271A,

 
A:

 
wave

 
length,

   rRl is well-known  as  Sommerfeld's  radiation

 conclition,

   Second order  problem  (2q(2)-g(2))

    [Ll･ 7Lg`2'(x,y)=0,

    r'F] I4K+ bl-2 l g("(x, o) ==  e(x) ,

                 1
    [ll] y9'=ff"+b-(xS)C?)-;vS}ggi>
                -

            
-f(i)soSS,'-d(i'g2'i,')

 on  Co ,

    [B] soE,2'(`v,oo)=O ,

    [R] i-bO-. ± i4Kl gC2)(± ..  , y) =o  ,

                                   (24)
            11(D
where

 q(x)=-2-g {2(Fg`i')2-{o`E'(soU.?+Kg)i.i')} .

2.3 ]'ress"re, J;orces and  Mofetent

  Solving the boundary  value  problem  of

Eqs. (23) and  (24), wc  ebtain  the distributions
of the velocity  potential and  the pressure,

  Let expand  the pressure and  the hydro-
dynamic  iorces in accordance  with  Eq. (20)

    I'(x,y,t)-Re{p(O)rt.Epmpievt

             +E2(op(?)+2p(2)ei2`"t)}+O(e3) 
,

    Fj(t)=Re{F}O)+EFS.i)ei"'[

             +e2(oF(yZ)+2Ff,i2)e'i2"D}+O(sS) ,

                                 (25)
where  subscript  h of  rep(2) and  icFii2) denotes the
frequency paramet'er oi eiicme.
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  Pressure on  the body surface  are  deter-
mined  by  Eq, <3) as  follows :

    p(O)=pgg ,

    p(i)= -ipa)g(i)+pg(xSi)+dixY)) ,

    ,pC2}=pg(exS.']+dioXS!))

           1 1

         
r'4'pgy[xgi)12--4-p17pci)E2

           ,
           tPbl

         
M
 2 

{(X-t･:)gE,i)*+s,Si)*} ,

    2p(2):=pg(Exg+hi2x;)-t'2pe)p(2)

           1 1

         
-lpcaxEi)L--4-p(7pM)2

           '

         
-iP2to

 {(x- hi)epge +  (y -v)  gs,i)} ,

                                  (26)
where  gCi)' denotes the complex  conjugate  ef

9{i).We

 will  calculate  the potential distribution
and  its derivatives on  the body  surfaee  from
the solution  of  the first order  problem  as

follows :

    (F9{i')2=(9;,!')2+{9:i')2
         ,.  (fSi)) +  (gfi))2 ,

    (x-te)gl.i'+(y-g)gS,i'=f{i)g£
i)+a{L)gf,i)

                     =f(i)ffi)+d(i)g:i)  .

                                 (27)
  The  forces and  rnoment  are  obtained  in the
following form  by  integrating the pressure
along  the  body  surface  at  instantaneous posi-
tion and  wetted  contour.

    FJ(t)=-j.,,,(P-Po)  oO. 
xj(t) ds , C28)

where  C(t) denotes the wetted  contour;  C(t)
c,-Ac(t).

  tiC(t) may  be expanded  with  the  same

perturbation series  as  Eq, (1O) and  we  take into
account  this effect  in the hydrodynamic  iorce
to tlie accuracy  of the second  order  and  obtain

F,F,Fs=:So(t)(P-Po)

=:

 S a, (P-Po)
+

-ILt'-e:ugt)hir-E2c,xsp)nit-o12)xgi)2ti,)

 hi'-exSi)2j'-E2(!xSU)ij' 
-t-

 (1/2)x.C,i)2x )
 a-FEc(T)+E2(c(2)-h(!)x5i))

-g'-sxEi':-t'-s2(2,xS!'hi'-(l12)x5i'2V')

 hi'-sxgi)2]'-e2(2xS2)g'+(112)xSi)!hi'>

 a+ecC')-T-eE(cCP)-h(i)xSi))t

-s
      (P-Po)
  Ma(t)

