地質学論集 第 29 号 253-268 ページ, 1988 年 2 月 Mem. Geol. Soc. Japan, No. 29, p. 253-268, February 1988

## 中部琉球喜界島の地史

# ----琉球石灰岩産サンゴ化石のウラン系列年代測定のまとめとして---

大村明雄\*

Geologic history of the Kikai Island, Central Ryukyus, Japan: Summary of uranium-series dating of fossil corals from the Riukiu Limestone

### Akio Omura\*

Abstract Uranium-series dating of fifty-three coral samples imply that the Pleistocene Riukiu Limestone (Hanzawa, 1935) on Kikai Island, Central Ryukyus, can be generally divided into two members. The one is Middle Pleistocene in age, assigned to older than 250 ka B. P. by the <sup>230</sup>Th/<sup>234</sup>U method, although very limited part of this member seems to be formed during the penultimate interglacial, about 200 ka B. P. The other, formed after the last interglacial, is composed of five reef complexes, each of which was dated to be ca. 40, 50 to 65, ca. 83, ca. 101, and 120 to 130 ka B. P., respectively. Overlaying directly the basement, Upper Pliocene Somachi Formation (Nakagawa, 1969), the Middle Pleistocene Member composes the major part of the Riukiu Limestone in the extensive area on the island. On the contrary, every one of the Upper Pleistocene reef complexes is likely to be preserved as a small-scaled limestone unit and to have the relation of paraconformity to the Middle Pleistocene Member. The Riukiu Limestone on Kikai is thus considered to have been formed during seven stages of high sea stand, three interglacials correlative to the oxygen isotopic stages 5, 7, and probably 9, and four interstadials after the last interglacial.

Because three coral samples dated to be  $121\pm5$ ,  $126\pm6$ , and  $138\pm5$  ka, occurred on the highest terrace (Hyakunodai) including the highest point (224 m in altitude) of the island, there is very little doubt that Kikai had been entirely submerged during the last interglacial. After that, the island has gradually increased in size with the apparent lowering of sea level.

The present elevation of uplifted coral reefs dated suggests that Kikai has been highly upheaved during the last 120~130 ka in comparison with upheaval of Hateruma. For instance, the difference of more than 170 m can be seen between Kikai and Hateruma Islands on height of the reef formed during the last interglacial. The principal cause of such a great discrepancy is to be sought of the difference in vertical displacement between two islands. The difference of elevation speed estimated for several stages suggests that the rate of vertical displacement has not necessarily been uniform during the last 130 ka and has gradually increased up to the present. The upheaval of Kikai is thought to have started after formation of the Middle Pleistocene Member dated as more than 250 ka B. P. by the <sup>230</sup>Th/<sup>234</sup>U method and 400~500 ka B. P. by the ESR method.

## はじめに

喜界島は、 奄美大島笠利半島の東方約 20 km に位置

し, 東経 129°58.9'・北緯 28°19.1' の地点を中心として, 北東~南西方向に細長く延びる. その長径は約 15 km, 北部に比べ島の南部が幅広く(最大幅約 6.8 km), 面積はおおよそ 56 km² である. 本島は概して平坦であるが, 早町から浦原に至る 東岸側に, 標高差約 200 m

<sup>\*</sup> 金沢大学理学部地学教室. Department of Earth Sciences, Faculty of Science, Kanazawa University

254

に達する急崖が島の伸長方向と並行して連続する. その 急崖の頂上部を成す平坦面(百之台)上に、島の最高地点 (海抜高度 224 m)があり、百之台から西方に向けて順次 低下していく 顕著な 段階状の 地形が 南部地域でみられ る. 本島の海岸線には、小規模ながら数段に細分できる 最高高度 10~15 m の段丘群が全島を取り巻いて発達す る. また, これらの段丘を切るサンゴ礁地形特有の縁脚 --縁溝系(groove and spur system)が、主に西側海岸で みられ、それらの海側への延長部に現在サンゴ礁が形成 されつつある.

本島の地質に関する多数の報告の中で、とくに HANzawa (1935) による研究が古くから注目されてきた. 彼 は、本島を被覆する石灰岩を、琉球石灰岩(Riukiu Limestone)と隆起サンゴ礁石灰岩(Raised Coral Reef Limestone) に二分し、前者の形成時代が更新世、後者が完 新世に 裾礁として島の 周囲に 形成されたとした. その 後,中川(1969)は本島上の更新統を琉球層群(Ryukyu Group) と再定義し、下位から百之台層(Hyakunodai Formation) ・ 湾層(Wan Formation) および低位段丘堆 精物(Lower Terrace Deposit)の3層に細分した. そし て、百之台層がのる平坦面を百之台段丘と長峰段丘に分 け、 湾層によって 構成される 平坦面を川峰段丘と 呼ん だ、さらに、徳之島・沖永良部島および与論島において も, 更新統が分布する平坦面高度を明確にしながら(中 川, 1967), それぞれの島に露出する更新統を morphostratigraphical な手法で対比することを試みた.一方, 小西(1967)は石灰岩の岩相と構成生物相とに注目した調 香の結果として(SCHLANGER & KONISHI, 1966), 本島 上の更新統に対する Hanzawa (1935)の琉球石灰岩とい う地層名を残しながら、新旧2つの部層(琉球石灰岩古 期および新期部層) に分けた. また, 中川(1967)の湾層 の一部に不整合にそれを被覆する若い地層を識別し、別 の lithostratigraphic unit (荒木石灰岩)を独立させた. さ らに、本島の更新統形成年代の推定に初めて放射年代測 定(Komura & Sakanoue, 1967: による 230Th/234U と <sup>231</sup>Pa/<sup>235</sup>U 法)結果を導入して, 琉球石灰岩古期部層・ 新期部層および荒木石灰岩の形成が、それぞれ 20 万年 以上前・55,000~70,000 年前・40,000~45,000 年前と 推定した、このような放射年代測定法の適用によって琉 球石灰岩の 国際的な 対比を 可能にするとともに、 小西 (1967)は、各層の堆積深度を構成生物種や産状などから 判断し、加えて、それらの分布高度および推定される当 時の海水面高度から地殻変動量あるいは、その量と経年 期間より 計算できる 地殻変動率を 求める一般則を 提唱 した。その後、上記方法による琉球石灰岩の放射年代測 定をさらに発展させ、喜界島が最終間氷期以降 1~2 m/ 1,000 y といった, 南西諸島の他の島々ではみられない 高い変動率で隆起し続けてきたことを明らかにした (Konishi et al., 1970, 1974). このオーダーの隆起速度 は、<sup>14</sup>C 法適用による完新統隆起サンゴ礁石灰岩の研究 でも確認されている(例えば、太田ほか、1978). 最近で は、上記の <sup>230</sup>Th/<sup>234</sup>U および <sup>231</sup>Pa/<sup>235</sup>U 法以外にも、 電子スピン共鳴(ESR)年代測定法が適用され始め、本島 上の琉球石灰岩の形成年代がより詳しく解明されつつあ る(例えば、IKEYA & OHMURA, 1983, など).

本小論では、筆者がこれまでに喜界島の琉球石灰岩か ら得たすべての <sup>230</sup>Th/<sup>234</sup>U 年代値を, <sup>231</sup>Pa/<sup>235</sup>U 年代 値および研究協力者によって求められた ESR 年代値と ともにまとめて報告する. なお, ここで示す <sup>230</sup>Th/<sup>234</sup>U 年代値の中には、すでに報告済みのものもあるが、それ らについては、USIP プロジェクト(大村、1982)におけ る申し合わせに従って再計算したため、以前の報告値と 異なるものがある. 琉球石灰岩の形成史を細部にわたっ て検討することは、鮮新統早町層(中川、1969)堆積後、 本島がどのような地史を経て現在に至っているかを知る ためには極めて有効である. とくに、ここでは、喜界島 の更新統琉球石灰岩を、西インド諸島 Barbados 島・ニ ューギニア Huon 半島および 本邦最南端の 波照間島で 知られている更新統の隆起サンゴ礁と対比させながら, 小西(1967)および Konishi et al.(1970, 1974)によって 指摘された他島にはみられない地殻変動の実態とその開 始時期などについて考察する.

#### 年代測定用試料

本論で述べる喜界島の琉球石灰岩産年代測定試料は、 Table 1 に示した合計 53 個の, すべてが石サンゴ化石 である. 表中には化石種を属レベルの分類単位で示した が、 うち3属3種の計6試料(Trochocyathus hanzawai・ Micrabacia japonica および Flabellum ruburum)が単体の 非造礁性 サンゴのほか、 残り 47 試料はすべて 造礁性 群体 サンゴ である. これらのうち、Goniastrea・Porites・ Favites·Favia および Montipora の5属は、とくに喜界 島の琉球石灰岩中に普遍的にみられる種類のサンゴとい える. 分析試料については、できるだけ島の全域で、し かも後述する数段の段丘面それぞれからと, 可能な限り 広範にわたって採集するように心懸けてきた.しかし, 海岸部に 露出する 隆起サンゴ礁石灰岩の 場合とは 異な り、島内における琉球石灰岩の露出が必ずしも良くない ため、現在までに年代測定用の試料が得られたのはFig. 1 に示した合計 35 地点である.

