The Society of Naval Architects of Japan

15. An Object Oriented Tool for the Preliminary Design of Ships

Takao SEKIMOTO*, Member, Ken SHIMIZU**, Member, Takeo KOYAMA™** *, Member
(From J.S.N.A. Japan, Vol. 164, Dec. 1988)

Summary

To build a computer aided design system, it is necessary to develop a suitable model for
representing design objects like a ship and design processes that determines the mechanism of
redesigning strategy. In this research, design object is described as a combination of a date structure
and a set of constraints which restricts the behavior of some related design parameters. And design
process is represented as if—then rules which are expression of a skillfull engineer’s knowhow of
design.

The object—oriented representation form is employed to develop a computer aided ship basic
designing system. In this system, design object, design parameter, constraint and designer are
represented as “object”. An object is a date structure with argorithms called method deseribing its own
behavior or characteristic. Object—oriented representation is suitable for constructing design systems
because : (1) Complicated date structures and their behavior can be easily represented, (2) Using the
function of inheritance one can put many similar objects in order efficiently, (3) Message passing
paradigm makes it easy to organize the whole system, (4) An object is independant and self—-supporting
so the system operating on the object—oriented environment has excellence in maintenance. We
implemented constraint—riented system by defining constraints as objects,

In using this system, we can easily add or delete design parameters, constraints and if—then rules,
so we are able to build or modify the model structure and knowledge—base flexibly. Finally, some

application results of basic design of ships are presented to show the effectiveness of the system.

1. Intreduction

The performance of the preliminary design
of ships is still heavily dependant on the skill
of experienced designers in spite of consider-
able amount of computerization. Today’s CAE/
CAD systems can do much with precise analy-
sis and pretty drawings, but they are faulted
for their inability to deal with the designer's
intent and the knowledge hidden behind the
data and drawings. The situation holds not
only for ship design but also for engineering
design in general. Although the application of
expert systems to design is expected to bring

¥ Hitachi Ltd. (a graduate student of the University
of Tokyo at the time of the research)

** Naval Ship Engineering Dept,. Mitsui Engineering
and Shipbuilding Co., Ltd. (temporarily visiting the
Center for Design Research, Stanford University)

*** Professor, Dept. of Naval Architectute & Ocean

Engineering, The University of Tokyo

167

breakthroughs, and though some efforts have
been made, methodology and tools for develop-
ing practical expert systems for design have
not been established yet! 234510

In this research, a design tool was developed
and applied to the preliminary design of ships.
The tool is a kind of expert system building tool
and is intended to be used by a designer from
the beginning. A designer is expected to de-
scribe his design knowledge during the design
using the tool. In order to provide a suitable
framework to represent the design knowledge,
the knowledge was classified into categories,
ie. knowledge about the design object and
knowledge about the design process, which are
described in chapter 2.

More attention was paid to knowledge about
the design object, because it requires a specific
representation while knowlegde about the de-
sign process is considered rather easily repre-
sentable using general and conventional if—

NI | -El ectronic Library Service

The Society of Naval Architects of Japan

168 Takao SEKIMOTO, Ken Sumizu, Takeo Kovama

then rules. A set of design parameters and a set
of constraints determine the structure and
behavior of a design objbct in the developed
tool. A constraint oriented approach, in which
constraints play an important role in their own
evaluation and propagation, was taken in this

5 ‘ - .
cesearch® 12 The implementation was
made relatively easily be adopting object

oriented programming introduced in chapter
370% The configuration and functions of the
developed tool are described in chapter 4.

The tool was applied to the preliminary
design of ships and proved to be useful as
described in chapter 5.

2. Classification of Design Knowledge

In order to build a sophisticated computer
aided design system, designers’ unstructured
design knowledge should be organized and
represented clearly on a computer system.
Classification of design knowledge is helpful in
organizing design knowledge and developing
knowledge representation for a design tool. In
this research, design knowledge was classified
into two categories, i.e. knowledge about the
design object and knowledge about the design
process, as described in the following sections.
Requirements for a design tool to deal with
each category of knowledge are also discussed
below.

2.1 Knowledge about the Design Object

It is necessary in design to clarify what
design parameters the design object has and
what relations exist among the parameters.
These two design elements, i.e. design para-
meters and relations, are very important as
design knowledge since they determine the
structure and behavior of the design object.