  Second

{29) can

rule  as

term  of  the
be calculated

       -OX.-.J'tlS
       On
r+(g)

  r'(t>

-0,

 te1

 a

   .
  rlghtby

as+O(e3)

  hand  si

 applying

-s
      (PmPo)
  na(t)

   =!  (P-P,) dy[

     
-i

 (P-P,)dy[

  -L.
  v'

   1

 tan or-'

b･ tan a:"

git:-lj 

"

 On "(b,o)

.1..0hiii]'
 On

deL

27

ds

ds

  (29)

of  Eq.

eibniz's

     -  Pqc,
          2

       
-r-2(t)

where

  r
±(t) =:  eI

  ct' denotes

  in Fig, 1.

In Eq.  (80),
intersectiQns at

the horizontal
theory.

Theply

 applied  for
mode,  i

[T+2(t)
   1-tan

 a-

bLtan orm

    io)

     g

](-b,O)'

] L+-O(E3) ,

o)<:tb,O))e

       ,

(30)

       x/li)± bx, ----p  
{--,t

   =:relative  wave  elevation  from  g=:O,
         the angles  of  the intersection be-
tween  hull-side and  the  free-surface as  shown

         we  find that the angles  of  the
            free-surface do not  effect  to
            forces jn t/he second-order

  aforementioned  formulation can  be sim-

            the radiatic/n  problem  of  yL
    f we  substitute  the follow,tng equations.

  
ate

 
:=

 
xSP

 
==

 
aJ'

 l (31)
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2.4 The Eguation  of the Motioft
  The  inertia forces with  respect  to the origin

o  fixed on  the body  are  determined  with  the
consideration  of  displacements of  the motien

in Eq, (1), Eguating them  to the pressure
forces of  Eq.  (28), we  obtain  the following

results.

  First Order

    M(diEi)-yafSi))=Ffi)

    Mhi;D=FSi)

    1'fiiSi'+bd'gztaxE,i'-bf(ztaftil"'+gxi")=F!,''

                                    (32)
where

  M=pA;  mass  of  the body  per unit  length,

  I=  i [p(x2+y2) dx dy=Mrez  ;
     vv

    mass  moment  of  inertia of the body  with

    respect  to the  coordinate  origin,

  (xG,ye)=-(O,ye); center  of  gravity of  the

                 body,

 .9ua. si-. Hydrost.atigb:..o,tiJ.i-eLE/econd order

  "re have assumed  the external  force which

cancels  out  the drifting force. Let the Df
denote the  external  force as  follows.

         4

    Df  ::=  Z  oFE2'(n)
         rttl

        4 -

    O=:ZoFS2)(n)  (83)
       nr-1

               4

    MgyeoxS2)=  E] oFf,"')(7t)
               fl=1

  If the external  force are  provided  by  thc

restering  iorce ef  a  mooring  system,  it may  be

expressed  in thc torm,

    Df=ho,xf2', (34)
where

      k: spring  constant  of the mooring

         system,

    oxES]:  drifting displacement in sway.

  Further, Iet us  define the sinl<age  force <Sf)
and  the  steady  heeling moment  (ffm) as  fol-
lows:

ICyozvl<A

     Sj' =2pgboxS2)

           4

         ==  )I] oF52'(n)+2pgboxEP)
           ni=1

                                    (35)
    Hm=Mg'GMoxS2)
           'i

         ==  Z  oF:2)(n)-Mg9GoxE,2'

           n=1

These steady  iorces may  be obtained  from the
drift displacement of  the motion  in the free
fleating problem  in vLraves.

 .H.-y. .c.!rgdyriqmi.cg. .(2f..tge second  order

  Although  the heaving  equation  is influenced
by  the  first order  rolling  motion,  the  swaying

and  rolling  eguations  are  the  same  as  the  tirst

order  ca$e.

                    5.

