【総説】

膨化のメカニズム

四 宮 陽 子 (Yoko Shimiya)

1. はじめに

膨化とは、加熱,発酵,化学反応あるいは減圧など の手段によって系内に気体が発生し,それを内部に取 り込むことによって体積が増加することをいう。しか し膨化調理の難しさは、どのくらい膨らむかよりも、 どのような形に膨らませるか、にある。膨化食品の形 態は、スポンジ状、クッキー状、空洞状、層状などバ ラエティーにとみ、それぞれ特徴のある気孔構造を持 っている。また同じスポンジ状であってもパンとケー キでは前者の方が気泡のきめが大きい(粗い)など、 気泡の分布にはコントロールが必要である。

そこでこの稿では、膨化のメカニズムを体積の増加 と気孔構造の形成の2段階に分けて考えることを試み た。なお、気孔構造の形成については著者が関わった 研究を中心に書かせていただいた。

2. 体積の増加

体積の増加は気体の発生による。したがって体積増 加に影響する第一の要因は気体の発生である。また発 生した気体の一部は系外に放出するであろうから、気 体の放出も大切である。このような気体発生によって 生地内部に圧力が生じ、それによって生地が粘性変形 することによって生地の膨化が進む。粘性変形が続く 限り膨化は進行するが、膨化調理では、加熱による変 性や乾燥などによって生地が硬化するために膨化は停 止する。したがってどこまで膨らむかに関しては、生 地硬化のタイミングも重要である。

以上から、体積増加に関わる重要な因子として、① 気体の発生、②気体の放出、③生地硬化のタイミング、 の3点が上げられる。

1) スポンジケーキの場合

水越ら¹は,スポンジケーキの膨化について,図1に 示したようなシリンダー内にケーキバッターをセット し,温度をコントロールしながら膨化したケーキバッ

* 実践女子大学

ターの体積を測定した。

彼らはケーキバッターの膨化を次のように考えた。 ①気泡は水中にトラップされている。②気泡内は空気 と飽和水蒸気から成る。③気泡内の総圧力は760 mmHgである。④ダルトンの分圧の法則が成立する。 ⑤加熱過程の気泡の放出はない。⑥気泡表面の表面張 力は無視できる。

以上の仮定からケーキバッター中の気泡内部の状態 について,

 $(\mathbf{p}_{\mathbf{a}} + \mathbf{p}_{\mathbf{w}})_{\mathbf{V}_{\mathbf{b}}} = (\mathbf{n}_{\mathbf{a}} + \mathbf{n}_{\mathbf{w}}) \mathbf{RT}$ (1)

を提出し、気泡内の空気量(mole)は温度が変化して も変わらないという仮定の下に、20°Cからt°Cに温度 が上昇したときの気泡体積

☑ 1. Apparatus for measuring cake batter volume and gas release temperature.

20-ml graduated cylinder; 2, 200-ml stoppered graduated cylinder; 3, cake batter; 4, liquid paraffin; 5, thermistor; 6, cake batter-liquid paraffin interface.
 文献 1)

~14

(494)

$$v_{b}^{t} = 2.53 \left(\frac{273 + t}{760 - p_{w}^{t}} \right) v_{b}^{20}$$
 (2)

を導いた。ここで、 p_a :空気の分圧 (mmHg), p_w :水 蒸気の分圧 (mmHg)、 v_b :気泡体積 (cm³)、 n_a :空気 の量 (mole)、 n_w :水蒸気の量 (mole)、R:気体定数 (8.31 E 7 erg mole⁻¹K⁻¹)、T:温度(K)、t:温度(°C)、 20:20°C、である。

この式から計算したケーキバッターの体積と,実測 値を示したのが図2である。図中の数値は小麦粉に対 する砂糖の割合で,砂糖の割合が変わると生地硬化の タイミングが変化することを示している。図2を見る と,予測値と実測値は非常によく一致している。この ことから,生地の膨化は,昇温による気泡内の空気の 体積膨張と,飽和水蒸気圧の上昇によることが示され た。図1を見ると,ケーキバッターの周囲はシリンダ ーと流動パラフィンで囲まれているので,気体の放出 はほとんどなかったと考えられる。