### 中部琉球喜界島の地史

Table 1 List of the Pleistocene coral samples mentioned in this study.

| Code No.       | Sample No.                               | Genera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Elevation  | Reference † |
|----------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|
| OA037          | CK-14                                    | <u>Favites</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28 m       | (1)         |
| OA038          | CK-15                                    | Montipora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26         | (1)         |
| OA045          | CK-19                                    | Favia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25         | (1)         |
| OA047          | CK-20                                    | Montipora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 170        | (1)         |
| OA050          | CK-21                                    | Montastrea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40         | (1)         |
| OA051          | CK-13                                    | Favites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28         | · (i)       |
| OA052          | CK-22                                    | Montipora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40         | (2)         |
| OA053          | CK-23                                    | Montipora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40         | (4)         |
| OA055          | CK-25                                    | Favites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27         | (i)         |
| OA066          | CK-29                                    | The Control of the Co | 120        | (i)         |
| OA073          | CK-32                                    | <u>Montipora</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 170        | (i)         |
| OA078          | CK-34                                    | Favia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50         | (i)         |
| 080AO          | 67-8-27-1                                | Montipora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120        | (1)         |
| OA117          | CK-24                                    | <u>Favia</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 65         | (1)         |
| OA118          | CK-30                                    | Montipora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 140        | (i)         |
| OA121          | CK-40                                    | <u>Favia</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10         | (i)         |
| OA122          | CK-41                                    | <u>Montastrea</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | iŏ         | (i)         |
| A0007          | 75-4-1-3A                                | Goniastrea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 170        | (4)         |
| A0009          | 75-4-1-3B                                | Goniastrea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 170        | (4)         |
| A0014          | 75-3-26-1a                               | Trochocyathus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40         | (4)         |
| A0015          | 75-3-26-1b                               | <u>Micrabacia</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40         | (3)<br>(3)  |
| A0016          | 75-3-26-1c                               | Flabellum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40         | (3)         |
| A0017          | 75-3-26-1a                               | Trochocyathus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40<br>40   | (3)<br>(3)  |
| A0017<br>A0018 | 75-3-26-1 <b>a</b><br>75-3-26-1 <b>b</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40<br>40   | (3)         |
| A0019          | 75-3-26-1c                               | <u>Micrabacia</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40<br>40   | (3)<br>(3)  |
| A0019<br>A0084 | K-C-11                                   | <u>Flabellum</u><br>Porites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | (3)         |
| A0084<br>A0086 | K-C-10                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 210<br>120 | (4)         |
| A0087          | K-C-5                                    | Montipora<br>Farritas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | (4)         |
| A0087<br>A0088 | K-C-3                                    | <u>Favites</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110        | (4)         |
| A0089          | K-C-12                                   | <u>Montipora</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25<br>25   | (4)         |
| A0099          |                                          | Porites<br>Montines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25<br>25   | (4)         |
| A0090<br>A0091 | K-C-13<br>K-C-14                         | Montipora<br>Conjustant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25<br>25   | (4)         |
| A0091<br>A0092 | K-C-18                                   | <u>Goniastrea</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25<br>20   | (4)         |
| A0150          | K-C-26                                   | <u>Galaxea</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | (4)         |
|                |                                          | Porites<br>Porites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140        | (4)         |
| AO151          | K-C-27                                   | <u>Porites</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140        | (4)         |
| AO152          | K-C-28                                   | <u>Montastrea</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25         | (4)         |
| AO170          | K-C-29                                   | <u>Favia</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33         | (4)         |
| A0171          | K-C-30                                   | <u>Favia</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 135        | (4)         |
| A0172          | K-C-31                                   | <u>Montipora</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 62         | (4)         |
| A0173          | K-C-32                                   | <u>Montipora</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72<br>72   | (4)         |
| A0174          | K-C-33                                   | <u>Montipora</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72         | (4)         |
| A0239          | 84-11-15-1                               | <u>Montastrea</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 205        |             |
| A0246          | 84-11-15-3                               | <u>Porites</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 170        |             |
| A0247          | 84-11-15-2                               | <u>Porites</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25         |             |
| A0248          | 84-11-16-3                               | Goniastrea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 170        |             |
| A0249          | 84-11-16-2                               | <u>Montipora</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 150        |             |
| AO250          | 84-11-15-4                               | <u>Favia</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 145        |             |
| AO257          | 84-11-14-3                               | <u>Porites</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140        |             |
| A0258          | 84-11-16-1                               | <u>Montipora</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 150        |             |
| A0260          | 84-11-14-4                               | <u>Montipora</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 150        |             |
| A0264          | 84-11-14-2                               | <u>Porites</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 170        |             |
| A0266          | 84-11-14-1                               | <u>Porites</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200        |             |
| A0268          | 84-11-15-5                               | Porites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 205        |             |

[References; (1), Konishi et al., 1974; (2), Omura & Konishi, 1970; (3), Omura, 1983; (4), Omura et al., 1985; others, this study.]

一般に、化石生物の放射年代値から、それらを含む地層の形成年代を推定するには、年代測定に用いられた生物遺骸の産状に注意を払わなければならない。生活していた場所から移動されずにそのまま化石となり保存されてきた原地性の(autochthonous)試料は、それを含む地層

の形成年代を記録しているといえるが、 異地性の (allochthonous) 化石試料は正しい形成年代ではなく、 maximum age を示す. すなわち、 異地性化石試料から求めた年代は、 それを含んでいた地層の形成年代とほぼ同じ 場合もあるが、一般にはより古いと考えられるからであ



Fig. 1 Map showing the localities of coral samples dated in Kikai Island.

る. Table 1 に挙げた群体サンゴ試料のうち, OA053・AO089・AO152・AO250 の4試料は明らかに異地性化石であるが,これを除いた 43 試料は,個々の成長方位・全体の外形や底質との接触関係および含有石灰岩の岩相などの観察に基づいて,原地性と判断されたものである.

野外において、正しい <sup>230</sup>Th/<sup>234</sup>U 年代を示す化石試料を探す際には、試料の続成変質について充分注意しなければならない。変質した 試料には、ウランおよびトリウム同位体に関する閉鎖系が期待できないからである。石サンゴ類はアラレ石質の骨格を造るが、アラレ石は普通の地表条件(常温常圧)における準安定相(metastable phase)であり、続成変質を被ると安定な低 Mg 方解石に変化する。また、多孔質のサンゴ骨格中には、通気帯(vadose zone)における続成変質の結果として、低

Mg 方解石から成るセメント物質(sparry calcite)が、しばしば空隙を埋めるように形成されている。したがって、本来アラレ石として形成された化石サンゴ試料の、現在の鉱物組成(実際は、低 Mg 方解石/アラレ石の重量比)を調べることが、続成変質の有無を知る有効な手段の一つとなる。本論で扱った全試料のうち、AO089と AO091の2試料中から5~7重量%の低 Mg 方解石が Davies and Hooper(1963)の粉末X線分析法で検出されたが、その他の51 試料には5%を超える低 Mg 方解石が見い出されなかった。このことは、Table 1 に挙げたほとんどこの試料が、上述のような続成変質を被っていないことを意味する。

ここでは、試料処理方法やウランおよびトリウム同位 体の測定方法について詳しく述べないが、 Table 1 お よび Fig. 1 中の試料略式番号(code number)の OA- および AO- それぞれが,異なった処理方法によって分析されたことを表している.すなわち,OA-系試料については,既知量の  $^{232}$ U および  $^{234}$ Th を含む標準溶液を別々に準備して化学収率を知るためのトレーサーとして用い,二重グリッド 電離箱使用による  $\alpha$  スペクトル法で各同位体量を測定した (OMURA, 1976). それに対し,AO-系試料の場合は,試料処理に  $^{232}$ U とほぼ平衡量の  $^{228}$ Th を含んだスパイク溶液をトレーサーとして利用し, $\alpha$ スパクトル分析にシリコン表面障壁型半導体検出器を用いた (大村, 1982).

### ウラン系列年代測定

ウランおよびトリウム同位体に関する分析結果を、次式によって計算した年代値とともに、Table 2 にまとめて示す.

$$\begin{split} & (^{230}\text{Th}/^{234}\text{U}) = [1/(^{234}\text{U}/^{238}\text{U})] (1 - e^{-\lambda_0 t}) \\ & + [1 - \{1/(^{234}\text{U}/^{238}\text{U})\}] \cdot \{\lambda_0/(\lambda_0 - \lambda_4)\} \cdot \\ & \times \{1 - e^{-(\lambda_0 - \lambda_4)t}\} \end{split}$$

上式中の( $^{230}$ Th/ $^{334}$ U)と( $^{234}$ U/ $^{238}$ U)は、各放射能比(activity ratio)を意味し、 $\lambda_0$  および  $\lambda_4$  は、それぞれ  $^{230}$ Th と  $^{234}$ U の壊変定数( $\lambda_0=9.22\times10^{-6}$  yr $^{-1}$ ;  $\lambda_4=2.79\times10^{-6}$  yr $^{-1}$ )を指す、なお、表中の各値に付した誤差は、 $\alpha$ スペクトル法による計数値から 得られた統計誤差( $1\sigma$ )である.

分析されたすべての 礁性サンゴ化石中のウラン( $^{238}$ U) 量は、平均  $^{3.16\pm0.16}$  ppm で、最も少ないのは OA117 試料の  $^{2.30\pm0.10}$  ppm, 最高は AO172 試料の  $^{4.66\pm0.05}$  ppm である。また、ウラン量を比較すると、現在 南西 諸島域に生息している サンゴの 骨格(平均  $^{2.35\pm0.04}$  ppm; OMURA、1976)の方が見掛け上幾分少ないようにもみえる。このことは、死後の時間経過とともに、化石中に ウラン同位体が富化(enrich) されてきたことを意味するのかもしれない。いいかえると、分析された化石試料が、ウラン同位体に関して閉鎖系でない可能性もある。ただし、 $^{234}$ U/ $^{238}$ U 放射能比についてみれば、古い年代値を示した試料ほど概して低い( $^{1}$  に近い)値を示す。とくに、 $^{230}$ Th/ $^{234}$ U 法の測定限界(おおよそ  $^{30}$  万年)より古い 試料中の同比が  $^{1.00\pm0.01}$  から  $^{1.04\pm0.01}$  まで(平均  $^{1.02\pm0.03}$ )と低い。

平均的な海水では、<sup>238</sup>U に対し 14~15% 過剰な <sup>234</sup>U(excess <sup>234</sup>U)が含まれていることが知られている. (Thurber, 1962: Ku et al., 1977). そのために、海 棲生物硬組織中の <sup>234</sup>U/<sup>238</sup>U 放射能比が 1.14~1.15 の 値を示し、この過剰 <sup>234</sup>U は時間の経過とともに <sup>238</sup>U との永続平衡に向けて(<sup>234</sup>U/<sup>248</sup>U 放射能比が 1 に付近く

ように)減衰していくとされている(例えば、VBBH, 1966, など). 上に示した  $^{234}$ U/ $^{238}$ U 放射能比と年代値の間に みられる逆相関関係はそのためであり、このことは、ウラン同位体に関する試料の閉鎖系を支持しているといえよう.