The wvalue of each design parameter is
restricted by its relations with other para-
meters. Those relations, or constraints, are
imposed as physical laws, legal regulations,
specification requirements, etc. Intricately cou-
pled constraints make it difficult to get the
optimal or a satisfactory set of the design
parameter values. Therefore, the role and
behavior of constraints in the design problem

should be well understood. The following two
aspects of constraints are considered to be
important for developing a design tool.

(A) status evaluation

During the design, a designer decides what
to do by examining the constraints to see
they are satisfied or violated. In order to
help the activity of the designer, a con-
straint should be re—evaluated automati-
cally whenever any related parameters are
changed.

(B) multi—directional propagation

A designer not only examines the con-
straints but also uses them to determine
the satisfactory values of the design para-
ameters. A constraint does not define a
rigid procedure to determine a related
design parameter, but declares the rela-
tions among paramters. Therefore, a de-
sign tool should support the function of
multi—directional propagation. For exam-
ple, an equation with #» parameters should
be able to be used to calculate the value of
any one parameter, irrespective of
whether it is in the left hand side or the
right hand side, when the rest of n—1
parameters are determined.

Constraint oriented programmingS)'1 DA2 in
whic each constraint is represented declar-
atively, is considered to be a promising
approach to realizing a design tool with the
functions described above. The approach was
taken in this research.

The design parameters and the constraints
should be able to be added, modified or deleted
easily during work with a design tool, because
the structure of the design object is gradually
defined through the design process by stepwise
refinement.

2.2 Knowledge about the Design Process

Knowledge about the design object stated in
22.1 is concerned with the static, analytical
and local status of the design object. There is
another kind of design knowledge: dynamic,
strategic and global knowledge about the de-
sign process, such as which parameter should
be set first when there are many to be set,

NI | -El ectronic Library Service

The Society of Naval Architects of Japan

An Object—Oriented Tool for the Preliminary Design of Ships 169

which parameter should be changed in case of
coupled constraints violations, etc. Knowledge
about the design process represented as if—
then rules” is expected to be albe to drive the
design cycle of generation, evaluation and
modification®.
3. Object Oriented Programming”®

In this research, smalltalk--80, one of the
most common object oriented programming
languages, was used to develop a design tool.
The basic features of object oriented program-
ming with some respects to design problems
are described in this chapter.

An object in object oriented programming is

an entity which contains structured data and
associated procedures. All kinds of data, such
as numbers, lists and booleans, are dealt with
as objects. A programmer can define a new
object with a suitable data structure for his
purposes. Since the data contained in an object
are also objects, a complex data structure can
be handled hierarchically to any depth.

Procedures contained in objects are called
melhods. A method of an object is invoked by a
message sent to the object. Thus, in object
oriented programming, execution of a program
is realized by series of message passing events
among a number of objects. Because the data
and the methods are encapsulated in an object
and message passing is the only way to access
them, each object has very high modularity.
This programming style helps in developing a
system by describing the local relations declar-
atively when the overall procedure is difficult
to recognize as in design problems. Akagi and
Fujita handled the network of the basic design
parameters of a ship, such as the length, the
breadth and the draft, with object oriented
programming successfully? !9,

Data structures and methods are defined in
abstract objects called classes, which are a kind
of prototype of each iustance. Classes are
organized in a tree—like hierarchy. A subclass
object inherits the data structures and the
methods of its superclasses in the hierarchy. A
programmer can define a superclass by ex-
tracting the common characteristics and behd-

viors among similar objects, and then he only
has to define specific things in each subclass,
thus the programming efficiency and the main-
tainability of the program are increased. The
class hierarchy also helps to organize the
concepts in the problem, which is important in
the design problem.

4. Configuration and Functions of the
Design Tool

4.1 Overview

The configuration of the object oriented
design tool developed in this research is
outlined in Fig. 1. A “design object” and a
“designer”, corresponding to knowledge about
the design object and knowledge about the
design process respectively, are the major
objects in the tool. The design proceeds
through message passing between the two
objects. The structure and the behavior of each
class of objects are described in 4.2.

CHuman f@
.

A
ettt
_ User !men‘a@
\M:._W

/ message\

’m\\\ passing

Design Object
Knowledge about
the Dasign Object

Designer

Knowledge about
the Design Process

if-then rules

Object Oriented Design Tool
Fig. 1 The Configuration of the Design Tool
The interface for accessing the “design
obgect” and the “designer” is very important
for a human designer. The user interface for
the tool is described in 4.3.