以上のスポンジケーキの研究は,温度によって気体 の発生をコントロールして,生地の全体積膨張を予測 した例と考えることができる。

2) 気体発生のコントロール

膨化調理には、気体発生の方法がいくつかあるが、

次にそれぞれの方法におけるコントロールを考えてみよう。

① イーストの発酵による CO₂の発生

CO₂発生のコントロールは、イーストの量、イーストの種類、イーストの耐性などの性質、温度、湿度や pH などの発酵条件、などが考えられる。

② 水蒸気圧による膨化

ケーキバッターのように水分を多く含んだ生地に 卵白の泡を入れて膨化させる場合は、1)に述べたよう に、空気の体積膨張と飽和水蒸気圧によって膨らむ。 したがって気泡内圧が決まれば、温度によって水蒸気 の発生はコントロールされる。

③ ベーキングパウダー (B. P)

B. Pは炭酸水素ナトリウムと酸性剤の反応によっ て CO₂ を発生する。CO₂ 発生のコントロールは、まず B. P の量である。また酸性剤が異なると温度による反 応速度が異なるので、酸性剤の組み合わせも重要であ る。温度は反応速度に大きく影響するので、温度上昇 速度も CO₂ 発生に影響する。

 ④ 沸騰の利用

シュウやパイのように、生地中に含まれた水分の沸 騰の蒸気圧を利用して、生地の4~5倍から10倍程度 まで膨化させるものである。この場合は、生地ペース トが流動性を保つ間に沸騰を開始しなければならな い。したがって、生地ペーストの100℃における流動特 性、水蒸気発生速度と放出速度、加熱による生地硬化 のタイミングなどが重要と考えられる。

3) 泡の種類

泡は分散状態によって,独立泡と連続泡に分類され る。独立泡は,ケーキバッターやドウ中の泡のように 1個1個の泡が独立した形で分散したものである。泡 が独立している場合は,膨化中の外部への気体の放出 は少ない。一方連続泡は,クッキー中の泡のように, 泡同士がつながった状態で分散したものである。この 場合は生地表面まで泡が連続することもあるので,気 体は放出しやすくなる。

図3は三田ら²)による,発酵ドウ中の内圧変化と体 積増加量および発酵による炭酸ガス発生量を測定した 結果である。また図4²)は,発酵過程のドウを液体窒素 に浸せきして急速凍結した後に凍結真空乾燥し,断面 を10倍に拡大して写真撮影したものである。両者を比 べると,発酵50分までは内圧も体積も徐々に増加して おり,気泡は独立に分散している。発酵50分を過ぎる と内圧は下がり始め,炭酸ガスの発生に対して体積の 増加が少ないので,ガスが外部に放出し始めているこ 日本調理科学会誌 Vol. 33 No. 4 (2000)

☑ 3. Changes of Internal Pressure, Amount of CO₂, and Increment of Volume with Fermentation Time (Dough 45g).

— internal pressure, $\cdots \oplus \cdots$ amount of CO₂, $-\bigcirc$ increment of volume.

文献 2)

72

とがわかる。図4を見ると発酵 50 分以上で気泡の合一 が始まっている。このように、気泡の分散状態が独立 泡の場合は気体の外部への放出は少ないが、気泡が合 一して連続泡になると、外部への気体の放出量が増加 する。

4) 生地硬化のタイミング

膨化調理の生地には小麦粉、卵、砂糖、油脂、水、 牛乳,乳化剤などの様々な生地材料が含まれている。 これらの材料の中で、焼き上がった製品の構造を形成 する主たる材料は、小麦粉である。ケーキやクッキー では卵、砂糖、油脂なども主要な材料で、気孔構造の 形成には重要であるが、骨格を形成して構造を支えて いるのは主として小麦粉と考えられる。また煎餅など 米粉や餅生地を主材料にするものもあるが、これらは 米粉や餅生地が骨格を形成する。したがって、生地硬 化に関わる加熱中の主要な変化は、小麦でんぷんある いは米でんぷんの糊化、小麦粉や卵に含まれるタンパ ク質の変性、および乾燥による硬化であろう。これら の変化に対して砂糖や他の副材料がどのように影響す るかが、硬化のタイミングを考える上で重要である。 このような観点からでんぷんの糊化やタンパク質の変 性に対する砂糖や乳化剤の影響を調べた研究はいくつ かある。ここでは水越ら3)による一連のケーキの研究 から引用した。

図5には表1の配合で調製したケーキバッターの, 昇温にともなう見かけの粘度と光透過率の変化が示され,図6から図8には,表2に示されたモデルシステ

図 4. Photograms of Cross Section of Fermented Dough in Different Times. 文献 2)

(496)

☑ 5. Light transmission and apparent viscosity of the cake batter during model baking.