    Jt4(2aji2)-sta!diEL))=N2Fl2)(n>
                    

'n
 =- 1

    "f[EniE,?'--l-'ye{xsi)hife)+(nt.F,i))2}]
              5

            =X  2FS!'(n)

             n=-1

    r2tuS2)+MgyG:xS2)-M(ycr2fij{･2)･+g,xf2))

              i't

            =  )Ll ,FS,S)  (n)
             

'rL=l

                                    (36)

3. Selution ofthe  Problem

3.1 F･irst Order Problem

  The boundary value  problems  formulated

in the preceding chaper  can  be reduced  to the
first order  theories which  have  been  solved  by
making  use  of thc  methods  of  multi-pole

expansions,  Green functions ancl  variatienal

method.

  Howcver,  in the second  order  problem  there

appears  inhomogenou$ boundary condition

on  the free surfacc.  This means  that we  must

evaluate  the potential and  its derivatives to

calculate  tlie pressure distribution on  it and

also  evaluate  their contribution  to the bocly
by  integrating over  the free surface,  These

processes may  be simplified  by applying  the

Boundary  Element Method (BEM) which

enab]e  us  to deai with  the free surface  as  same

as  the body surface,

NII-Electronic  
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  As ior the  problem treated here, YeungiO
showed  the numerical  examples  and  found  its

satisfactory  accuracy  in the two  and  three
dimensional radiation  problems. He  obtained

the solution  by integrating all  the boundaries

around  the domain in which  the potential
satisfies  Laplace  equation.  We  will  formulate
the  same  problem by a  slightly  modified  ap-

proach,
  The  potential can  be expressed  in the fol-
lowing form by applying  Greenjs theorem.

   g(P)  ==  21. I........( oO-. g(e) 
-9(e)

 oe, )
         ･logr(P,  9) ds(e), (37)
whereP==

 (x,y), 9=(x',y') and  r2=<x-x')2+(y-y')z,

C,F,R±
 and  B  denote the  each  boundaries on

the body, free surface, right  and  leit radiation

boundaries and  bottom  of the fluid.

  Now,  we  will decompose  the  first order

potential into the following terms.

   ep"'=ig,IW  [ipg'+ipy'+K;.,disi'ips"l ,

    niSP== eSDfa.  ,

where  subscript  ]'--(O,!,2,3,4) refers

incident wave,  sway,  heave, roll  and

tion respectively,

   ipSi)=e-NvT' 
iKx

 
,

   ath=amplitude  of  the incident wave,

    w=angular  frequency of the

       wave,

    g=gravitational accelerati()n,

    K=  cti21g=wave  number,

  The  boundary conditions  for each

blems are  rewritten  as:

  [L] 720SP(x,y)=O

  [F] IK+oO,-1)disi'<x,o)==o
  ["1 -oO;i'

¢Si'== o9, 
hij for i' 

ua-i,2,3

       o o

       o.  ¢Si'=: 
-
 an ip:i'                       lor ]' ==4

(38)

to thediffrac-

incident

subpro-

     e[B]
 

'o.'ipSi'(x,oo)==o

[R] I oO. ± iKl ¢f,i'( ± oo  ,y)  =o

29

                                  (39)
  For a  problem  symmetrical  with  respect  to

g-axis, let dis(x,y} be a  source  potential placed
at  the origin.  Then  ips(x,y) can  be expressed
by

  g5s(P) ==  21,, S ........(  o3, g5s(9)

          -  ips(e) -oOha-) log r(P,  e) ds(e)

       =  -tsfi  
e-tek'ICftkX

 ak+ie-kv cos  Km  ,

                                  (40)
where  EII denotes the Caucliy's principal value.

Asymptotic  expansions  for ¢ s  and  ¢Si) are

well-known  asOs):

    g5s<1])->ie-KVi'ff" 
as
 
x-. ± oo

 )
    OgL)(P)-iHf(K)eri!"`"" as  x- ± oo  J

                                  (41)
where

   HI' (K) =  S .,(  oa. ipY'- ¢S"-oe, )er"y= 
""r

 ds ;

           Kochin  function.