<sup>230</sup>Th/<sup>234</sup>U 年代 測定法の 化石生物への 適用にとって 重要な前提条件の一つは, 成育時(t=0 当時)骨格中に 230Th が全く取り込まれていなかったことである. この ような条件を満たさない試料, すなわち, 初生的に230Th を取り込んだ試料は, 232Th も含むはずである. なぜな ら,数万~数十万の時間経過後,初生的 <sup>230</sup>Th (initial ionium) が減衰していくのに対し、 はるかに長い半減期 (1.4×1010 年)を有する 232Th は、見掛け上、壊変によ る量的変化(減少)をしないからである。 全試料の 47% にあたる 25 試料からは、 測定可能量(0.02 ppm 以上) の 232Th が検出されなかったし、残り 28 試料につい ても, 0.1 ppm 以上の <sup>232</sup>Th を含む 2 試料(OA052 お よび AO170 試料)を除けば、ほとんどが 10-2 ppm オ ーダーの極めて少量の 232Th しか 含まないことから, 初生的 230Th に関する 前提条件にはほとんど 問題がな い. また, もっとも多い AO170 試料でも, 0.162± 0.011 ppm の <sup>232</sup>Th が検出されたにすぎない. これと 同程度の <sup>232</sup>Th を含む試料中の初生的 <sup>230</sup>Th 量を, 海 水中の <sup>230</sup>Th/<sup>232</sup>Th 放射能比から推定し, さらに, その うち現在まで崩壊せずに残存している量を求めて, <sup>234</sup>U の壊変に起因する 230Th 量と比較すると、ほとんど無視 できるほど少ない(OMURA, 1976). このように, <sup>232</sup>Th の存在は、試料が初生的に 230Th を含んでいたことを示 唆するといえるが、あるいは、続成変質の結果としての 二次的な トリウム 同位体の 混入を 意味しているかもし れない. すなわち, 測定限界以上の 232Th が 検出された 試料が、 実は、 トリウム同位体に 関して 開放系だった という 可能性である. この 点については, <sup>230</sup>Th/<sup>232</sup>Th 放射能比が用いて議論できる. もし, 二次的にトリウム 同位体が混入あるいは溶脱していれば、この比は天然水 中の 1~2(Kaufman & Broecker, 1965; Thurber, et al., 1965; Vallentine & Veeh, 1969; Omura, 1976) といった値に近くなるといわれている. しかし, <sup>232</sup>Th が検出された試料中の同比は、20.6±4.9 を最低に、最 高 634±111 までと極めて高い。このことから、試料に 含まれるほとんどすべての <sup>230</sup>Th が、 <sup>234</sup>U の壊変によ って形成されたものと考えて差し支えない(THURBER et al., 1965).

結局,以上のような分析結果は,ほとんどの試料が死後の続成変質を被ることなく,ウランおよびトリウム同

Table 2 Isotopic composition and estimated  $^{230}\mathrm{Th}/^{234}\mathrm{U}$  ages of Pleistocene coral samples from Kikai Island.

