船体まわりの粘性流れについて 粘性の小さな流体の運動―境界層理論

1. はじめに

前号SRCNewsNo35において粘 性流れのごく基本的な部分、すなわち流れ を支配する力の関係、粘性についてのニュ ートンの仮定、流れの相似則および層流と 乱流等、19世紀までに達成された成果を 駆け足で復習した。本稿では我々が日頃身 近に接する船の性能をはじめ、周囲の工学 のテーマのペースとなっている粘性の非常 に小さい流れ、又は、レイノルズ数の大き な流れの運動を説明する境界層理論につい て紹介する。なお乱流については、前号で 記したように、無秩序で目茶苦茶に見えて もナビエ・ストークスの方程式に示される 力の関係に従っていることを述べ、詳しく は稿を改めて紹介したい。

2.粘性の非常に小さな流体 の運動

粘性流れの力の関係を示すナビエ・スト ークスの方程式は非常に複雑であって19 世紀末にストークスやオゼーンにより、粘 性の大きな流れ、又は、レイノルズ数の非 常に小さな流れの場合にのみ解が得られた に過ぎず、通常、我々の周囲に見られる粘 性の小さな流れ、あるいはレイノルズ数の 大きな流れについては手付かずの状態であ った。レイノルズ数によって、流れの現象 や抵抗がどのように変化するかを球のまわ りの流れとその抗力係数を例にとって図ー 1および図-2に示す。すなわち、レイノ ルズ数の大小によって流れは互いに大きく 異なり、ストークスやオゼーンによるレイ ノルズ数の小さな場合の解をレイノルズ数 の大きな場合に適用出来ないことがお分か り頂けると思う。

図-1 流れの模様のReynolds数による変 化(概念図)。

2.1 境界層理論

今世紀の始め、1904年、ドイツのハ イデルベルクで開催された国際数学会にお いて、1つの論文が講演された。それは 「Über Flüssigkeits bewegung bei sehr kleiner Reibung-粘性の非常に小さな流体 の運動について」という題名でDr.L.Prandtl (プラントル)により、粘性の非常に小さ い時に、流れはどのような性質を持つか、 この性質によって、ナビエ・ストークスの 方程式がどのように簡単になり、従って近 似解が得られるかが示された。

すなわち、物体のまわりの流れを観察す ると、粘性が非常に小さい場合、流体の速 度は物体表面のごく近くまで、ほぼ一様な 流れの速度と同じ程度の大きさである。例 えば、図-3のような物体のまわりでは、 物体ごく近くまで粘性のない場合の流れに 殆ど一致する。ところが物体の表面では、 流れは物体に固着しており、物体のまわり の流れの速度に増速するのは、ごく薄い層 の範囲内である。すなわち、判然とは区別 しにくいが、2つの領域があり、物体のご く近くの、薄い層をなす領域(境界層)で は、速度勾配 ∂ u / ∂ y が非常に大きな値と なり、粘性係数 μ がごく小さくとも、剪断 応力 $\tau = \mu^{\partial u} / \partial_{\partial y}$ は有意のオーダーとな る。一方、境界層の外側では速度勾配は小 さく、したがって粘性の影響は無視しうる ようになる。又、この範囲の流れは圧力だ けで決まる、いわゆるポテンシャル流れと なる。このような性質を考慮して薄い層の 中の流れの式を簡易化する。図-4に示す 平板上の流れを考慮し、ナビエ・ストーク スの式を簡易化すると、

連続の式は[∂] u /_{∂x} +[∂] v /_{∂y} = 0 力の鈎合の式は

 $\frac{\partial u}{\partial p} \cdot \frac{\partial p}{\partial x} + \frac{1}{R} \cdot \frac{\partial 2 u}{\partial x} + \frac{1}{V} \cdot \frac{\partial 2 u}{\partial y^2} =$

および^dp/_{dy}=0となる。なおRは レイノルズ数でR=uℓ/*ν* である。ℓは平

図-2 抗力係数のReynolds数による変化

図-3 翼型まわりの流れ

板の長さ、 ν は動粘性係数 μ / ρ である。 以上の式では薄い層(境界層)の中の圧力 は境界層外の流れの圧力と同じである。以 上の簡易化された式によって容易に境界層 内の流速を求めることが出来るようになっ た。

2.2 境界層の厚さ

境界層の厚さは、整然とした型によって 定義することは出来ないが、図-5、図-6に示すように、(1)境界層外の流速の 99%となる場所の厚さ、ハッチした範囲 を同じとする等がある。図-6は排除厚さ $\overline{u} \delta^* = \int_0^{\delta} (\overline{u} - u) dy$ で定義される。

又、その他に運動量厚さ

 $\overline{u}^{2} \theta = \int_{0}^{t} u (\overline{u} - u) dy$ 、およびエネ ルギー厚さ

 $\overline{u}^{3}\theta_{E} = \int_{0}^{t} u (\overline{u}^{2} - u^{2}) d y \hbar \delta_{0}$