4.2 Principal Objects
4.2.1 Design Object
(1) Configuration
A class “Design Object” was defined to

NI | -El ectronic Library Service

The Society of Naval Architects of Japan

170 Takao SekimoTo, Ken Summizu, Takeo Kovama
represent knowledge about the design object. A / setvalue to 5
“design object” contains a set of design para-
i) Design Object "Box”
menters and a set of constraints as illustrated / bj \

SN
Design (Constraints N
Parameters

parameters are defined by the constraints. p Height x Width x Depth = 10
) i ; Height A Te - status =to be used
Each of the design parameters has pointers to valua“slj “3@ not used
- . . 41!
its related consitraints and each of the cos- B " Height / Width = 3

. . . . tus = vi
traints has poninters to its related design status - vielated
parameters. A set object is a king of list with St T
variable size, and elements can be added and @ (5“‘1‘5“_3”@“5“)

in Fig. 2. The relations among the design

removed freely. The characteristics of the \\\ soeve _ j
element objects of the two sets are further
described in (2) and (3). Fig. 3 Setiing the Value of a Design Parameter

~ (3) Constraints
N\

'//Design Object “Box” A “constraint” contains the body of the

'/D- T, constraint, its status, a list of pointers to the
egxgn . . ‘ . ‘ . L

o ainis celated design par ors an esig vice.

rameters Constraints f,lf.tcd 716_%10 1)ara.metu%‘a.nd des&og qdvmcr

- , Pqualities and inequalities consisting ol

He'&l - { Height x Width x Depth = 10

value = nj \z‘:\y siatus = not usad J addition, subtraction, multiplication and divi-

R jon were mainly considered as constraints in

:\“i Heiqhﬁf\/\fzmwff 4

_ stalus = fo be used / this research. More general functions in the

form of y=f(x1, x2b .., xn) can also be
handled with the developed tool though they
cannot be pror\agdteo multi—directionaly as

-y c** W

5

\ wnoce Y
. described later.

{ vaciprocal | . .) L.

AN pointers / A constraint expression, input as a string by
. 7

a user, is parsed and decomposed into a set of
Fig. 2 An Example of a Design Object primitive constraint objects; these consitute
the body of the constraint. (Fig. 4) At the same
(2) Design Parameters time, a list of pointers to related parameters is

A “design parameter” has a value and a list generated, and a pointer to the constraint itself
of pointers to related constraints. A variety of is added to the constraint list of each of its
data, such as number, a string, a truth value or constituent parameters, to maintain the sys-
structured data consisting of those primitive tem’s consistency. New design parameters are
design parameters, should be handled as the generated if the design parameters referred to
value of a design parameter, though principly by the constraint do not exist yet.

numeric values were considered in the pro- FEach constraint has its self—evaluation

totype system developed in this research. method which is invoked by a message from a
Any change of a value is made only by

sending an appropriate message to the design ‘A+B=CxD-E"

parameter object, and the method invoked by
the message not only changes the value but also

<

sends re—evaludtion messages to its related /L=R\

constraints using the list of pointers, which L=A+B A=R1-E
guarantees the consistency of the status of the N
constraints with the values of the design Ri=CxD
parameters. (Fig. 3) Fig. 4 Decomposition of a Constraint

NI | -El ectronic Library Service

The Soci ety of Naval

Architects of Japan

related design parameter as described in (2).

An Object—Oriented Tool for the Preliminary Design of Ships 171
c:=a—Dh
end if

The result of an evaluation is assigned to the
status of the constraint. The status of a
constraint is one of the four :

“statisfied” —— The constraint is satis-
fied.

“violated” —— The constraint is
violated.

“to be used” —— The constraint cannot

be evaluated because of an un-
assigned design parameter, but can
determine the value of the unassigned
design parameter to satisfy the con-
straint.

“not used” —— The constraint cannot
be evaluated or propagated because
of too many unassigned design para-
meters.

An example of the status of a constraint is
shown in Table 1.