| Code No. | (bbw)                              | <sup>232</sup> Th (ppm)                    | 234U/238U<br>(act:              | <sup>230</sup> Th/ <sup>232</sup> Th<br>ivity r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 230Th/234U<br>atio)                    | <sup>230</sup> Th/ <sup>234</sup> U<br>Age (ka) |
|----------|------------------------------------|--------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------|
| OA045    | 2.60 ± 0.08                        | 0.0274±0.0065                              | 1.08 ± 0.04                     | 20.6 ± 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.296 ± 0.009                          | 38 ± 2                                          |
| OA051    | $3.06 \pm 0.08$                    | $0.0260 \pm 0.0016$                        | $1.09 \pm 0.04$                 | $28.3 \pm 1.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.301 \pm 0.011$                      | 39 ± 2                                          |
| A0092    | $3.26 \pm 0.04$                    | < 0.02                                     | $1.12 \pm 0.01$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.317 \pm 0.022$                      | 41 ± 4                                          |
| OA037    | $3.54 \pm 0.14$                    | $0.0225 \pm 0.0020$                        | $1.07 \pm 0.06$                 | $164 \pm 15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.320 \pm 0.014$                      | 42 ± 3                                          |
| OA055    | $3.04 \pm 0.14$<br>$3.04 \pm 0.11$ | $0.0229 \pm 0.0020$<br>$0.0290 \pm 0.0009$ | $1.05 \pm 0.05$                 | $26.7 \pm 1.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.320 \pm 0.014$<br>$0.331 \pm 0.014$ | 42 ± 3<br>43 ± 3                                |
| AO247    | $2.81 \pm 0.06$                    | $0.0363 \pm 0.0061$                        | $1.12 \pm 0.02$                 | $92.7 \pm 15.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.344 \pm 0.010$                      |                                                 |
| A0090    | $4.16 \pm 0.07$                    | ⟨ 0.02                                     | $1.12 \pm 0.02$ $1.12 \pm 0.02$ | 92.7 ± 13.6<br>—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.344 \pm 0.010$<br>$0.346 \pm 0.032$ | $45 \pm 2$<br>$46 \pm 5$                        |
| OA078    | 3.16 ± 0.06                        | < 0.02                                     | 1.05 ± 0.03                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.370 \pm 0.010$                      | 50 ± 2                                          |
| OA121    | $2.67 \pm 0.11$                    | < 0.02                                     | $1.07 \pm 0.06$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.370 \pm 0.016$                      | $50 \pm 3$                                      |
| OA122    | $3.17 \pm 0.04$                    | $0.0598 \pm 0.0052$                        | $1.12 \pm 0.02$                 | $68.7 \pm 6.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.376 \pm 0.008$                      | $51 \pm 2$                                      |
| 8800A    | $4.17 \pm 0.03$                    | < 0.02                                     | $1.13 \pm 0.01$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.376 \pm 0.020$                      | 51 ± 3                                          |
| A0091    | $3.24 \pm 0.05$                    | < 0.02                                     | $1.12 \pm 0.01$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.376 \pm 0.023$                      | 51 ± 4                                          |
| OA050    | $3.42 \pm 0.06$                    | < 0.02                                     | $1.02 \pm 0.03$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.392 \pm 0.010$                      | 54 ± 2                                          |
| OA052    | $3.39 \pm 0.17$                    | $0.144 \pm 0.013$                          | $1.11 \pm 0.08$                 | $31.8 \pm 2.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.395 \pm 0.021$                      | 54 ± 4                                          |
| OA038    | $3.78 \pm 0.09$                    | $0.0535 \pm 0.0014$                        | $1.14 \pm 0.00$                 | 88.8 ± 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.399 \pm 0.021$                      | 55 ± 2                                          |
| AO152    | $3.70 \pm 0.03$ $3.32 \pm 0.03$    | $0.0535\pm0.0014$<br>$0.0544\pm0.0063$     | $1.10 \pm 0.01$                 | $83.9 \pm 9.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.401 \pm 0.007$                      | 55 ± 2                                          |
|          |                                    |                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                 |
| A0015    | $4.42 \pm 0.12$                    | < 0.02                                     | $1.13 \pm 0.02$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.513 \pm 0.020$                      | 77 ± 4                                          |
| A0014    | $3.56 \pm 0.08$                    | < 0.02                                     | $1.10 \pm 0.02$                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.521 \pm 0.015$                      | 79 ± 4                                          |
| A0017    | $3.46 \pm 0.06$                    | < 0.02                                     | $1.11 \pm 0.02$                 | And Advances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.521 \pm 0.014$                      | 79 ± 3                                          |
| A0018    | $4.46 \pm 0.11$                    | < 0.02                                     | $1.09 \pm 0.02$                 | MATERIAL PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPE | $0.539 \pm 0.017$                      | $83 \pm 4$                                      |
| A0019    | $4.34 \pm 0.08$                    | < 0.02                                     | $1.11 \pm 0.02$                 | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.540 \pm 0.014$                      | $83 \pm 3$                                      |
| A0258    | $4.16 \pm 0.06$                    | $0.0240 \pm 0.0047$                        | $1.12 \pm 0.01$                 | $332 \pm 65$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.547 \pm 0.011$                      | $84 \pm 3$                                      |
| 10016    | $3.77 \pm 0.10$                    | < 0.02                                     | $1.15 \pm 0.02$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.553 \pm 0.014$                      | $85 \pm 5$                                      |
| A0260    | $2.93 \pm 0.04$                    | < 0.02                                     | $1.12 \pm 0.01$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.551 \pm 0.012$                      | $85 \pm 3$                                      |
| DA117    | $2.30 \pm 0.10$                    | < 0.02                                     | $1.10 \pm 0.06$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.552 \pm 0.025$                      | $86 \pm 6$                                      |
| OA066    | $2.82 \pm 0.05$                    | $0.0730 \pm 0.0021$                        | $1.06 \pm 0.03$                 | $16.7 \pm 0.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.561 \pm 0.016$                      | $88 \pm 4$                                      |
| A0249    | $\textbf{3.72} \pm \textbf{0.05}$  | < 0.02                                     | $1.12 \pm 0.01$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.566 \pm 0.013$                      | 89 ± 3                                          |
| DA118    | $\textbf{2.57} \pm \textbf{0.07}$  | $0.0674 \pm 0.0052$                        | $1.15 \pm 0.05$                 | $81.8 \pm 6.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\textbf{0.603} \pm \textbf{0.050}$    | 98 ± 8                                          |
| A0007    | $3.19 \pm 0.10$                    | $0.0245 \pm 0.0068$                        | $1.12 \pm 0.03$                 | $273 \pm 76$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.602 \pm 0.039$                      | 99 ± 9                                          |
| A0264    | $2.73 \pm 0.06$                    | < 0.02                                     | $1.09 \pm 0.02$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.609 \pm 0.017$                      | $100 \pm 5$                                     |
| A0246    | $2.76 \pm 0.05$                    | < 0.02                                     | $1.11 \pm 0.02$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.622 \pm 0.015$                      | $103 \pm 4$                                     |
| A0009    | $3.23 \pm 0.07$                    | < 0.02                                     | $1.08 \pm 0.05$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.621 \pm 0.038$                      | 104 +11-10                                      |
| 080AC    | $4.52 \pm 0.11$                    | $\textbf{0.0250} \!\pm\! \textbf{0.0022}$  | $1.01 \pm 0.04$                 | 87.2 ± 76.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\textbf{0.653} \pm \textbf{0.020}$    | 115 ± 7                                         |
| A0266    | $2.62 \pm 0.03$                    | $0.0509 \pm 0.0060$                        | $1.12 \pm 0.01$                 | $122 \pm 14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.683 \pm 0.013$                      | $121 \pm 5$                                     |
| A0239    | $2.74 \pm 0.07$                    | $0.0265 \pm 0.0037$                        | $1.11 \pm 0.01$                 | $247 \pm 34$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.696 \pm 0.018$                      | $126 \pm 6$                                     |
| DA073    | $3.15 \pm 0.08$                    | $0.0420 \pm 0.0030$                        | $1.02 \pm 0.03$                 | $38.8 \pm 3.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.692 \pm 0.026$                      | 127 ± 9                                         |
| DA047    | $3.60 \pm 0.04$                    | $0.0840 \pm 0.0015$                        | $1.07 \pm 0.02$                 | $23.8 \pm 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.708 \pm 0.011$                      | $131 \pm 4$                                     |
| A0250    | $2.78 \pm 0.03$                    | < 0.02                                     | $1.09 \pm 0.01$                 | <del></del> '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.726 \pm 0.017$                      | $137 \pm 7$                                     |
| AO268    | $2.71 \pm 0.03$                    | $0.0217 \pm 0.0038$                        | $1.12 \pm 0.01$                 | 320 ± 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.734 \pm 0.013$                      | 138 ± 5                                         |
| DA053    | $3.10 \pm 0.09$                    | $0.0361 \pm 0.0021$                        | $1.03 \pm 0.04$                 | $234 \pm 14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\textbf{0.853} \pm \textbf{0.030}$    | 204 +23-19                                      |
| 10086    | $3.80 \pm 0.04$                    | < 0.02                                     | $1.01 \pm 0.01$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.911 \pm 0.015$                      | 259 +23-17                                      |
| A0248    | $2.86 \pm 0.05$                    | $0.0318 \pm 0.0050$                        | $1.02 \pm 0.02$                 | $277 \pm 44$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.967 \pm 0.021$                      | 347 +71-43                                      |
| 10089    | $2.71 \pm 0.03$                    | < 0.02                                     | $1.03 \pm 0.01$                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.973 \pm 0.017$                      | 360 +64-40                                      |
| 10257    | $2.76 \pm 0.04$                    | < 0.02                                     | $1.01 \pm 0.01$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.970 \pm 0.018$                      | 364 +77-45                                      |
| 0170     | $3.44 \pm 0.04$                    | $0.162 \pm 0.011$                          | $1.02 \pm 0.01$                 | $65.6 \pm 4.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.973 \pm 0.016$                      | 369 +69-42                                      |
| 0084     | $2.71 \pm 0.03$                    | < 0.02                                     | $1.01 \pm 0.01$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.981 \pm 0.016$                      | 409 +120-5                                      |
| 10151    | $3.13 \pm 0.03$                    | $0.0242 \pm 0.0044$                        | $1.02 \pm 0.01$                 | $417 \pm 76$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.01 \pm 0.02$                        | > 450                                           |
| 0172     | $4.66 \pm 0.05$                    | $0.0233 \pm 0.0041$                        | $1.02 \pm 0.01$                 | $634 \pm 111$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.01 \pm 0.02$                        | > 450                                           |
| 0173     | $4.16 \pm 0.05$                    | $0.0210 \pm 0.0038$                        | $1.00 \pm 0.01$                 | $620 \pm 112$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.01 \pm 0.02$                        | > 450                                           |
| 0087     | $3.08 \pm 0.03$                    | < 0.02                                     | $1.03 \pm 0.01$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.03 \pm 0.01$                        | ∞                                               |
| 0150     | $2.87\ \pm\ 0.03$                  | $0.0278 \pm 0.0044$                        | $1.04 \pm 0.01$                 | $354 \pm 51$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.06 \pm 0.02$                        | ∞                                               |
| 0171     | $3.02 \pm 0.04$                    | $0.0284 \pm 0.0038$                        | $1.03 \pm 0.01$                 | $348 \pm 46$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.02 \pm 0.02$                        | 00                                              |
|          | $3.75 \pm 0.05$                    | $0.0304 \pm 0.0049$                        | $1.01 \pm 0.01$                 | $401 \pm 65$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.04 \pm 0.02$                        |                                                 |

Table 3 Comparison of <sup>230</sup>Th/<sup>234</sup>U, <sup>231</sup>Pa/<sup>235</sup>U and ESR dates of some coral samples from Kikai Island.

| Code No. | <sup>230</sup> Th/ <sup>234</sup> U Age<br>(ka) | <sup>231</sup> Pa/ <sup>235</sup> U Age<br>(ka) | ESR Age †        |
|----------|-------------------------------------------------|-------------------------------------------------|------------------|
| OA045    | 38 ± 2                                          | 37 ± 1                                          | 1.7              |
| OA043    | 39 ± 2                                          | 36 ± 2                                          | 47 ± 4           |
| OA037    | 42 ± 3                                          | 38 ± 2                                          |                  |
| OA055    | 42 ± 3<br>43 ± 3                                | 41 ± 2                                          | 50 ± 1           |
| A0090    | 46 ± 5                                          | 41 ± 2                                          | 58 ± 2<br>49 ± 4 |
| OA121    | 50 ± 3                                          | 53 ± 3                                          | 49 ± 4           |
| OA121    | 50 ± 3                                          | 55 ± 2                                          | ,                |
| A0088    | $51 \pm 3$                                      | JJ ± 4                                          | 52 ± 3           |
| A0091    | 51 ± 4                                          |                                                 |                  |
| OA050    | 54 ± 2                                          | 64 ± 2                                          | $50 \pm 2$       |
| OA052    | 54 ± 4                                          | 64 ± 2<br>61 ± 6                                | 50 1. 6          |
| OA032    | 55 ± 2                                          | 39 ± 1                                          | $59 \pm 6$       |
| AO152    | 55 ± 2                                          | . 39 1 1                                        | 54 ± 3           |
| OA117    | 86 ± 6                                          | 85 ± 4                                          | <i>3</i> 4 ± 3   |
| OA117    | 98 ± 8                                          | 99 ± 4                                          |                  |
| OA047    | 131 ± 4                                         | 128 ± 3                                         |                  |
| OA053    | 204 +23 -19                                     | $\frac{120 \pm 3}{220 \pm 10}$                  | . <del></del> .  |
| A0086    | 259 +19 -17                                     |                                                 | 458 ± 24         |
| A0089    | 360 +64 -40                                     | <del></del>                                     | 418 ± 20         |
| A0084    | 409 +120-55                                     | vedebur                                         | 450 ± 27         |
| AO151    | > 450                                           |                                                 | 443 ± 29         |
| A0172    | > 450                                           | _                                               | 532 ± 37         |
| A0173    | > 450                                           |                                                 | 500 ± 40         |
| A0087    | ∞                                               | distance                                        | 539 ± 16         |
| AO150    | ∞                                               |                                                 | 488 ± 12         |
| A0171    | ∞ .                                             | -                                               | 525 ± 40         |
| A0174    | ∞                                               | Management .                                    | 557 ± 37         |

(ESR dates were determined by K. Ohmura & Y. Sakuramoto of the Dia Consultant Co., Ltd.)

位体に関する閉鎖系として保存されてきたことを示唆している. いいかえると, Table 2 に示したほとんどの年代値は, <sup>230</sup>Th/<sup>234</sup>U 年代測定法にとってほぼ理想的な化石試料から求められたため, 充分信頼できるといえる.

