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Summary

A globally conservative NS @g for flow past a ship hull has been developed. It uses a 3rd-order
accurate upwind differencing of the preprocessing (MUSCL) type for inviscid terms, in which the
non-uniformity of grid spacing is taken into account.

Using the solver, the drag of a flat plate at zero incidence was computed in the Reynolds number
range R, = 4.0 x 10° ~ 4.0 x 107. The dependence of the drag on the degree of clustering of
grid points was checked. The computed drag agreed with the Schoenherr value within 4 %. An

appropriate criterion for the minimum

0.005
scheme seems to be Apiy = —or

R,
Then the drag of the Series 60 (Cp=0.6)

grid spacing Amin adjacent to solid wall with this particular

ship hull with the double model flow assumption was

computed in the same Reynolds number range using grids with various Ay, and various degree of
clustering toward bow and stern. Although the computed drag values showed some scattering due
to the difference in grids, the results with the smallest Amin agreed well with the measured values

throughout the Reynolds number range.

i. Introduction

Accurate estimation of ship’s drag (resistance) is
very important from the propulsive performance point
of view. Since ship’s drag is generated through viscous
and inviscid interactions, neither the powerful poten-
tial theory nor the boundary-layer theory can estimate
the drag accurately by itself. NS solvers, i.e. CFD,
which contain the above two theories as subsets, seem
to be the only means that can achieve this goal.

CFD (Computational Fluid Dynamics) has been
making remarkable progress, and its field of applica-
tion is quite wide already. Since CFD can provide de-
tailed information of flow fields, it is particularly use-
ful in obtaining qualitative informations such as flow
structures. However, using CFD, to obtain macro-
scopic or integrated information such as lift or drag
acting on a body in flow is difficult. Especially, accu-
rate computation of the drag of a streamlined body
like a ship hull is difficult, since the pressure drag
component comes out as a small difference between
the large pressure values at bow and stern.

One of the major sources of the difficulty is the
ambiguity in the way the drag is computed. A
computed drag value may depend on the integra-
tion path it takes, or on the way the surface shear
stress is computed. In order to remove this ambi-
guity, the author proposed an NS solver with global
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conservation:23:4) The word "global conservation”
means that the conservation property is satisfied ev-
erywhere in the computed flow domain, all the way
down to boundaries. The global conservation prop-
erty automatically assures that computed macroscopic
forces such as lift and drag do not depend on the
integration path, i.e., the computed force values are
unique. In the globally conservative scheme, there is
no ambiguity in the way the surface stress terms are
estimated, since it is made fully consistent with the
solver itself.

Using the solver, the drag of a two-dimensional cir-
cular cylinder was computed at the Reynolds number
R.=40, and the computed drag agreed well with other
well-established computed values!). The scheme was
extended to three dimensions, and the flow past a Se-
ries 60 (Cp=0.60) ship hull was computed®. In the
Reynolds number range R, = 3.0 x 10% ~ 4.0 x 108,
the computed drag agreed well with the measured val-
ues . However, in computing drag of the same ship in
the range R, = 4.0 x 10% ~ 4.0 x 107, the computed
drag tended to deviate systematically toward higher
values from the measurements? at higher Reynolds
number range.

The present work shows an effort to clarify the cause
of the deviation and to compute the drag more accu-
rately. The drag of the same ship is computed using
grids with various degree of clustering. The drag of a
flat plate is also computed, since the flow around it has
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much similarity with that of the Series 60 {Cg=0.60)
hull, which is very fine.

In the present work, the scheme is modified such
that the third-order accuracy in computing the invis-
cid terms is maintained under non-uniform grid spac-
ing, while the previous scheme had third-order ac-
con-

curacy only if the grid spacing is uaiform.
trast t0 the postprocessing approach adopted in the
previous works, the present scheme adopts the pre-
processing (MUSCL) approach® in constructing the
shird-order accurate upwind differencing, because the
non-uniformity of the grid spacing is much inore easily
taken into account there.