  Let ipN(l') be a  new  potential defined as

follows:

    ¢ .(P)  -:  ipSi){I))-H,±･
 ¢, (P) , (42)

then, at  infinity

    ipN(1))-->O as  x- ± oo  .

If we  take the radiation  boundaries R'  far
from  the body  and  the problems  are  restricted

in deep water  case,  the integ]:ation on  R'  and

B  will  vanish  and  we  obta,in  the following
equation.

   ¢ N(P)  :=  S. S ...(-bO-.--ipN(q)  
-
 ip.(q) oe. )

           
･logr(P,e)ds(e)
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        ==  t.- ! ...(-bO-.-  ¢si)- ipsi) oe, )
                 1
        

･logras---2-tt-H,±(K)

        'i...(bO.diSmOs-oOT,)logrds  <43)
                      '

Thus  we  obtain  the following integral equation
making  use  of  the free suriace  condition  and

taking into account  log r  becomes  singular

when  P  approaches  the boundaries.

   "gSSi'(P) + !... diSi' oa. 
Iog r cls

       +K!.ip}i'Iogras-Hi{K)

       '
 Irr¢ S+  S...¢ S oOn 

10g r ds

                         o )

       +KS.ipslogrds-i.-a-,l-ipsIogrdsj

     =g.  o3, ipSi' iogras . (44)
       v

  Similary, for anti-symmetry  problems Iet

g6D(c, zt) be a  horizontal doublet potential
plaeed at  tl]e origin

   g6D(x,y)

     ==  i7r i cw+  
tt

±
.B(

 oOn g6D- g6vzia-iD iog r ds

     =tdi  
,'O
 .k.e 

"kk'mSKin

 
kX

 dk -iKe-icx sin  Kx  ,

     -  ± KemKyTM'c as  e- ± oJ  , (45)

Therefore, we  intrc)duce the following poten-
tial
                ,

   diN(x,y) =  ipS-i'-kll)t (K)dp(x,y) , (46)

an(1  the same  procedure as  used  in the sym-

metry  problem  will  be applied,

  The  similar  proceduTes can  be applied  to the

diffraction problem  if tlie potential is split

into two  parts, symmetry  and  anti-synimetry

with  respect  to y-axis.

3,2 Seconcl Order Probgem

  "re will  decompose  the second  order  poten-
tial into three  components  in the second  order

KyozuKA

 boundary value  problem  of

 normalize  as

    soS･2)=mgoS･2)+b{oS･2}+fg(,･2)

       ,.  
tg2atuw(2)

 .ipc,)  +  Lg2att,{i)2

 where

Eq.  (24), and

                      (,ipC2)+ripC2)), C47)

   mip{i);  second  order  potential due to the

         motion  of  bi-frequency

    be{!);  due  te  the second  order  body

         surface  condition

   f¢
(');

 due to the second  order  free surface

         condition.

Then, the force due  to thesc potentjals are  also

split into each  terms as:

   2FS!'(5)=r2F}2'(M)+2FS2'(B)+2FS･!'(F),  <48)
where

  EFS･2)<iLf);  second  order  force due  to the

           motion  of  bi-frequency which

           produces the added-mass  and

           damping  forces of  4K

   iFS2)(B);  due  to the  second  order  body
           surface  condition

   2Ffi2)(F);  due to the second  order  
'free

           surface  condition.