ある放射年代値の信頼性を検討する有効な手段の一つは、別の壊変系を用いる方法でも年代値を求め、互いに比較することである。230Th/234U 年代値の信頼性チェックのためには、231Pa/235U 法あるいは 234U/238U 法が利用されてきた(Ku, 1968; VEEH, 1966). 中でも、231Pa/235U 法は、適用できる最適有効範囲が 1~15 万年で、230Th/234U 法のそれとほぼ同じ点、好都合といえる。さらに、これらの方法は、いずれもウラン同位体間やその娘核種との非平衡関係に基づいた方法であるため、試料がウランおよびその娘核種に関して閉鎖系でなければ、決して両者の年代値は一致しない。いいかえると、試料そのものが、先に述べたそれぞれの方法に必要な条件を満たすものであったかを、一挙にチェックすることにも

なる. Table 3 は、 $^{230}$ Th/ $^{234}$ U 年代値が得られた 27 試料について、 $^{231}$ Pa/ $^{235}$ U あるいは ESR 法の適用を試みた結果である. Table 3 中 AO086 以下の 10 試料は、 $^{231}$ Pa/ $^{235}$ U 法の測定限界かそれを超える年代を示すため、ここでの議論から除く. したがって、各年代測定の結果を比較できるのは 17 試料である.  $^{230}$ Th/ $^{234}$ U および  $^{231}$ Pa/ $^{235}$ U 年代値の比較においては、13 試料中2 試料 (OA050・OA038) から一致した年代値を得ることができなかったとはいえ、ほとんどの試料が誤差の範囲内で一致した年代値を示した(Fig. 2). このことは、先に示した  $^{230}$ Th/ $^{234}$ U サンゴ年代値のほとんどが信頼できることを支持している. ESR 年代値も  $^{230}$ Th/ $^{234}$ U 年代値と一致するものが多く、それら自身の確かさを意味するとともに、今後ウラン系列年代値との比較にも充分利用できそうである.

得られた年代値は、 $Table\ 2$  に示したように7 グループにまとめることができる。それらは、 $38,000\pm2,000$ ~



Fig. 2 Relationships between <sup>230</sup>Th/<sup>234</sup>U ages and <sup>231</sup>Pa/<sup>235</sup>U or ESR ages of some coral samples from Kikai Island.

 $46,000\pm5,000$ (平均  $41,000\pm1,000$ )年  $\cdot$  50,000±2,000  $\sim$ 55,000±2,000(53,000±2,000)年 · 77,000±4,000 $\sim$  $89,000 \pm 3,000(83,000 \pm 2,000)$ 年 · 98,000 ± 8,000~  $104,000+11,000-10,000(101,000\pm3,000)$ 年 · 115,000  $\pm$ 7,000~138,000±5,000(129,000±2,000)年  $\cdot$  204,000 +23,000-19,000 年, そして, おおよそ 25 万年以上の ものといった7グループである.このグループ分けは, 単に年代値だけで行ったものではなく、基本的にはそれ ぞれの試料を得た石灰岩体の岩相区分や分布高度などに 基づいている. 例えば、41,000±1,000 年の平均値を示 した化石試料は、すべて荒木石灰岩から産したものであ り, ここで得られた <sup>230</sup>Th/<sup>234</sup>U 年代値から, KONISHI et al.(1974)の 琉球石灰岩新期・中期 および 古期部層の それぞれが、おおよそ 53,000 年前 · 83,000 年前そし て 100,000~140,000 年前に形成されたと結論できそう である. しかし、上記のように、新期部層から得た2試 料(OA050 と OA052)が6万年を超える <sup>231</sup>Pa/<sup>235</sup>U 年 代(それぞれ 64,000 ± 2,000 年および 61,000 ± 6,000 年)を示したことから、ここではその形成年代を <sup>230</sup>Th/ 234U 平均年代値で限定せず, 50,000~65,000 年前とし ておく. また, 琉球石灰岩古期部層は一括して塗色され ていた岩体が年代的には、平坦面(中川, 1969, の百之 台面)を構成するものと下段の平坦面(長峰面)に続く斜 面を被覆するものとに二分できそうで、前者の形成年代 がおおよそ 129,000 年前,後者がおおよそ 101,000 年 前に形成されたといえる. すなわち, かって KONISHI et al.(1970, 1974)および OMURA et al.(1985)によって

推論されたように、本島の最高地点(海抜 224 m)を含む百之台が、120,000~130,000 年前の、いわゆる最終間氷期(Last Interglacial)には海面下にあったことが今回実証されたことになる.

以上のような 更新世後期の 年代値に 加え、 おおよそ 20 万年と、さらに古い 25 万年以上の年代値も得られ、本島の琉球石灰岩の一部が中部更新統であることが明らかになった (OMURA et al., 1985). 具体的には、OA053 試料から 得られた 20 万年 前後と、 その 他の 13 試料から求められた  $^{230}$ Th/ $^{234}$ U 法の測定限界に近いか、 あるいはそれを超える 年代値が、 そのことを示している (Table 3). とくに 古い 年代を示した 13 試料について、電子スピン共鳴 (ESR) 年代測定法 (IKBYA、1984、 など)の 適用を 試みたところ、  $^{418}$ ,000  $\pm$  20,000 年から 557,000 $\pm$ 37,000 年まで (平均  $^{48}$ 7,000  $\pm$  7,000)年の年代値が得られた。 すなわち、本島の琉球石灰岩中には、酸素安定同位体比ステージ (例えば、 EMILIANI & SHACKLETON、1974) 5 のほか、  $^{7}$  および  $^{9}$  あるいはそれより以前に形成されたものもあることが確実となった.

## 喜界島における琉球石灰岩の形成史および他地域の 更新統隆起サンゴ礁との対比

喜界島が置かれている位置は、現在の西部太平洋域においてサンゴ礁が形成されつつある北限に近い、そのため、現在より寒冷な気候条件下では、本島周辺地域でサンゴ礁の発達は望めない、いいかえれば、本島上に露出する礁複合体としての完新統隆起サンゴ礁石灰岩および更新統琉球石灰岩は、両者とも現在に近いかあるいはより温暖な時期に形成されたものと考えられる。

喜界島の更新統から 得られた 230Th/234U サンゴ年代 値をまとめると、7グループに分けられることはすでに 述べた. したがって、本島上の琉球石灰岩は7回の温暖 期に形成された石灰岩体の集合体であるといえよう. Fig. 3 は、年代的にグループ分けされた 試料の産出位 置を地質断面図上に示したものである. 図中には、おお よそ 20 万年の年代を示した OA053 試料の位置が示さ れていない. それは、この試料が島の北部で採集された 異地性のサンゴ化石であり、その時期に形成された石灰 岩体の詳細(分布や上下層との関係など)が不明のためで ある. 20 万年内外の年代値を示す試料が数多く産出し ないのは, 当時の本島付近に, 独立した石灰岩体を残せ る規模の サンゴ礁が 発達して いなかったためと 思われ る. とはいえ, この年代を示す礁性サンゴが一試料とは いえ産出したことから、広がりは明確でないものの、付 近に浅海環境があったことは確かである.



Fig. 3 Geologic cross-section of the southern part of Kikai with the ages of each limestone unit. (1, Holocene Raised Coral Reef Limestone; 2, dune sand; 3, Upper Pleistocene Riukiu limestone, 4, Middle Pleistocene Riukiu Limestone; 5, Pliocene Somachi Formation, 6, autochtonous hermatypic corals dated; 7, allochtonous hermatypic corals dated; 8, ahermatypic solitary corals dated.)

島のほぼ全域で鮮新統早町層を被うのは、40~55万年の ESR 年代を示した中部更新統である。この範囲の年代値を示した試料の産出地点の広がりとそれを含む石灰岩の岩相などから、当時、礁性サンゴが成育できる極浅海環境が本島周辺に広がっていたと推論でき、このような環境下で形成されたサンゴ礁(一つの直径が6.5 km以上の卓礁の可能性もある)性石灰岩が、実は Konishi et al.(1974)によって琉球石灰岩古・中・新期部層および荒木石灰岩と細分された上部更新統の基底部を構成していると考えられる(Omura et al.,1985). 結論的には、本島上の琉球石灰岩が大きく中部および上部更新統に二分され、後者は前者を薄く被うだけで、いずれの段丘ともそれら両者で構成されているといえそうである.

島のほぼ全域に広がる 40~55 万年前の中部更新統に対し、上部更新統は、現在の地形と調和的に分布する. すなわち、12~13 万年前の 最終間氷期以降に形成された岩体が、島の最上位段丘を構成し、それより若いものほど下位の段丘を作っている. 上述のように、いずれもが薄く、現在の地表部だけを構成し、その中には、より

上位の 段丘構成物由来の 異地性 サンゴ化石を 時折含む (Fig. 3). 川嶺部落を中心として南北方向に延びる平坦 面上には、上部更新統の分布がまだ確認できない. ある いは、この段丘面は侵食地形なのかもしれない. また、 上嘉鉄部落北方約 650 m · 高度 40 m 付近に分布する 特徴的な岩相(典型的な Dunham, 1962, の grainstone) から産した単体サンゴ6試料が、平均82,000±2,000年 の年代値を示し、この値は城久部落南部の平坦面構成石 灰岩から 採集した 礁性サンゴ試料の 年代とほぼ 一致す る. このことから、城久南部にみられる礁性石灰岩がサ ンゴ礁として形成されていた当時,上記の grainstone は その礁前縁相(fore-reef facies)として堆積したものと考 えられる(OMURA, 1983). この grainstone と近接して, 同じ平坦面上には、50,000~65,000 年前に形成された 岩体が露出する。形成時期と堆積深度が全く異なると思 われる両者が同じ段丘面を構成している事実は、上嘉鉄 北方に広がる高度約 40 m の平坦面の一部は堆積面,一 部が侵食面であることを示唆しているように思われる. 平均 41,000±1,000 年の年代値を示した荒木石灰岩は, 分布高度が 30 m を超えることはない.この岩体は,島の南西端に位置する荒木部落周辺を模式地として分布するが,そのほか手久津部落南方や志戸桶部落付近などにも小規模に点在する.