次に平板上の境界層厚さるを以下のよう に求める。図・7の調査面を通過する運動 量変化 $\rho \delta u^2$ は長さ ℓ の壁に沿う摩擦力 $\mu \ell u / \delta と調査面上の圧力積分との和に等$ しい。但し、ここでは圧力変化は0であるから圧力積分の総和は0となり、厚さるは $<math>\delta / \ell = C \sqrt{\mu / \rho \ell u} = C / \sqrt{R}$ の形とな る。なおブラジウスによれば、平板に沿う 境界層厚さは $\delta = 3 \cdot 4 \cdot X / \sqrt{R}$ となる。

図-7 境界層の厚さを定める為に運動量 定理を使う事(点線は調査面を表 わす)

2.3 層流境界層の場合の摩擦抵抗

ブラジウスは、単位面積当たりの摩擦抵 抗 $\tau_0 = \mu$ ($\partial u / \partial_y$) y=0として、境界 層方程式をもとに、長さ ℓ の平板の摩擦係 数C₁の式C₁=1.328/ \sqrt{R} を得た。

2.4 渦発生-境界層内逆流

境界層外のポテンシャル流れの速度が減 少するとベルヌイの式によって圧力が上昇 する。境界層の中では摩擦作用による運動 エネルギーの減少も加わって、更に流速が 減少して静止してしまうようになる(図-8)。更に、その位置からは境界層外の圧 力により、流れは逆流を始める。なお、こ の位置では y =0で、

∂ □ /_{∂ y} =0の条件が満たされる。又、逆 流が始まると初めの流れの状態、従って物 体表面の圧力分布が全く変化してしまう。 これが、表紙に紹介した境界層内の渦の発 生の現象である。

図-8 流れの方向に圧力上昇がある時の 境界層内の流れ

2.5 乱流境界層の性質

境界層内の流れは、ある臨界レイノルズ 数に達すると層流から乱流に変化する。乱 流境界層の特徴は、壁の近くで流速が急激 に増加している事であって(図-9)、層 流境界層(図-10)とは本質的な相違があ る。次に流速分布について、プラントルは、 壁のごく近くでは、μ、ρおよび剪断応力 τ₀のみにより決まり、又、その分布の形は 流量を変えても相似であるとして、圧力降 下と粘性に関するブラジウスの法則とよ り、管内流れの乱流の流速分布は u = u_{max} (y / r)^Wとなることを導いている(図-11)。なお、1/7乗はブラジウスの法則の 成り立つ範囲では正しいが、レイノルズ数 の更に大きな場合は1/8乗あるいは1/10乗 の方が実験と合って来る。

図-9 乱流速度分布

図-10 助走区間に於ける層流速度分布

図-11 乱流の速度の7乗と壁からの距離 との関係

2.6 乱流境界層の場合の摩擦抵抗

乱流境界層の厚さは、層流境界層にて用 いた検査面を通る運動量の変化と摩擦によ る仕事の関係より

≥=0.37 x /⁵√u x / ν として求められ
る。すなわち層流が x ^{1/2}で ≥ が増加するの
に対し、乱流は x ⁴⁵で増加していく。

乱流境界層の場合の摩擦抵抗は、層流の 場合のように剪断応力 τ₀=0.0288 ρ u² (⁺/_u) ^{v6}/^vRを平板上で積分して得られる。 摩擦抵抗係数をC₁とすると、C₁=0.072/ √Rが得られる。

2.7 乱流境界層内の層流境界層

乱流の変動成分は、壁の近くでも急には 減少せず、時間平均で見ると剪断応力 r_0 は、 $r_0 = \mu$ (d u $/\partial y$) y =0を満たし ている。ここに、1/7乗則を適用すると $\partial^{u}/\partial y$ はy =0で無限大となる。これは 1/7乗則は壁面そのものには適用出来ず、 非常に薄い層一層流境界層一が存在しなけ ればならない(図-12)。その厚さは、管 の径rに対しての比y/r=68.4/R^{7/8}の オーダーである。又、層流境界層厚さに相 当するところの流速は u / ū = 2.26/ ∾ Rである。

図-12 管の中の乱流に於ける壁の直ぐで の層流境界層。

3. おわりに

境界層理論の成り立ち、境界層の基本的 な性質について簡単に述べた。数式は極力 少なくして現象を理解して頂くことに重点 を置いた。止むを得ずして示した数式も簡 単な検討に用いられるものに限っている。 大方の読者は表紙の写真や文中のイラスト によって、先人の研鑚の跡をたどって欲し い。境界層理論は20世紀の産業の重要な 知的基盤の一つでありその具体的な貢献は 日々我々の知るところである。