In the computation, the iree
she plane of symmeiry, Le. th

Dy

surface 18 tresbed
> double model flow

2. Formulad

Yiscretization of Govern i ‘ 5

The nondimensionalized MNawvie kes eguations,

i.e. the conservation of %-, v-, z-maoraentum, and mass,
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In the equation for mass conservation, i.e. the

fourth component of eqgs.(1) and (2), pseudo-
compressibility is introduced with a positive constant
8. vy is the kinematic eddy viscosity.

As shown in Fig. 1, the cell-centered layout is
adopted. Flow variable nodes are placed ai the cen-
ter of grid cells, and the grid cells are used as control
volumes. Fig. 1(a) shows the 2D case, and (b) shows
the 3D case, i.e., the present case.

The finite volume integration is used for discretiza-
tion. In order to derive the discretized equations for

the flow variables at (i,j,k), the governing equations
are integrated at the grid cell including the point
{i,3.k).
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The first term of the above equation is approximated

¢ the volume of $he cell times the %:i value at (1,3,%),
the cell center. That is

o

{ dg . .. Og .

j LAY Ve 5
Fi ) RSN N R

8% DBtk ®)

where the volume is computed as the sum of six
jetrahedra®.
In order to discretize the cother

integral theorem is used, i.e.,

/ 7 ) gradédV = |
JoJ Jy

where n* = (nj,n, n%) is a unit outward normal vec-
tor. The above theorem is applied to eq.{4), and the
surface integration of a hexahedron is divided into six
guadrilateral surfaces as
i f f8F T
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control volume

(b) 3D case

Fig. 1 Cell-centered layout and control volume
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where (i,j,k) are the numberings in ¢-, -, and (-
directions. The negative signs in the last equality
come from the definition of the unit normal vector n
, which is always in the posmwe é-, n, or (-direction.
(Snw)'_’.Js .40 the area of the s + 1 surface projected in
the x-axis direction, is computed using the area for-
mula for a qua,drilateral shown below

(Sma)iyy 1p = Kyz~yaxzamz1)~(zzwz4XysMylﬂ
(8)
where
{ Pi= P»‘+§-,j~§,k—§, Py = Pi+%,j+»§«,k-§?
Py = Pi+%,j+%,k+%, Py = Pg'_{_%_’j___%_’k_'"%_.

Note that, using the above formula, the projected area
of a closed body surface made up of quadrilaterals,
exactly sums to zero. This property, named here as
"the conservation of projected areas”, automatically
assures that the integrated pressure drag corponent
of a closed body is exactly zerc if the pressure is con-
stant everywhere.

The other terms in eq.(4) are treated similarly, and
the discretized governing equation shown below is de-
rived

dq L A oA A A
Vijp };{M’k+(F“*‘Rf)i+;~*‘(F+Fv)sm;~+((f+Gv)j+§

~(C+G)joy + (HAH Yy —(H+H, )y =0, (9)
where, for example, ( )M% means ( )s’+%»,j,k and
F = (81 F 4 (Sny )t G + (Sn, J H
G = (Sn.)1F + (Sny "G + (Sn, M H
= (Sna)F + (514 )G + (Sn, ) H,
and similarly with F,, G,, and H,.

(10)

2.2 Inviscid terms

The values of inviscid terms at each cell face is com-
puted using the third-order accurate upwind differ-
encing constructed within the flux-difference splitting
framework. The third-order accuracy is attained in
the preprocessing (MUSCL) manuner”, in which the
nonuniformity of grid spacings is taken into account.
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Fig. 2 qf’+% and qﬁ_% for upwind differencing

The reason that the preprocessing approach has
been taken here, in contrast to the postprocessing
approach taken in the previous reports, is that high-
order accuracy under the nonuniform grid spacing is
much more easily attained using the preprocessing ap-
proach. ‘

As a building block, » flux difference at the cell face
i+ 5 is defined as a function of ¢ at the left and right
side of the cell face, and the metric (i.e. projected
area) terms.
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The flux difference is divided into positive and nega-
tive components depending on the signs of the eigen-
values as