寒冷期,例えば最終間氷期以前(12~13万年前から20 万年前の間など)の低海水準期に、一部が島の形をなし ていた可能性もあるが、本島が高海水準期を通して海面 上に姿を現すようになったのは、最終間氷期終了後と考 えられる. 前記のような7回の温暖期に形成された各岩 体の分布状態(Fig. 3)から、最終間氷期を含めそれ以降 5回の温暖期における海水面到達高度を推定することは 十分可能である. 例えば, 平均83,000±2,000年の年代 値を示したのは、上から2段目の平坦面(中川、1969、 の長峰段丘)あるいはそれに連続する部分からの5個の 礁性サンゴ試料と, 高度約 40 m の上嘉鉄北方の平坦面 上から産した6個の単体サンゴ試料であった。そして, 前者の礁嶺あるいはその付近という成育環境に対し、後 者は深度 120 m 以浅の礁前縁で生息していたと 推論さ れる(OMURA, 1983). いいかえれば, 当時, 海水面は現 在の海抜高度にして約 185 m の地点にまで到達してい て、百之台が、海面上に姿を現していたことになる。こ のようにみると、最終間氷期以降、順次訪れた亜間氷期 (Interstadial)ごとに、本島の面積を次第に増大させてき た海退の様子を理解しやすい(Fig. 4).

ウラン系列年代測定法の適用によって, 形成年代が更 新世中期~後期における高海水準期とされた隆起サンゴ 礁は、西インド諸島 Barbados 島およびニューギニア Huon 半島で知られてきた(Broecker et al., 1968; Ku, 1968; Mesolella et al., 1969; James et al., 1971; Bender et al., 1979; Chappell, 1974; Bloom et al., 1974;など). また、同じ南西諸島に属する本邦最南端 の波照間島も、喜界島同様、更新世中期および後期に形 成されたいくつかの礁複合体から成る琉球石灰岩によっ て被覆されている(小西, 1980; Omura, 1984). Table 4 は、ウラン系列年代に基づいて、それぞれの場所にお ける隆起サンゴ礁の対比を行った結果である. なお,喜 界島上の琉球石灰岩については、少なくとも Konishi et al. (1974)の区分(4単位)より多くの time stratigraphic unit に分ける必要があるものの、個々の unit の島 全域にわたる広がりや他の unit との関係が明確でない ため、 波照間島同様、 とくに新たに 命名せず、 ここで は、年代的区分に止どめた、Barbados 島および Huon 半島にも、酸素同位体ステージ7相当の、更新世中期に 形成された隆起サンゴ礁の存在は確認されているが(例 えば、CHAPPELL、1974; FAIRBANKS & MATTHEWS,



Fig. 4 A topographic cross-section of the southern part of Kikai, showing the sea level of each stage in Pleistocene.

1978),それらが上部更新統と統一的に命名されていないので,Table 4 のような表現になった.また,Huon半島においては,最終間氷期のものが Reef Complex  $\mbox{\it VIII}$  加 に二分できることが指摘されているものの (Bloom et al., 1974),喜界島においては,そのような細分ができないため,Table 4 では Reef Complex  $\mbox{\it VIII}$  として一括した.

このようにみると、喜界島の琉球石灰岩中のもっとも新しい2つの岩体と対比できる隆起サンゴ礁が認められるのは Huon 半島のみで、Barbados 島や波照間島では、その一方だけかあるいは両方ともが現在陸上に現れていないことが分かる。このことは、今まで繰り返し指摘されてきたように、地殻変動の地域差によると思われる。すなわち、現在50,000~65,000 年以若の比較的新しい礁複合体が陸上で確認されるのは、地殻変動が活発な地域といえる。このことについては、本島と波照間島の例を比較しながら、次章で述べる。

## 喜界島の変動史

Fig. 5 は、喜界・波照間両島の琉球石灰岩から 得た 30 万年以若の 230Th/234U サンゴ年代値とそれら試料の採集高度をプロットしたものである。こうしてみると、最終間氷期以若(更新世後期)の 試料の場合、 概して古いものほど 高所に在る 傾向が 認められる。 波照間島では、 $12\sim13$  万年とおおよそ 21 万年に中心がある 2 群の年代値、すなわち、2 回の間氷期相当の年代値を得ているが (OMURA et al., 1985)、それぞれ現海岸付近からあ

Table 4 Correlation of the uplifted coral reefs on Kikai with the counterparts reported from Hateruma, Huon Peninsula and Barbados.

| Stage | Kikai<br>years B.P.                | N*       | Hateruma<br>years B.P.                 | N*   | Huon Peninsula***<br>Barbados**** |
|-------|------------------------------------|----------|----------------------------------------|------|-----------------------------------|
| 1     | 38,000—46,000<br>(41,000±1,000)    | 7        |                                        |      | Reef Complex ∭b                   |
| 2     | 50,000—55,000<br>(53,000±2,000)    | 9        |                                        |      | Reef Complex IV Barbados 0        |
| 3     | 77,000—89,000<br>(83,000±2,000)    | 11       | 69,000—91,000<br>(81,000±3,000)        | 7    | Reef Complex V Barbados I         |
| 4     | 98,000—104,000<br>(101,000±3,000)  | 5        | 100,000-106,000<br>$(103,000\pm1,000)$ | 6    | Reef Complex VI Barbados II       |
| 5     | 115,000—138,000<br>(129,000±2,000) | 7        | 110,000—158,000<br>(128,000±7,000)     | 36   | Reef Complex VII Barbados III     |
| 6     | 204,000<br>+23,000 -19,000         | 1        | 191,000—256,000<br>(207,000±3,000)     | 20   | ⊚<br>Kingsland Terr.              |
| 7     | > 300,000<br>(400,000—550,000)     | 13<br>** | 300,000 or more?                       | 1    |                                   |
|       |                                    | (53)     |                                        | (70) |                                   |

(\*, number of samples; \*\*, ESR dates; \*\*\*, Bloom et al., 1974, Chappell, 1974 & others; \*\*\*\*, Broecker et al., 1968, Fairbanks & Matthews, 1978, & others.)

る高度までと幅広く産出するのが特徴といえる. 両島の 比較で注目されるのは、同時期に生息していた礁性サン ゴ化石が産出する最高高度に大差が認められることであ る. 例えば、最終間氷期の試料についてみると、喜界島 において, 海抜高度が 200 m を越える地点(AO239 と AO268 の 205 m)からも産出したのに対し、波照間島で 産出地点が 35 m を越えるものはない(これまでの 最高 高度は 126,000±6,000 年の <sup>230</sup>Th/<sup>234</sup>U 年代値を示し た AO235 試料の 34 m;未公表データ). この約 170 m の高度差は、 両地域における礁性サンゴの 成育環境 (深度)の違いによるものでは決してない。何故なら、共 生する渦鞭毛藻類の光合成可能範囲に生息範囲が限られ ていることから、多くの造礁性サンゴ類は数 10 m (30~ 50 m) 以浅部でしか成育できないからである. 勿論, 両 島間で、当時の海水面高度が 170 m も違うとは考えら れない. やはり、上記の高度差は、喜界・波照間両島間 における, 地殻変動(殊に, 垂直方向の変動)量の差異に よるといえよう.

小西(1967)が第四紀のサンゴ礁およびそれに伴う浅海 性炭酸塩堆積物を"検潮器"として取り扱い,そのよう な炭酸塩を頂く地域の地殻変動率を算定する一般則を提 唱したことは先に述べた.それによると,隆起や沈降と いった垂直変動量( $\Delta V$ )は、(1)ある 石灰岩体が 形成された水深(Ld)、(2)その岩体の現在の分布高度(Le)、および(3)岩体形成時と現在の海水準の差( $\Delta SL$ )から、次式によって推定できるとされている(詳しくは、Ko-Nishi et al., 1970、を参照されたい).

## $\Delta V = Ld \pm |Le| \pm |\Delta SL|$

また、ある礁性石灰岩体が形成されてから現在に至るまで、連続的に等速で変動してきたような地域では、上式で求められる垂直変動量とその岩体の形成年代( $\Delta T$ )から、変動速度(地殻変動率; $\Delta V/\Delta T$ )も算定できることになる。小西(1967)も指摘しているように、汀線ないし潮間帯にほとんど一致する堆積物(例えば、サンゴ礁やフジツボ帯など)の場合は、現在の高度をもって過去の海水位とすることができるが、一般に試料はもともと深度 Ld に棲息または堆積したものであり、過去の水準面を考慮するには、この量を厳密に評価しなければならない。しかし、実際は、ある岩体や地層に対するこの Ld 値の見積もりは決して容易ではない。 喜界島の 琉球石灰岩に関しても、形成年代が明らかになったすべての岩体の堆積深度を明確にすることができないのが現状である。

そこで、含有化石種・産出状態およびそれらを含む部



Fig. 5 Age-Altitude relations of coral samples from the Riukiu Limestone in Kikai and Hateruma Islands.

(Small and large circles with error bars mean samples from Kikai and Hateruma Islands, respectively. Numbers in parentheses indicate the rate of uplift in mm/y.)

分の 岩相などから、海水面付近で形成されたと 思われる, Ld 値の見積もりに大きな問題がない岩体のみに、 Konishi et al.(1970)の方法を適用し、喜界島の垂直変動量の推定を試みた(Table 5). 表中には、比較のため、地形学的に 旧汀線高度が 求められている(OTA et al., 1982) 波照間島の結果(OMURA, 1984) も示した.