Table 1 Status of a Constraint

Once those primitive methods are prepared, a
complicated formula, being decomposed into a
set of primitive constraints, can propagate to
any of the related parameters depending on
which is unassigned. A sequence of message
passing which carries out constraint propaga-
tion is illustrated in Fig. 5.

propagate
ﬂ)esign Object "Box” \
Design (" Constraints \l)
Parameters
Helght x Width x Depth = 10
" Height status = satisfied
@D sa;v?lue g to bs used

Width
valug = 2
S—

Depth

elght ! Width = 6
/ status = violated
re-
Pt 4] . Depth > 3
valus ~.1<b 7] evaluation status = violated
L M?f/ Y, _to ba used

Values of Design Parameters Status of the Constraint
A B C D E “A+B=CxD-E"
nil nil nil nil nil not used
i 2 4 nil nil not used
1 2 4 5 nil 10 be used
nil 2 4 5 6 to be used
i 2 4 5 17 satisfied
1 2 4 5 8 violated

In order to deal with loose constraints, a user
can define the “margin” for each constraint
specifying the difference to be allowed between
the left hand side and the right hand side.

The propagation of “to be used” constraints
is multi—directional ; e.g. a constraint “Area=
Length® Width” can determine the Area from
the Length and the Width, and can also
determine the Length from the Area and the
Width. In order to realize the function, each of
the primitive constraints, e.g. adder, has a
propagation method as in the example below.

propagate
if status="to be used”
if a=nil
a:=b-+c¢
else if b=nil
b:=a—c¢

else if ¢=nil

\ eenes _W) _ | weses

=/

Fig. 5 Constraint Propagation

A user can specify one of the related design
parameters as “design advice” for the con-
straint. When a constraint is violated during
the propagation process, the design parameter
specified by the design advice is recalculated
automatically to clear the violation. This func-
tion is helpful in bandling a group of coupled
constraints in which the proper recalculation
order in case of violations is known.

4.2.2 Designer

A class “Designer” was defined to represent
knowledge about the design process. The object
contains a knowledge base consisting of if—
then rules as an instance variable and infer-
ence mechanisms as methods. The rules repre-
sent heuristic knowledge of human designers in
the form of “If <{the status of design object),
then {design/redesign action)”. Modularity of
the rules makes it easy to generate, modify and
maintain the knowledge base?. HUMBLE!® a
rule based system tool in smalltalk—80, was
used in the designer object. HUMBLE performs
backward reasoning and can deal with uncer-

NI | -El ectronic Library Service

The Soci ety of Naval

Architects of Japan

172 Takao SEKIMOTO,

ainty using so called certainty factus

A designer chject is expected to replace the
role of a human designer by using if—then ruies
in the knowledge base. It controls the design
process of generating and modifying the design
artifact model represented by the objects de-
seribed in 4.2.1. It might be considered to be
possible to simulate the cooperative design
process of a group of designers in the real
world by instantiating several designer objects
with different knowledge bases.
4.3 User Interface

User interface is very important for a design
tool because design is essentially an interactive
activity between a human designer and a
design artifact model. A designer decides what
to do by inspecting the temporary design
artifact model, and the resuit of his action on
the model is fed back to him to stimulate his
thinking about the next action. In this research,
smalltalk—80 provided a good environment to
develop a user friendly system

in window and menu management system.
with which

Fig. 6 shows a “design browser”

“Tategory

with its built—

Des!gn Object Collectlon

Ken Snmmizu, Takeo Koyvama

a user can generate, inspect and modify design
objects. The three panes is the upper part of the
window display the names and categories of the
design objects. The lower left panes display the
names and values of the design parameters.
Bach of the other es displays the
constraints in the corresponding status
(satisfied, violated, not—used and to—be—used,
clockwise from the top left). The figure shows
the situation just after generating a design
object. It does not have any design parameters
or constraints vet.

Fach pane of the windows has its own
pop—up, menu, such as add, delete, inspect, ete.
In Fig. 6, for example, a user can select an “add
constraint” menu in any of the four constraint
panes. Fig. 7 shows the window after adding a
constraint by typing “I L*B*D=V" for the
prompt of the “add constraint” menu. It can be
seen that four design parameters and one
constraint were generated. The constraiat’s
status is “not used” because all of the four
related design parameters have no values yet.
A user can give values to the design para-
meters using the “set value” menu in the design

four par

Daslgn Object

et e s e e 0 i e e e o e e

T

To be used

Not used

Fig. 6 Design Browser

NI | -El ectronic Library Service

The Soci ety of Naval

Architects of Japan

An Object—Oriented Tool for the Preliminary Design of Ships 173

Category

[Design Objact Collection

Design Objact

Temporal Var

B =nll

D «nit

L= nil

V e nll

_____________ To be used Not used

.............. LHE* D)=V —~- (USER)
Fig. 7 Adding a New Constraint
parameter pane. Constraints move to the object to perform the design when “HUMBLE”

appropriate pane, e.g. the to—be—used pane in
the bottom left, when their status are changed
as a result of a change of a design parameter
value. The four pane system of constraints
visually helps a designer to recognize the
present status of the design object. A user can
also control the propagation and satisfaction of
constraints. By manipulating the design para-
meters and the constraints as described above,
a user can represent his knowledge about the
design object interactively.