6F = §F* 4 5~
Then the inviscid flux st 1 + %
Fiay = Plalyy, 508 5) + 57,

o (14)
F( Ly, 8n, 1) — 6kt
2

;—._

§F* = A%§q. (13)

is defined as

where

w[a

Fi_y
2
Substituting i+1 into i in the second half of the above
equation, and equating it with the first half produces
eq.(18), which means that the present scheme is con-
servative,

The ¢© and ¢% are determined in an upwind differ-
encing manner. Taking the non-uniform spacing into
account as shown in Fig. 2

i q,+l. g4 +q) 6(1‘.,__ +®2 5q3+1

(15)
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Sawada® gives a slightly different definition of qiL_}_;‘ .
2

The differencing shown in eq.(15) will be called the up-
wind differencing NU (the letter for "non-uniform”).
The diffencing in which the non-uniform spacing is not
taken into account will be called U.

Tt is straightforward to extend this formula to the
3D case, in which the grid spacing is computed by tak-
ing the average of the four corner points at each cell
face. Fig. 3 shows an example of computed resulis.
Fig. 3(a) shows a grid around a ship hull, in which the
grid points k=5 (k is the number in {-direction, with
k=1 being at solid wall) is relocated by linear inter-
polation toward the k=4 points with the new distance
between k=4 and k=5 being only 1% of the original.
The arrows in the figure shows its location. Fig. 3(b)
shows the pressure contours obtained using the up-
wind differencing U. Fig. 3(c) shows a similar result
using the upwind differencing NU. Comparing the two
figures, it is evident that the differencing NU produces
a result better than the differencing U when the grid
spacing is not uniform.

Tt should be noted that the differencing NU does not
remedy the adverse effect of grid singularities such as
kinks and skewness.

-

T T f
777

21777

]
] —

R R

]

/T
Fig. 3(a) Grid with sudden change in (-spacing at
k=5.

Fig. 3(b) Pressure contours by the upwind differenc-
ing U. R, =10% ACp = 0.02.

Fig. 3(¢) Pressure contours by the upwind differencing
NU. R, =10% ACp =0.02.

On the solid wall surface, the flux value is computed
directly by substituting u=v=w=0 and pressure p be-
ing made equal to that at the adjacent cell center, i.e.,
zero extrapolation by half the grid cell length.

2.3 Viscous terms

The Gauss integral theorem eq.(6) is used in de-
termining the first derivatives of velocity components.
This results in the formally 2nd-order accuracy. At
the solid wall (k=3), using the two integration vol-
umes Vy and V7 shown in Fig. 4, uz5=3y4 and usp=3/2
are determined.

f udV = ug3sy ji[ ugdV — ugzagg
Vi Vrr

Then the u, at the solid wall is determined in the
{following two ways.
1st-order accuracy (zero extrapolation)

Uy L

= Ug g (17)

The scheme which uses this equation will be called V1,
i.e. the viscous terms with 1st-order accuracy.
2nd-order accuracy (linear extrapolation)

Uz 3 (18)
This will be called V2.

2.4 Eddy viscosity v

The Baldwin-Lomax zero equation turbulence
model is used. In most of the computation, smooth-
ing is applied by averaging with the four neighboring
points on the same k plane. The smoothing seems to
increase the numerical stability. The cases in which
the smoothing is applied will be called SM, and the
cases without it will be called NSM.

2.5 Time integration

The Padé time diffencing form is used for time in-
tegration with 6=1.0, i.e. the Euler implicit. In the
inviscid terms of the unsteady part, the 1st-order up-
wind differencing is used, by setting ®;=90,=0. This
does not affect the steady-state part, that is, the con-
verged inviscid part has 3rd-order accuracy. The IAF
procedure is adopted.