先に述べたように、喜界島の琉球石灰岩は7回の温暖期に形成された岩体の集合体であるが、それらのうちで、海水面付近で"礁嶺(reef crest)"をなしていた部分を含むのは、 $40\sim55$  万年前に形成された中部更新統と、Table 5 に挙げた3岩体のみである。しかしながら、中期更新世における海水準が正確に推定されていないため、Konishi et al. (1970)の式を用いて変動量を算出できたのは、 $12\sim13$  万年前の最終間氷期と、その後の2回の亜間氷期のものだけである。それぞれの時期における海水面高度( $\Delta SL$ )としては、Moore(1982)によって示された値を用いた。また、最高分布高度( $\Delta SL$ )としては、 $\Delta SL$ ( $\Delta SL$ )をしては、 $\Delta SL$ ( $\Delta SL$ )をして試算を行った。前述のように、 $\Delta SL$ ( $\Delta SL$ )をしては質を行った。前述のように、 $\Delta SL$ ( $\Delta SL$ )をしては質を行った。前述のように、 $\Delta SL$ ( $\Delta SL$ )をしては質を行った。前述のように、 $\Delta SL$ ( $\Delta SL$ )を

 $0\sim10\,\mathrm{m}$  と、考えられる 最大幅を与えているし、 4SL 値の見積もりの 不確かさが  $\pm5\,\mathrm{m}$  を超えることはない と思われるので、以下で述べる 4V 推定値に大きな誤り はないといえよう・

垂直変動量 $(\Delta V)$ に関する推定値として、いずれの岩 体からも正の値が得られた. このことは, 各岩体が形成 されてから現在までの間に生じた垂直変動量の総和が、 見掛け上隆起を表し、少なくとも過去 12~13 万の間、も し一時的に沈降していた時期があったとしても, 両島に おいての総隆起量が沈降量を決して下回らないことを意 味している. 喜界島と波照間島の両島間で比較すると, 推定された変動量が著しく違い、前者からの推定値が例 外なく 4~6 倍高い. その一方で, 同一地域におけるそ れぞれの岩体から求められた値には、古いものほど若干 大きな値を示す傾向があるものの、とくに際立った差は 認められない. このような見掛けの変動量(△V)が、実 は、過去 12~13 万年間連続的に等速で行われてきた隆 起運動の結果であると仮定し、各岩体の形成年代(4T) を用いて、"変動速度(変動率;  $\Delta V/\Delta T$ )"も求めた(Table 5). その結果, 両島の間で, やはり変動速度に 大差が 認められ、喜界島が 4~6 倍も速く隆起し続けてきたよ

#### 中部琉球喜界島の地史

Table 5 Ages  $(\Delta T)$  and values of Ld, Le,  $\Delta SL$   $\Delta V$  and  $\Delta V/\Delta T$  for three limestone units on the islands of Kikai and Hateruma.

|       | ΔΤ      | Ld   | Le                       | ΔSL | ΔV                              | $\Delta V/\Delta T$                 |
|-------|---------|------|--------------------------|-----|---------------------------------|-------------------------------------|
| Stage | (years) | (m)  | Kikai<br>Hateruma<br>(m) | (m) | <u>Kikai</u><br>Hateruma<br>(m) | Kikai<br>Hateruma<br>(mm/y)         |
| 3     | 83,000  | 0~10 |                          | -20 | 205~215<br>43~53                | 2.5~2.6<br>0.5~0.6                  |
| 4     | 101,000 | 0~10 | <u>195</u><br>30         | -15 | 210~220<br>45~55                | $\frac{2.1 \sim 2.2}{0.4 \sim 0.5}$ |
| 5     | 129,000 | 0~10 | <u>225</u><br>41         | + 7 | 218~228<br>34~44                | 1.7~1.8<br>ca. 0.3                  |

(See text for details.)

うにみえる. すなわち, 算出された 見掛けの 年間隆起量が, 喜界島では  $1.7\sim2.6\,\mathrm{mm}$ , 波照間両島については  $0.3\sim0.6\,\mathrm{mm}$  となった.

以上のように、形成年代に 2~3 万年の差があるにも 拘わらず、それぞれの岩体から推定された AV 値にとく に目立った差が認められなかった. そのため、上記のよ うな 仮定の下で 算出された 年間隆起率が、 喜界島では  $1.7\sim1.8\rightarrow2.1\sim2.2\rightarrow2.5\sim2.6\,\mathrm{mm/y}$ , 波照間島では約 0.3→0.4~0.5~0.6 mm/y と、いずれの 島とも若い岩 体ほど大きな値を示すこととなった. もし, 先の仮定の ように、本当に過去 10 数万年間の変動が連続的な隆起 のみで、しかもその隆起運動が等速で行われてきたのな ら,この結果は,変動率が変化し,最近になるほど隆起 速度が増していることを示唆している。すなわち、等速 運動が真実なら、形成年代に 2~3 万年の差がある各岩 体から推定される変動量(AV)に、明瞭な違いがみられ るはずである. 例えば, 同じ深度で形成された2岩体の 年代に2万年の差があり、両者が 1.7 mm/y の変動率 で隆起しつづけてきた地域にあれば、両岩体の分布地点 の標高差が, 現在では 34 m に達することになる. さら に, 喜界島の琉球石灰岩の場合, 各岩体形成時の海水面 高度差を考慮にいれれば、最終間氷期とそれに引き続く 亜間氷期における両サンゴ礁の現在の分布高度差は、単 純計算で、おおよそ 70 m にも達していなければならな い. しかし, 実際のところは, Le 値として Table 5 に 示したように、 両者の標高差は(225-195=)30 m しか ない、結局は、この大きな不一致の原因として、喜界島 が過去 10 数万年の間, 等速で隆起し続けていないことを挙げねばならない.

波照間島についても、喜界島の場合と同様の傾向が認められた。 しかしながら、推定された変動量  $(\Delta V)$ ・変動率  $(\Delta V/\Delta T)$  値が極めて小さいため、 Ld および  $\Delta SL$  値見積もりにおける不確かさの影響が大きく、喜界島から 得られた推定値に比べて、信頼性は高くない。 そこで、変動率として約 0.3 から 0.6 mm/y という推定値が得られたことのみを記し、波照間島の過去 10 数万年間における垂直変動 (隆起) が等速であったか否かをここで論ずることは避ける.

いずれにしても、琉球石灰岩の分布高度などから、喜 界島が過去 10 教万年の間に著しく隆起したことだけは 確かであるが、ここで問題になるのは、喜界島を大きく 隆起させた変動が何時始まったかである. 今のところ, 開始時期を定量的に論ずることはできないが、以下この 点に関する筆者の所見を述べてみたい。ここで注目しな ければならないのは、先に述べた ESR 法で 40~55 万年 前のものとされた中部更新統の分布状態である.この石 灰岩体中に、当時の礁嶺を形成していたと思われる部分 があること、および岩体全体にわたって大型で産出状態 から現地性と判断できる礁性サンゴ化石が多く含まれる ことはすでに述べた、これらの事実は、この岩体が極浅 海環境下で形成されたことを示唆している.その形成当 時から、もし本島が  $1\sim2\,\mathrm{mm/y}$  オーダーの変動率で等 速に隆起してきたなら、この温暖期における海水面高度 が現在や最終間氷期の頃に比べ著しく低かった事実もな

いため、50~55 万年前の温暖期生成物は隆起して海抜 数 100 m の高度にまで達し、喜界島全体が現在よりは るかに大きな島になっているはずである.しかし、この ような中部更新統が島の最高所を構成している事実もな く, 現実には最終間氷期の礁性石灰岩によって被われて いる. すなわち, 40~55 万年から 12~13 万年前まで の間, 喜界島が著しく隆起しなかったため, 最終間氷 期における海水準が最高に達した時期には、本島全体が 完全に 海面下に 没したものと 考えられる. 以上のよう に、上部更新統の分布高度などから推定された著しい隆 起運動の開始時期は,数字で明確に示せないものの,少 なくとも 40~55 万年前以降であることは間違いない. その後、変動速度を次第に増しながら、喜界島が隆起し てきたと考えると、Fig. 3 に示した 現在の本島上の琉 球石灰岩を構成する各岩体間の層位学的な関係・それぞ れの岩相や分布状態、さらに上部更新統の各岩体から推 定された  $\Delta V$  および  $\Delta V/\Delta T$  値などすべてを統一的に 説明できる。 ただし、 おおよそ 20 万年前(酸素同位体 比ステージ 7 相当)の間氷期に、波照間島では現在の島 の中心部を構成するかなりの規模のサンゴ礁が形成され ていたにも拘わらず、喜界島で独立した石灰岩体を残せ る程の規模のサンゴ礁が発達していなかった理由は依然 ・不明のままである.

## まとめ

喜界島上の更新統琉球石灰岩から採集した計 53 個の化石サンゴ試料について, <sup>230</sup>Th/<sup>234</sup>U 放射年代値を求めた. そのうち一部の試料については, <sup>231</sup>Pa/<sup>235</sup>U あるいは電子スピン共鳴(ESR)年代も求め, 互いに結果を比較しながら, それぞれの年代値の信頼性を検討した. その結果として得られた主な知見は,以下のようにまとめられる.

- (1) 本島に分布する HANZAWA (1935) の Riukiu Limestone (琉球石灰岩) は、7回の気候温暖期に形成された石灰岩体によって構成されている.
- (2) それら温暖期とは、<sup>230</sup>Th/<sup>234</sup>U 年代測定により、古いものから 25 万年以上(ESR 法では 40~55 万年)前・おおよそ 20 万年前・12~13 万年前・約 10.1 万年前・約 8.3 万年前・5~6.5 万年前, そしておおよそ4万年前のものである。すなわち、それらは、Emiliani and Shackleton(1974)の酸素同位対比ステージ 5・7 と9あるいはそれ以前に相当する 3 回の間氷期と、ステージ5 から 3 までの間の 4 回の亜間氷期にあたる。
- (3) 更新世中期,おおよそ20万年前,本島付近には,現在独立した石灰岩体を残せる程の規模のサンゴ礁

が発達していなかった. それに対し, 酸素同位対比ステージ9あるいはそれ以前の温暖期に, 鮮新統早町層を基盤とするかなり大規模なサンゴ礁が発達した. この礁複合体が, 現在本島に分布する琉球石灰岩の主部を構成している.