Therefore, the boundary value  problems  for

each  tl]ree potentials are  rewritten  as  :

   [L] hip(2)=O (i=m,b,f)

   [F] /14K+-Eil2171(mip(",bipca,ripc2))

             
==  (O, O, g(x)) on  y=O

       o

  [H] 
'oii'(mOC!',

 bipC!',ripCS))=(,h(w,  hf;), o)

                      on  Co
    .O
          tipC!)(x,  oo)mO  , (il =:  m,  b, f)  [Bj
       Oy

  [R] [oO.-u± i4K)iip(u)(± oo,y)=o,

                          (i -- m,  b, f)
                                  (49)
where

    e(x)=:-2(7ip`i')E+ipC]'(g6Si,'+KgSSi')
        ==ee(,x)+igs(x)  ,

     2hC!)  ==  4ayC2)la.C2) ,

     hf,:):::KMII)ti{D-beEi)ipSL)-f(i)ipF.#)-d(i)ipl;) .
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The  problems for mdiC2)  and  bip(2) are  the same  as

the first order  problems in Eq.  (23), by  replac-

ing K  te 4K.  The essential  difference between

the first and  second  order  problems  appears

in the  problems of  fip(2) which  must  include the
boundary  condition  on  the  free surface.  How-

ever,  it may  be solved  easily  by applying  the
BE)I  described in the preceeding section  in the
same  way  as  used  in the  first order  problems.

  Now,  we  consider  the pressure distribution
on  the free suriace,  g(x). In the radiatien  pro-
blems  of  a  single  mode,  we  obtain  the poten-
tial and  the pressure distribution from  Eq.

(38) and  (49):

    di(])=KtuSi)¢S.]) (1' =  1, 2, 3) ,

    gj(x) =  K2{-2(f7ipS")2+ ipS"(ipSi,?,+K45Si2)} .

At  a  large distance from  the  bedy, these terms
can  be expressed  in the asymptotic  expansions.

    g
95

,

Slllrll( 
i'(K)e-"YTZ""

 l as x  ,-+" .. (so)

  In the case  of  a symmetric  body  with  respect

to y-axis it can  be  simply  shewn  by  the sym-

metry  relation

    g,(x)=gi(-x),  C51)
Mereover, we  find the following relation  lor

radiations  of  a  single  mode  oscillation  of  a

symmetric  body

    hll,' (x,y) ==  hS･l･'<-x,y) , (52)
Tl}erefore, the hydrodynamic  forces cattsed  by
bdi(') and  rdi{') always  act  as  vertical  forces
even  in the  swaying  or  rolling  oscillations.

  Nextly, we  consider  the  incident wave

problems, in which  the potential far from  the
body  may  be expressed  as:

    ipo=e-Ky+i"x+i(H`'+Ktll.ll,:-/;vCi)Htt)
         .e-ffvllK･r  as  x- ± oo  .

Therefore, we  obtain

    g(x)=-i8K2(H,++KS]hisi)Hb  1
               

,
 j=1  tt

                                  (53)
                   as 

x-+OO;
 l

    e(X>=:O as  x-,-oo.J

The complex  constant  oi  thE: pressure on  the

free surface  of  the weather  side  appears  from
the  standing  waves  made  by  the interaction
of  the  incident waves  and  the  refiected  waves,

  The  
'forces

 are  given in the non-dimensional
ferm.

   fs2'(F) ==  bel' i' 2 -  
-
 I ,, ip(2' 9･/T/ ds

             Ci -1,  2, 3). (54)
For  the evaluation  of  this term, we  introduce
tbree potentials which  satisfy  the following
boundary conditions.

   [L] F2¢r-(u,y)==o

   [F] [4K+ aOy l Of(x,O) =  (}

        o o

   [ll] 
'EIEipj"--'b}'l"=j

 (55)
       o

   [B] oy ¢,"(x,oQ)=O

       lo ,)

   [R] 
-brd;-+-t4Kj

¢ ,n( ± oo,y)==o

  These  can  be identified as  the first order

radiation  potentials of  wave  number  ef  4K.
Then,  we  choose  the free suriace  instead of  the

body  surface  for the integral path  by apply-

ing Green's theorem').

   ! c,J'ip(2) oOn dij ds
      =ic,fO`2'ei]nds

      =  S .,f ¢ Y"ip ge ds+  i ,,,(i ip(2)ip ge, -,ips2)ip?) d.