12 N1

Solid wall

Fig. 4 Volume of Gauss integration for viscous terms
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Table 1 Boundary conditions

Table 3 Computed drag of a flat plate. Part 2...com-
putation parameters. R, = 4.0 x 106, Other param-

Boundary %07 P eters are common with Table 2.
Upstream u=1, v=w=0 | zero extr.
Downstream zero extr. p=0 3rid | ra | Inviscid term | Viscous term | Cp x 10°
Left & Right | symmetry | symmetry B 103 NU V2 0.3331
Top u=1, v=w=0 p=0 ” ” U ” 0.3331
Bottom u=v=w=0 | zero extr. ” ” NU V1 0.3330
Bs 0.1 ” V2 0.3330
Table 2 Computed drag of a flat plate. Part
1..minimum spacings. Parameters: IM=81, KM=41, 2.7x107 prrerrre
Irp=16, Iap=60, Royter=1.0, xu])::“O'57 Xdown=2.0, 265
rq=0.3, §=1.0, NU, V2, SM, At=0.1. Tr
R. IX10° X 10° 1% 107 S 25
Grid | Amin Cr x 10° (5 x 10%) aaf
A | 20x10°° | 5.182 (1.26) | 3.379 (4.0) | 2.428 (12.6)
B 10x 107° | 5.174 (0.63) | 3.331 (2.0) | 2.685 (6.32) 23 Bt bbb
C [ 5x10-° [ 5.174(0.32) | 3.325 (L0) | 2.528 (3.16) 00 0z 04 06 0B 10
D | 25x10°° — 3.307 (0.5) | 2.391 (1.58) Al x 10
E |125x10°° — 3.311 (0.25) | 2.346 (0.79) D : o 2
1g. t . -
Schoenherr 5394 3423 2.365 Fig. 5 Total drag Cr of flat plate vs. Ay
R, == 4.0 x 10°.

2.6 Boundary conditions

The boundary conditions are summarized in Ta-
ble 1. At the upstream boundary, zero extrapola-
tion is used for pressure. In case the condition p=0 is
used, a slight pressure jump occurred at the bound-
ary. Therefore the zero extrapolation condition has
been adopted.

3. Flat plate with a zero attack angle

The grids for flat plate computation were generated
analytically with H-grid topology. They are similar to
those used in ref.9). Table 2 shows the parameters for
the grid generation. IM is the number of grid points in
the streamwise direction. Igpp is the point number at
the leading edge, Iap is that at the trailing edge. KM
is the number of grid points in z-direction, i.e. the
normal-to-wall direction. Xyup and Xgown are the x-
coordinates of the upstream and downstream bound-
aries, while those of the leading and trailing edges be-
ing 0.0 and 1.0, respectively. Apin is the minimum
grid spacing adjacent to the solid wall. Router is the
distance in the z-direction between the plate and the
top boundary. In ship flows this parameter denotes
the outer radius of the top boundary. rq is the clus-
tering ratio in the x(i)-direction. It is defined as the
ratio of the x spacing (Ax) at FP or AP and the av-
erage spacing between FP and AP. § is the parameter
defined using the equation

&
Agin = W,
€
a criterion frequently used to determine the min-

imum grid spacing with 6=0.05 in the previous
computations?:3):4):9)

The table also shows the computed Cr (total drag)
values at various Reynolds numbers with various grids.
In this case there is no pressure drag component Cpres,
and therefore Cr contains only the frictional compo-
nent Cie. The grid expansion ratio in the z-direction
is approximately 1.3. The computations were contin-
uwed until the O value integrated on the plate agrees
with that integrated at outer boundaries agree with
sufficient accuracy, say up to four significant figures.
The Cp values tend to converge as Apin decreases.
The Cp values at B, = 4.0 x 107 are plotted with
A2, in the horizontal axis in Fig. 5. The values for
the grids C, D, and E converge linearly, which proves
that the viscous term has 2nd-order accuracy. In the
range of the Reynolds number listed, it seems that §
should be about 0.005 in the above equation,i.e.,

0.005

VR’

ten times smaller than that in previous computations,
in order to compute the drag within 1% convergence
(with respect to grid resolution) error. The converged
Crp values are slightly sraaller than the Schoenherr
values.