- (4) 12~13 万年前の高海水準期(最終間氷期)に、喜界島は全体が海面下に没し、島の様相を呈していなかった。その後、約 10.2 万年前と約8.3万年前の2回の温暖期に、中部更新統を基盤に裾礁が形成され、本島の面積は順次増加した。しかし、さらに続いて訪れた2回の亜間氷期には、浅海域に礁性サンゴは棲息していたものの、サンゴ礁の形成までには至らなかったと思われる
- (5) このようにして形成された上部更新統は、いずれも薄く現在の地表部を構成するのみで、場所によっては直接中部更新統が地表に露出することなどから、島上に発達する段丘面の一部は侵食地形と考えられる.
- (6) 本島の過去 10 数万年間の隆起量は、波照間島 に比べ 4~6 倍多い、そのことが原因となって、比較的 新しい 5~6.5 万年前やおおよそ4万年前の亜間氷期堆 積物が、島上に露出する.
- (7) 喜界島を大きく隆起させた地殻変動は決して等速運動ではなく、最終間氷期以降その速度を次第に増してきたらしい。また、このような変動の開始は少なくとも、本島の琉球石灰岩の主部を成す中部更新統形成後であろう。すなわち、本島の隆起は ESR 法でサンゴ化石から得られた  $40\sim55$  万年前という年代より新しい時期の出来事だといえよう。

謝 辞 本研究を通し、非常に多くの方々から御親切 な御指導や御協力を得た. とくに, 金沢大学理学部地学 教室の小西健二教授および同学部化学教室の阪上正信教 授からは、 研究開始以来変わらぬ 御指導と 励ましを 頂 いてきた. また, 東北大学理学部地質学古生物学教室の 森 啓 助教授・横浜国立大学教育学部地理学教室の太 田陽子教授・東京都立大学理学部地理学教室の町田 洋 教授には、機会あるごとに種々有益な御意見を承り、石 油公団の辻 喜弘氏からは、数多くの貴重な試料の提供 を受けた. さらに、金沢大学低レベル実験施設の小村和 久助教授には、 ウラン・トリウム同位体の測定に際し, 多大な便宜を計って頂いた. なお, 本文中に引用した ESR 年代値は、ダイヤコンサルタント株式会社の大村 一夫博士と桜本勇治氏によって求められたものである. 本文を終えるにあたり、以上の方々に深く感謝の意を表 する.

#### 文 献

- Bender, M. L., Fairbanks, R. G., Taylor, F. W., Matthews, R. K., Goddard, J. G. and Broecker, W. S., 1979: Uranium-series dating of the Pleistocene reef tracts of Barbados, West Indies. *Geol. Soc. Amer. Bull.*, Part I, **90**, 577–594.
- BLOOM, A. L., BROECKER, W. S., CHAPPELL, J. M. A., MATTHEWS, R. K. and MESOLELLA, K. J., 1974: Quaternary sea level fluctuations on a tectonic coast: new <sup>230</sup>Th/<sup>234</sup>U dates from the Huon Peninsula, New Guinea. *Quaternary Res.*, **4**, 185–205.
- Broecker, W. S., Thurber, D. L., Goddard, J., Ku, T. L. and Matthews, K. J., 1968: Milankovitch hypothesis supported by precise dating of coral reefs and deepsea sediments. *Science*, **159**, 297–300.
- CHAPPELL, J., 1974: Geology of coral terraces, Huon Peninsula, New Guinea: a study of Quaternary tectonic movements and sea-level changes. *Geol. Soc. Amer. Bull.*, **85**, 553–570.
- DAVIES, T. T. and HOOPER, P. R., 1963: The determination of the calcite: aragonite ratio in mollusc shells by X-ray diffraction. *Mineral. Mag.*, 33, 608-612.
- EMILIANI, C. and SHACKLETON, N. J., 1974: The Brunhes epoch: isotopic paleotemperatures and geochronology. *Science*, **183**, 511–514.
- FAIRBANKS, R. G. and MATTHEWS, R. K., 1978: The marine oxygen isotope record in Pleistocene coral, Barbados, West Indies. *Quaternary Res.*, 10, 181–196.
- Hanzawa, S., 1935: Topography and geology of the Riukiu Islands. *Sci. Rep.*, *Tohoku Univ.*, 2nd Ser. (Geol.), 17, 1-61.
- IKEYA, M. and OHMURA, K., 1983: Comparison of ESR ages of corals from marine terraces with <sup>14</sup>C and <sup>230</sup>Th/<sup>234</sup>U ages. *Earth Planet. Sci. Letters*, **65**, 34–38.
- ————, 1984: Electron spin resonance. in M. R. ZIMMERMAN and J. L. ANGEL (eds) Dating and Age Determination of Biological Materials, 59–125, Croom Helm Ltd.
- JAMES, N. P., MOUNTJOY, E. W. and OMURA, A., 1971: An Early Wisconsin reef terrace at Barbados, West Indies, and its climatic implications. Geol. Soc. Amer. Bull., 82, 2011–2018.
- KAUFMAN, A. and BROECKER, W. S., 1965: Comparison of Th<sup>230</sup> and C<sup>14</sup> ages for carbonate materials from Lake Lahontan and Bonneville. *Jour. Geophys. Res.*, 70, 4039–4054.
- Komura, K. and Sakanoue, M., 1967: Studies on the dating methods for Quaternary samples by natural alpha-radioactive nuclides. *Sci. Rep.*, *Kanazawa Univ.*, 12, 21–66.
- 小西健二, 1967:太平洋域周縁礁性石灰岩の年代測定と

- 地殻変動率一生物源炭酸塩中の天然 $\alpha$ 放射性核種による過去 15 万年までの適用一. 第四紀研究, 6, 207-223.
- Konishi, K., Schlanger, S. O. and Omura, A., 1970: Neotectonic rates in the Central Ryukyu Islands derived from <sup>230</sup>Th coral ages. *Marine Geol.*, **9**, 225–240.
- Radiometric coral ages and sea level records from the Late Quaternary reef complexes of the Ryukyu Islands. *Proc. 2nd Int. Coral Reef Symp.*, **2**, 595–613.
- 小西健二, 1980:隆起サンゴ礁からみた最終間氷期以降 のアジア・フィリピン海プレート境界付近の地史. 第 四紀研究, **18**, 241-250.
- Ku, T. L., 1968: Protactinium-231 method of dating coral from Barbados Island. *Jour. Geophys. Res.*, 73, 2271-2276.
- Uranium in open ocean: concentration and isotopic composition. *Deep-Sea Res.*, **24**, 1005–1017.
- Mesolella, K. J., Matthews, R. K., Broecker, W. S. and Thurber, D. L., 1969: The astronomical theory of climatic change: Barbados data. *Jour. Geol.*, 77, 250–274.
- 中川久夫, 1967: 奄美群島 徳之島・沖永良部島・与論島・喜界島の地質(1). 東北大学地質古生物研邦報・no. 63, 1-39.
- 中川久夫, 1969: 奄美群島 徳之島・沖永良部島・与論島・喜界島の地質(2). 同上. no. 68, 1-17.
- 大村明雄・小西健二, 1970: 化石サンゴの示す見掛けのイオニウム年令の評価. 地質雑, **76**, 389-397.
- OMURA, A., 1976: Thorium and protactinium isotopes in some present-day hermatypic corals and their implications to dating. *Trans. Proc. Palaeont. Soc. Japan.*, N. S., no. 101, 271–290.
- 大村明雄, 1982: Uranium-Series Intercomparison Project (USIP) の活動について、化石, no. 32, 39-47.
- Омика, A. 1983: Uranium-series ages of some solitary corals from the Riukiu Limestone on the Kikaijima, Ryukyu islands. *Trans. Proc. Palaeont. Soc. Japan*, N. S., no. 130, 117–122.
- Limestone on Hateruma Island, Southwestern Ryukyus. *Ibid.* N. S., no. 135, 415–426.
- ———, Tsuji, Y., Ohmura, K. and Sakuramoto, Y., 1985: New data on uranium-series ages of hermatypic corals from the Pleistocene limestone on Kikai, Ryukyu Islands. *Ibid.*, N. S., no. 139, 196–205.
- 太田陽子・町田 洋・堀 信行・小西健二・大村明雄, 1978: 琉球列島喜界島の完新世海成段丘―完新世海面 変化研究への アプローチ―. 地理学評論, **51**, 109-130.
- OTA, Y., HORI, N. and OMURA, A., 1982: Age and

268

deformation of marine terraces of Hateruma Island, Southwestern Japan. Abstract of XI INQUA Congress, Moscow, 2, 232.

Schlanger, S. O. and Konishi, K., 1966: Contrasting bryozoa content of Plio-Pleistocene to present-day carbonates from Guam, Mariana Islands., and Kikai-jima, Ryukyu Islands, and its regional implications. Abstract of Papers, Proc. of the 11th Pacific Science Congress, Tokyo. 4, 35.

THURBER, D. L., 1962: Anomalous <sup>234</sup>U/<sup>238</sup>U in nature.

Jour. Geophys. Res., 67, 4518-4520.

POTRATZ, H. A., 1965: Uranium series ages of Pacific atoll coral. Science, 149, 55-58.

VALLENTINE, J. W. and VEEH, H. H., 1969: Radiometric ages of Pleistocene terraces from San Nicolas. Geol. Soc. Amer. Bull., 80, 1415-1418.

VEEH, H. H., 1966: Th<sup>230</sup>/U<sup>238</sup> and U<sup>234</sup>/U<sup>238</sup> ages of Pleistocene high sea level stand. *Jour. Geophys. Res.*, 71, 3379–3386.