The tool can be used without any designer
objects. In fact, in the first use of the tool in a
given field, it is appropriate to do the design
without designer objects ; a human designer is
better. During the design process conducted by
a human designer, some patterns of design
actions (e.g. the way a violated constraint is
satisfied) may be found. Then, this knowledge
about the design process can be written down
as if—then rules using the rule editor shown in
Fig. 8. Knowledge base can gradually grow up
in this way. A designer object with the con-
structed knowledge base accesses the design

is selected in the pop up menu in the design
browser.

5. Application

The design tool developed in this research
was appled to the preliminary design of ships.
First, the design parajeters and constraints in
ship design were recognized and represented
using the tool. Second, knowledge about the
design process was extracted as if—then rules
while observing the design process. After those
two steps, a similar design with different
requirements was performed automatically by
the tool.

5.1 Design Objects

During the definition of the design para-
meters and the constraints, it was found that
there were too many design parameters and
constraints in preliminary ship design to hand-
le at a time. Several design objects were defined
to deal with a ship by meaningfully decoposing
it. The major four objects were principal
particulars, powering, midship sectiond and

NI | -El ectronic Library Service

The Soci ety of Naval

Architects of Japan

174 Takao SEKIMOTO,

nc pal Edltor .

Wmammmmm mwmﬂm constB

constDisp

de pthU
hasUCR

Ken Sumizu,

mmmm&m AR

Takeo Kovyama

Ll T

satisfyld

then: [whatToDo is: "satisfylB’].
elsar [whatTolo s ‘end’]

“comment - this should enplain the rule’s premise
ge that the explanation facllity makes sense”

if: {{constDisp = "violated") | {constlB = ‘viclated"))

and conclusions,

Fig. 8
compartments.

The principal particulars contained the
cipal dimensions and the characteristic atiri-
butes of a ship (e.g. L: length, B: breadth, d:
draft, Cb: block coefficient) as i
parameters and the relations among them
“L'FB"‘d*Cl *1.025=displacement”, “dis-
placement=deadweight+lightweight”) as the
constraints. Loose “statistic constraints” were
also defined, such as an empirical estimation
formula of the hull steel weight taking L, B and
DD as parameters. The powering contained the
estimation formulae of the resistance coeffi-
cients, the formulae to calculate required horse
power, etc. The midship section represent the
forms and the arrangement of the shell, the
decks and the longitudinal bulkheads in the
transverse section of the ship. The compart-
ments contained the positions of the bulkheads,
formula to calculate the longitudinal moment of
the cargo in a compartment considering the
weight and the center of gravity, the inequali-
ties defining the range of the trim allowed by
legal regulations, etc. A function to maintain
the consistency among the duplicated data in

four objects were implemented in the

5.2 Design Process

In the beginning of the design, most of the
design parameters had no values and most of
the constraints had not—used status. A human
designer assigned values to some of the design
parameters at this point. Then, some of the
constraints changed their status to “to be used”.
In this phase, the human designer assigned
values to other design parameters by controll-
ing the propagations of the to—be—used con-
straints as well as by setting values explicitly
Knowledge about the constraint propagation
control, such as which constraint to choose
when there are many to—be—used constraints,
was captured and represented as if—then rules
Though the propagated constraints not satis-
fied, some of the constraints became violated
while the number of assigned design para-
meters increased. Fig. 9 exemplifies the situa-
tion. In this case, the displacement calculated
from the hull form is conflicting with the sum of
the estimated lightweight and the required