Table 3 shows the cases R, = 4.0 x 108 with various
accuracy of the differencings. The NU and U differnc-
ings were used in the inviscid terms, and V1 and V2
were used in the viscous terms. Further, the effect of
the change in the clustering ratio r was tested, since
the wall shear stress changes very rapidly at both the
edges, as shown in ref. 2) and 9). The V1 and V2
produced the same Cp value, which seem to suggest
that the grid points are well within the viscous sub-
layer, where the velocity has linear distribution. The
fact that NU and U produced the same Cr value is

Amin =
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supported by the fact that there is only frictional (vis- 4. Series 60 (Cp=0.60} Hull
cous) component in this drag.

Computations were made for the Series &0
{Cp=0.60) hull in the Reynolds number range B, =
4.0 x 10% ~ 4.0 x 107,

The grid was generated using the implicit geomet-
vical method®. Fig. 6(a),(b) show the grid near bow
and stern. The grid points are clustered toward how
and gtern. Table 4 shows the computaiion parameters.
Initially the flow is uniform everywhere. Computa
tions were made using A?=0.01 in most cases except
the first 40 or 50 steps, in which A¢ was made much
smaller. With A1=0.01 the nominal Conrant aumber
becomes 4,000 in the smallest Ay, grid. Computa-
tions were carried out up to the nondimensional fime
of approximately ten. Then the drag integrated at
the outer boundary agre: th that at the ship
hull, although no st convergence wag
taken. In order to gl he >t of stude {turbu-
lence stimulators) used in experiments, the flow was
assumed laminar up to the point 5% from the bow
{x=0.05), and thereafter the eddy viscosity was added.

Fig. 7shows the wake contours at AP (x=1.0), com-
pared with the measurementsVl. Althoug the overall

b
et B

== _ZZocsenpingis ag is ™ 4 ted 1
= /6 //g./@% g==‘ “ E agreement is reasonable, the computed result fails 4o
42/ //%éﬁf:ﬁ: "“‘“ U predict the bulge of the boundary laver at the center.
— s \, ‘“‘ But this bulge is partly due to the propeller hub on
, \ “ sull the model ship, not present in the computed hull.

Fig. 8 shows the computed pressure contours at
R, = 4.0 % 10° using the grid B (case 6). At the
bow (Fig. 8(a)), the pressure suddenly rises, and
this causes slight oscillation in the streamwise direc-
tion. At the stern (Fig. 8(b)), there is pressure recov-
ery. The highest pressure point in the stern is located
slightly aft of the stern end.

The table 4 also shows the computed total drag coef-
ficient C'p as a function of the minimum spacing Apin.
Clric is the frictional component, and Clores is the pres-
sure component. The same data is plotted in Fig. 10.
They show clearly that C7 decreases as the Reynolds
number increases. At constant Reynolds number, in

Computed
______ Mieasured

Pig. 7 Wake contours at AP {x==1.0) section. contrast to the flat plate result, the dependency of Cy

<

Case 6 (R, = 4 x 108, Grid B) on the minimum grid spacing A, is not very clear,

4
[ -0.02

Fig. 8 Pressure contours. Case 6 (R, = 4.0 x 105,
Grid B) (a) Bow Fig. 8(b) Stern
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although at R, = 4.0 x 107 Oy tends to decrease as
Ooin decreases. This phenomenon was also observed
in the flat plate case. The same is true with the fric-
tional component Cpi. and the pressure component
Cpres- This is perhaps due to the complex viscous and

. inviscid interaction in fully 3D flow. One cannot see
any clear dependence of the form factor 14K on the
Reynolds number.

Table 4 Computed drag of Series 60 (Cp=0.60) ship
hull.  Part 1 minimum spacings. Parame-
ters: IM=81, JM=25 KM=41, Ipp=16, Iap=60,
Router=1.0, %up=-0.5, Xaowa=2.0, rq=0.3, f=1.0, NU,
V2, SM, At=0.01,