       -S. ±
 (fg5`!'{5ft-fpt2)g}7) dy

     x-j.g(x)ip,"ax

       Hi..  (feC2'ipE,T-fipg2'¢ ,R) ay . (s6)

It would  be little dithcult to  understand  of

the radiation  condition  impesed  on  R'  for

fipC!), because the  pressure distribution on  the

free-surface, eCx), nondecays  and  lasts at
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 second  order  wave  forces upon  fixed axisym-

 metric  bodies without  any  dithculties.

   In this study,  the second  order  forces due  to
 the nonlinear  free surface  condition  are  evalu-

 ated  by  Eq.  (57) making  use  of  the wave-iree
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  Fig. 2 Second-order boundary  i.alue  prob]ems

infinity. However, let us  introduce an  ideal
wave-maker  which  could  absorb  the  reflected

waves  as  sho"m  in I;ig. 2, then  the  radiation

condition  ior fipC2) could  be understood  on  R'
far from  the wave-mal{er.  Therefore, we  could

drop the integrals on  R"' because of  the radia-

tion condition  for iip(2) and  ¢g･t. The  first
integral on  the free-surface in E.q, (56) will

oscillate  depending  on  the location of  the
wave-maker  by  the asymptotic  behavier of

ip,"･ . However, we  could  estimate  practically
it as  tlie mean  value  of  the  integral as  :

     j.,rip(2) oan 
.Jt,･
 as

        =(mean  value  of) I-i,,g(x)ipfdxl ･

                                    (57)
  In the  three  dimensional problems, Molini")

derived the same  procedures and  obtained  the

potential aforementioned.  Collsequently, they
can  be obtained  by  the solutions  of  the first
order  problems  without  solving  the second

order  boundary value  prolems,

  In the radiation  problems, the  second  order

forces are  obtained  by  two  methods,  tlie one

by the direct solution  of  the second  order

boundary value  problem, and  the other  by  Eq,

(57). Thcy  show  good  agreement  each  other,

  AII the quantities are  non-dimensionalized

as  follows.

  R.qdi.a..i.ign..

   xj(t) ==aj  cos  (tit, s==a,Vb  (i--l,2,3>
   fS･ ],) =  1/ Fg･?F (pgbnt,)-i cos  (lt)t +  6g, }))

                           (a' 
--

 I ,2,3)

   ofg･?=  loFz'l(-3-pga,2), 

"i

   2fg?=  [2Ff3} ! (pgat2)ni cos  (2a)t+6Ee))
                                    (58)
  Diffraction

   ny (t) =  -  (ate cos  Q)t+  {5ate2 cos  2Q)t')
          t t

   E=  aw/b

   nfSP =  1 cS-i)[ (a.)Lt cos  ((vt+ ecsi))

                      Cy'-1,2)
   niSi) =:  lxEi)[ (Ka,.)mi cos  (wt +  ctSL))

                      (y' =s)

   2:eS!)  ==  [2xS!)ibj(aw)J2 cos  <2wt +al,')) (59)

                      (y' -- 1,2,3)

   fi,"=ll7Si']<x)gbJ-aw)-icos(a)t+6S-i')
                      (1' -1,2,3)

   ofS"`'=DFSL"([S-pga.z)-i  (j'=1,2,3)

   !fS-L'=  I2FS!'[(pgaw2)-i eos  (2at +  fiS･2')

                      (v' 
-m

 1,2,8)

where  bj denotes as:  bi==b2=b, b3==::b2 <b=-=-
half-beam at  waterline)

/
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4. Experiments

  All the experirr]ents  were  carriecL  out  in a

small  tank  (L × B  × D  =.=.9  rn  × 1,2 m × 1.2 m)

of  the Defense Academy  as  shown  in Fig, 3.
Five models  xNrhose  cross-sections  are  shown  in
Fig. 4 were  used  and  their principal dimensions

are  shown  in Table  l,

  Forces were  measured  by  a  three-component

load-cell in the radiation  problems  and  in thc
diffractions of fixed cylinders. In case  of  a

tree fioating cylinder,  motions  were  rneasured

Flseach Wove  Maker

  