NI | -El ectronic Library Service

The Society of Naval Architects of Japan

An Object—Oriented Tool for the Preliminary Design of Ships

175

elgn Browser |
Category

Deslg Object Collection

Denlgn Ject

............ --) . Arrangs2

i R b

____________ ShipExp1 PrincipalBulk
............ PrisCurve

Giobal Var Satisfied Viciated .. Auto back tracking

day~(SeaM/vs)/24 «-- (ST}
Iwe{whtwf)+wm «-- (ST)

whD«Read(Wh L) ~-- (ST}
LBD«L*(B+D) ~-~ (ST)

Temporal Var

draft = 1155
dw = 45000
guaranteeC = ni!
L = 180.0

LB « 860

LBal/B ~-= (8T)
whewhD*LBD -~ (8§T)
digp=dw/dispD —-- (ST)

dispD+Rsad(Disp dw) —~ (§T)

(((L*B)*draft)*Cb)*1.025=disp --- (§T)

cme1-((8*0.0286)/draft) --- (ST}

LBD - 8442.41 To be used

Not ugsed

e = 9119.64
ps = 14000

8 =« 810596
Sealt = 15

ve « 15.4

vsd « 365226
wf « 1131.91
wh « §774,73
whD = 0.802485
wm o« 1213

ps«{{§*vs3)*ct}*0.1422 ~-- (5T)
consumptionC~({guarentesC*ps)*0.0000

Fig. 9 An Example of Constraint Violations

deadweight. The human designer satisfied the
violated constraint by resetting the displace-
ment. Some of the simple patterns to reset the
design parameters were stored as “design
advice” for the constraints, and the other
patterns were represented as if—then rules.

In the application example, several designer
objects, such as principal particulars designer
and a compartments designer, were instanti-
ated reflecting the fact that several design
objects were deflned to represent a ship.

For example, the compartments designer had
a rule shown below ;

If (the trim requirement is violated),
then (change the position of the collision
bulkhead).

Fig. 10 shows an example of the design by a
designer object. The upper window is the
monitoring window of the designer object
which is deciding what to do for the design
object. The status of the design object. The
status of the design object is shown in the
design browser window below in the figure.

The design finished when all of the design
parameters had a value and none of the

constraints stayed on the violated status list.
After several runs of the design, during which
if—then rules were captured, it became possible
to pertorm the whole process of design with the
designer objects. At this stage, the human
designer only had to input design specifications
such as required deadweight or service speed.

6. Conclusions

A research project to develop a sophisticated
computer tool for the preliminary design of
ships has been carried out.

It was recognized that there are two kinds of
design knowledge, ie. knowledge about the
design object and knowledge about the design
process. A general purpose design tool to deal
with the both kinds of design knowledge was
developed with objebct oriented programming.
The features of the design tool are as follows.

(1) A “design object” and “designer”, cor-

responding to knowledge about the design

object and knowledge about the design pro-
cess respectively, were defined as the major
objects in the tool. The design proceeds
through message passing between the two

NI | -El ectronic Library Service

The Society of Naval Architects of Japan

176 Takao Serknoro, Ken Sunuzu, Takeo Kovama
;-l%mngmm@nt interactio
i »¢ parametere / rules ©° *e conclualons *°
1> whatTolo valusrO3W0 [Arrange=-1'] » true (1.0) .rendFOd
. 8atFO3 valueFOIMO [Arrange—1°] » trus (1.0} ..readFO3M
4> walueFO3WD rlghtAX34 ["arrange-17] = false (1.0) . JoadREK34
| . roadFO8 agualFFad | ‘;Pq&w?“g = tre (1.0} .readiEqualFFd
| < vaiue FO3W0 ()qamlrF'a range-1"7 = true (1. K}} méd&quan 73
3 walueFDIMO whatTolo PArrange-11 = *end” (1.0} ..eatAEA34
o resdFO3M v%lmk@swu UArrange-i°] = true (1.0 rendFO3
1 < valueFO3MO valueFO3M0 {‘ A(mngﬂww‘”j = {rue ﬁ 0} ..r@»»d FO3M
e *¢ to Interaction ** o =2 o flle ®
i w parameters | rules I conclusions
=FINAL-CONCLUSION®
whatTole ["Arrange~17] » Jend’ {1.0)
G lam creating an Arrange ["Arranga-17]
“SEINAL-CONCLUSION"
whatToDo [PArrange-17] » Jend® (1.0}
| am creating an Arrange ['Arrange-17]
<EINAL-CONCLUSION=
" whatTole PArrange-1"]
| | am croating an Arrangs
4 fold4v ALl
i dreddodw
| Termporal Yar Yrconsti | e
e thés‘ﬁ*'({O e Cé)x’?) t@ "&'1 e
{apthl = 22585.5 taSM~{(A8HR7Y 2) 185V -
aptW = 251.858
child = ~A38444.0 Aute Firing Mot ua@d
chiW = 5999 e
ch2M » =329977.0 e
ch2w = 8200
ch3M » ~200243,
| ch3W - 5290
1 chdBM = -70205.3
Fig. 10 Design by a Designer Object
objects. (4) A designer object, which has a know-
ledge base consisting of if—then rules repre-
(2) A design object consists of set of design senting a human designer’s know—how, can