R, 4% i0° 1% 10° 4 % 10° 1% 107 4 % 10"
Grid | Apmin No. No. No. No. No.
0.5939 Cr x 10° 0.3869 0.2615
A 2% 1078 [ 1105503 | - | Chie x 107 | 5103541 § - 121 0.2360
0.0485 Coree % 107 0.0328 0.0246
1138 I+ K i.130 RN
0.6049 0.4917 0.3786 0.3360 0.3037
B 1% 107* {21 0.5566 | 4 0.4522 6103473 | 11 1 0.3076 | 13§ 0.2771
0.0484 $.0395 0.0314 0.0285 0.0268
1.143 1.115 1.106 1.145 1.284
0.6222 0.3837 0.2905
C 0.5% 107 | 3105739 | - — 7103532 - — 14 1 0.2659
0.0483 0.0305 0.0245
1175 1.i21 1.228
0,2748
D 0.25 x 167° | - — - - - - - wom 15 § 0.2525
0.6224
1.162
Schoenherr x 10? 0.5294 0.4409 0.3423 0.2934 0.2365

Table 5 Computed drag of Series 60 (Cp=0.60) ship
hull. Part 2...computation parameters. R, = 4.0 x
108, Other parameters are common with Table 4.

No. | Grid | rq | Inviscid term | Smoothing of v, | Cr X 10? | Cie x 107 | Cppe, x 10°
B 0.3 NU SM 0.3786 0.3473 0.0314
8 ” ” U ” 0.3849 0.3473 0.0376
” ” NU NSM 0.3784 0.3469 0.0315
10 By {01 ” SM 0.3768 0.3477 0.0290
0.04 Cp=0.02

/.,
- <

Computed (NU: case 6). Cp . =0.344
———— Computed (U: case 8). Cppue=0.341

Fig. 9 Comparison of measured and computed pres-
sure contours. Cases 6 and 8. (a) Bow

Cp=0.1

x=0.8
'L

Computed (NU: case 6)
Computed (U: case 8)
Measured(1?]

Fig. 9(b) Stern

Table 5 shows the results using various differencing
formulas. In the case 8, the upwind differencing U
was used. Cgic remained unchanged, but Chres in-
creased by 20%. Since the change was only with the
inviscid terms, that should influence only the inviscid
component, i.e. (pres. The case 9 shows the influ-
ence of the smoothing of the eddy viscosity r,. It
turns out the smoothing of v, causes little influence.
The case 9 was coraputed with A¢=:0.01, which means
that the non-smoothing did not cause any degrada-
tion in numerical stability in this case. The case 10
shows the influence of the clustering ratio 74 toward
bow and stern. Since, as shown in Fig. 8, there is
a high and steep pressure peak at the bow, different
grid resolution may cause significant change in Cpes.
Caic may also change significantly, becaunse most of
the contribution comes from the bow area, where the
boundary layer is still very thin. But it turned out
thai the change is very small. This is perhaps due
o the global conservation property which the present
scheme posesses.

Fig. 9 shows the pressure contours on the ship hull
in the cases 6 and 8. Throughout the hull surface, the
contours of the case 6 are located slightly upstream
of those of the case 8. Considering the fact that the
maximur pressure at the bow remains essentially con-
stant, it is clear that this seemingly very small differ-
ence has caused the difference in Chres by as much as
20%. This shows how sensitive the integration of Cpres
is. Fig. 9(b) also shows the comparison with measure-
ments. The agreement with the computed values is
good. The discrepancy at the stern end is due to the
propeller hub present with the model ship.

Assuming that the results with the minimum A g,
are the best ones, O and Cjiy. in the cases 3, 4,7,
11, and 15 were plotted in Fig. 11, together with the
measured valuesVl. The measurements were made in
towing tanks. In order to avoid the wave effect, only
the values at smaller Froude numbers, say less than
0.23, were plotted. The agreement of the computed
values of C'p with the measurements are very good in
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Fig. 10 Computed total drag Cy vs. Reynolds num-
ber.
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all the Reynolds number range computed. The Shoen-
herr line is also plotted. Cpc is consistently slightly
larger than the Schoenherr value. This may suggest
that the form factor comes not only from the pressure
component but also from the frictional component.
The validity of CFD for computing the drag of a
ship hull with sufficient accuracy using a reasonable
amount of grid points, has thus been established.
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