Fig.3  Experimenta]

     prob]ems

    SJI. Serni'Cireular

                                      33

and  those records  were  analized  by the Fourier
Analysis,

  T}pical measured  records  and  the corres-

ponding  calculations  are  presented in Figs, 5

   Table  1 Principal dimensions  o'E the models
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Fig, 10 Calculated wave-exciting  forces of  a  fixed

      Lewis-form  cylindcr  in xvaves  (S-5, Kb=.=

      1.2}

  oFig.      ,5 L 1.5 2. Kb

12 Second-order  vertical  oscillating  iorces of

   a  swaying  circular  cylinder

through  10, In the radiation  problem ol  tbe

swaying  escillation,  the second-order  forces

are  observed  directly in the vertical  iorce as

shown  in Fig. 5. Comparing  Fig. 9 with  Fig.

6, Qne  would  fipd that the calculation  agree

with  the experiment.  In the hea:ving oscilla-

tion, rneasured  force contains  all  the  fQrces

including inertia-one. One  would  find that both

wave-forms  of  the vertical  force show  a

simi!arity  eacli  other  as  shown  in Figs. 7 and

8, although  it would  be complicated  to com-

pare the  second-order  forces in these figures.
In Fig, 9 and  10, the measured  and  the calcu-

lated time-historics of the diffraction forces

of a  Lewis-form cylinder  are  shown.

4.l Radiation PToblems'`)

  The second-order  forces acting  on  a  circular

cylinder  swaying  in the still  "rater  are  shown

in Figs. 1l and  12, the former shows  the  verti-

cal  steady-force  and  the latter shows  the verti-

cal  bi-harmonic compQnent,  The  experiments

would  verify  the validity  oi 
'the

 present theory
from these results.  The  second-order  forces

on  a  symmetric  cylinder  in the radiation  pro-
blems  of  a  single-mode  os ¢ illation alwa>Js  act

as  vertical  forces. In Figs. 13 and  14, the

second-order  iorces en  a'heaving  circular

cylinder  in the still water  are  shown.  Experi-
ments  agree  well  with  the calculation  except

the bi-1iarmonics in the higher range  Qf  wave-

number  <Kb>1,5), where  the viscous  eff ¢ cts

might  appear  because the progressing waves

reach  the limit of  the wave-]ieight.

4.2 Dt:if)'action Forces on  a  .Fixed dylt'naeri3)
  The  second-order  wave-exeiting  forces of the

bi-harmonics in sway  and  heave  on  a  fixed

NII-Electronic  
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iorce to  that  of  the first-order as  a func-
tion of  the amplitude  of  incident waves
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Fig. 15Sccond-order  wave-exciting

circular  cyiinder

circular  cylinder  is
calculation  for the
found  to agree  well

forces of  a

shown  in Fig. I5.
vertical  ferce would

with  the  experiments

The
 bebut

those for the horizontal one  show  a  little differ-
rent  tendency  with  the  experiments  in the
higher range  of  the wave-number.

  In Fig. 16, the ratios  of  the second-order

force to  that of  the first-order are  given as  a

function of  the amplitude  of the incident
waves.  From  these results,  one  would  find
that the second-order  forces are  in proportion
to the square  of  the amplitude  of  the incident
waves  and  therefore, the second-order  forces,

particularly in the virtical  force, would  be-
     'come

 important  for the Iarge wave  problems,
4.3 Efacts qf ATtgles of the Intersection of the
    Body ana  JTree-sitdece'5)