control the design process.
(5) User interface with multiple windows

parameters and a set of constraints, which
can be added, modified and removed freely

during the design. Any change of a design
parameter is posted to its related constraints
by message passing to re—evaluate them :

and pop up menus helps a human designer to
carry out the design, which is an interactive
activity by nature.

The tool was applied to the opreliminary

thus, the consistencies between the design
parameters and the constraints are guaran-
teed.

(3) Each constraint is represented as for-
mula, which is easy to handle for a human
designer, and has functions not only to
evaluate itself but also to propagate itself to
determine the value of its related design
parameters multi—derectionally.

design of ships. First, the design parameters
and the constraints in ship design were recog-
nized and represented using the tool. Second,
knowledge about the design process was ex-
tracted as if—then rules while observing the
design process. The freedom to add/modify/
remove the elements, the constraints’ functions
of automatic re—evaluation and multi—direc-

NI | -El ectronic Library Service

The Society of Naval Architects of Japan

An Object—Oriented Tool for the Preliminary Design of Ships 177

tional propagation, and the friendly user inter-
face were very helpful for a human designer.
After those two steps, a similar design with
different requirements was performed auto-
matically by the tool.

Some points were recognized as the topics
for further research. It was found that a single
design object became difficult to deal with
when the number of design parameters and
constraints increased ; it is desirable to allow a
design object to be constructed as a part—
whole hierarchy. In order to represent the
forms and the spatial arrangements of design
objects, not only arithmetic constraints but also
geometric constraints should be implemented in
the tool.

Acknowledgement
The authors gratefully acknowledge the sup-
port of the Shipbuilding Research Association
of Japan and the Systems Technologies Commit-
tee of the Society of Naval Architects of Japan.

Reference
1) Weiss, S. M., Kulikowski, C. A., A Practic-
al Guide to Designing Expert Systems,
Rowman & Allanheld, 1984.
2) Shimizu, K., “An Expert System for Subdi-
vision Design of Tanker”, the Journal of
the Society of Naval Architects of Japan,
vol. 164, 1987.
Kaneko, H., “An expert system for the
design of merchant ships”, Master’s
Thesis, The University of Tokyo, 1986.

(]
~

4) Hayes—Roth, F., Waterman, D. A., Lenat,
D. B. (ed.), Building Expert Systems,
Addison—Wesley, 1983.

5) “Mechanical design systems leap to Intelli-
gent CAD”, special issue on Nikkei Al
Nikkei MeGraw—Hill, 1987.

6) Kasahara, T., “Computerization and Syste-
mization in Basic Planning”, Systems
Technologies in Shipbuilding, the systems
technologies committee of the Society of
Naval Architects of Japan, 1984.

7) Suzuki, N., Object Orient, Kyoritsu shup-
pan, 1987.

8) Umemura, K., Introduction to Smalltalk—
80, Science—sha, 1987.

9) MacCaltlum, K. J., “Understanding Rela-
tionships in Marine Systems Design”,
Proc. of Ifirst IMSDC, 1982.

10) Akagi, S, Fujita, K., “Building an Expert
System for the Basic Design of Ships”,
Kansai Zousen Kyoukai—shi, vol. 2086,
1987.

11) Borning, A., “The Programming Language
Aspects of ThingLab, a Constraint—
Oriented Simulation Laboratory”, ACM
Trans. on Programming Language and
Systems, Vol. 3, No. 4, 1981.

12) Sussman, G. |, Steel, G. L. Jr. “CON-
STRAINTS—A Languate for Expressing
Almost—Hierarchical Descriptions”,
Artificial Inteiligence, Vol. 14, 1980.

13) HUMBLE User's Guide, Fuji Xerox, 1987.

NI | -El ectronic Library Service