  In this section,  the  hydrodynamic  effects  of

angles  oi  the  intersection betwecn hull-side
and  free-suriace, so-called  the Wedge-effectsi2',
are  investigated in the radiation  and  the
diffraction problems. Models, S-3 and  S-4
have the same  beamldraft ratio  and  the sec-

tional area,  S-3 intersects at  right-angles  at

free-surfaee, on  the other  side,  S-4 intersects
at  half of  right-angles.  Therefore, the first-
order  hydrodynamic characteristics  are  a}most

the same  between  two  models,

  In Fig. I7, the Wedge-effects appear  in the
second-order  vertical  steady-force  in the sway-
ing oscillations,  where  they act  as  an  upward
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force ior S-4, The results  for the heaving  and

diffraction cases  are  shown  ln Figs. 18 and  19.
The  calculations  seem  to agree  with  the experi-

ments,  The  VLredge-effects also  appear  in the
second-order  bi-haTmonics, but they  are  not

     ,5 1, L5  .Kb 2.

Drift-Sorces of  a  fixod and  free-Iloating

Lewis-form  cylinder  in waves  (S-5)

so  dominant  in the total forc:e that the effects

are  unclear  in the experimena;s.
4,4 Second-Oraer Motions in uravesi6)

  Nextly, the results  of the second-order  mo-

tions of a  free-floating Lewis-form cylinder

(S-5) in waves  are  shown  in Figs, 20 through
24. Steady-forces o'f a  free-floating cylinder

are  obtained  from the mean  drifts in the  ex-

perimental records  multiplied  by each  restor-

ing-force coethcients  as  shown  in Figs. 20 to
22, together with  those oi  the fixed condition.
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Calculations for those steady-forces  are  found
to agree  with the experiments.  Tbe  steady-

heeling angles  of a  fioating-bedy in waves  are

observed  in the experiments  of tlie smaller

GM  condition  (C-1), as  are  predicted by  the
calculation,

  On  the other  side,  the second-order  bi-
harmonic motions  in sway  and  heave  are  shown

in Figs, 28 and  24, where  the calculations  re-

spond  largely near  the first-order resonances

of  the  heave and  roll  rnotions.  Although  ex-

periments give a  small  value  at  the low  fre-

quency  range,  general tendencies seem  to be
similar  to the  calculations,

Fig.

                  o

23 Second-order  swaying-motions  of  a  Lewis-

   t'orm cylinder  in wave$  (S-5)
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5. Conclusion

  The  first-andsecond-orderforces on  a
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cylindrical  body in waves  are  calculated  en  the

basis of the regular  perturbation theory along

with  the previous pursuers.
  The second-order  boundary value  problem
of  the  radiations  could  be selved  without  any

dicaculty, while  sorne  considerations  should  be

paid in tlie diffraction problems, The  secondi-

order  solutions  of the  diffraction problems
strongly  depend  on  the  truncation  of  the iree-

surface  condition.  However, the  iorces acting

en  the body  clue to these  potentials could  be

obtained  reasonably  by  the  mean  value  of  the

integrals on  the free-surface applying  Green's
theorem,  Consequently, the second-order

iorces can  be obtained  by  rnaking  use  of  the

first-order solutions  without  solving  the second-

order  boundary  value  problems.

  The  Boundary  Element  Method which  in-

c!udes  both boundaries of  the body and  the

free-surfaces is applied  to simplify  these pro-
cedures,  then it enables  us  to deal with  the

free-surface as  same  as  the body  surface,

Those numerical  results  show  good  agreement

with  other  theories.

  Experiments  are  carried  out  for not  only  the

radiations  of heaving and  swaying  osci!lations

but also  the diffractions for a  fixed and  a  free-

fioating body  in waves.  Generally speaking,

the present theory  shows  good  agreement  with

experiments  of  all the problems, although  the

second-order  forces are  very  small  in the ex-

tent  of  the phenomena  treated  here.

  Therefore, we  conclude  that the present

 theory can  be utiliz･ed  for the purpose  of  the

 predictions of  the hydrodynamic torces and

 the ship  motions  in wave.

   The  remaining  interests should  be turned

 toward  the extremely  large amplitude  pro-

 blems and  the transient I)roblems. It i$ hoped

 that further investigations of  such  problems
 will  be perferrned in the  tuture,
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