文献 3)

表1. Formulation of Cake Batter

Ingredient	Weight (g)		
Cake flour	400		
Sugar	480		
Whole egg	600		
Foaming agent	20		
Water	80		

文献 3)

ムの光透過率の変化が示されている。図5を見ると, 見かけの粘度は79℃付近で急激に上昇するが,光透過 率は79℃から88℃までは上昇し,その後降下して96 ℃付近からまた上昇するという複雑な変化を示した。 モデルシステムの結果を見ると,79℃付近の粘度と光 透過率の急激な上昇は,主として小麦でんぷんに砂糖 が添加されて糊化温度が上昇したことによると考えら れる。これらの結果から,ケーキバッターの硬化の主 因は小麦でんぷんの糊化であり,砂糖添加は糊化温度 に大きく影響することが示された。

以上のように膨化における体積増加に関わる因子に ついて考えてきた。体積増加のコントロールは、イー ストや B. Pの選択や生地物性の調整のように加熱前 に行う部分もあるが、気体の発生、放出、生地硬化の タイミングを考えると、重要なコントロールは膨化中 の温度と時間の管理ではないかと考えられる。

 図 6. Light transmission of flour-water system (F-W) and flour-sugarfoaming agent-water system (F-S-FA-W). Arrows show points at which apparent viscosities began to rise abruptly.
 文献 3)

 ^{☑ 7.} Light transmission of whole egg system (WE), whole egg-sugar-water system (WE-S-W), and whole egg-sugar-foaming agent-water system (WE-S-FA-W). Arrows show points at which apparent viscosities began to rise abruptly.

文献 3)

(497)

☑ 8. Light transmission of prime starch-water system (PS - W), prime starch-sugar-water system (PS-S-W), and prime starch-sugar-foaming agent - water system (PS - S - FA-W). Arrows show points at which apparent viscosities began to rise abruptly.

文献 3)

3. 気孔構造の形成

膨化食品には前述のようにパンやケーキのようなス ポンジ状,クッキー状,シューのような空洞状,パイ のような層状など様々な形態がある。このような構造 を気体発生の後に実現するためには,加熱前の生地中 に気孔構造のデザインをセットする必要がある。気体 をスムーズに発生させるためには気体発生の場として の気泡核が必要である。いろいろなものが核になり得 るが,気体発生のコントロールに最も有効な核は微小 気泡である⁴⁾。実際の膨化調理においても微小気泡を 気泡核としているが,生地中の気泡核がどのような変 化を経て製品となるのかが、明確ではなかった。

日本調理科学会誌 Vol. 33 No. 4 (2000)

膨化食品の生地のような粘弾性体中に分散している 気泡の存在状態は、かなり複雑である。そこでパン生 地の、混ねつ、発酵、焼成過程を例に、初めに粘弾性 体中の気泡核(微小気泡)の存在状態を、次に、気泡 分散系に気体が発生する場合の気泡の成長について考 えてみた。

1) 生地中の微小気泡の存在状態

(1) 気体の拡散による気泡の収縮

図 9⁵⁾は、イーストを添加しない無発酵ドウ中の気 泡の経時変化である。図中の曲線は式(3)⁶⁾から予測し た気泡の収縮過程である。

 $(r^3 - r_0^3) + 2\sigma_d (r^2 - r_0^2) / P_{ao}$

 $= -6 (\ln 2) D_{app} X_w \sigma_d R T t / (H P_{ao})$ (3)

ここで、r:気泡半径 (m), r₀:元の気泡半径 (m), σ_d :ドウの表面張力 (N/m), P_{ao}:気泡外の空気分圧 (N/m²), D_{app}:小麦粉ドウ中溶存空気の見かけの拡散 係数 (m²/sec), X_w:小麦粉ドウ中の水の体積分率 (-), R:ガス定数(Nm/kmolK), T:温度(K), t: 時間 (sec), H:ヘンリー定数 (Nm/kmol) である。 この式はドウ中の気泡の収縮を次のように考えて導 いた。①ドウ中の気泡は空気と飽和水蒸気から成る。 ②ドウ中の気泡は表面張力の影響で内圧が周囲より 上昇し、それにしたがって気泡内の空気分圧も周囲よ り上昇する。③空気分圧の上昇によって、気泡界面の 水中溶存空気が未飽和の状態になり、気泡中の空気は 周辺の水中に溶解する。④気泡収縮のドライビングフ $_{1}$ ースは気泡界面の水中溶存空気濃度と飽和濃度との 差、律速は水中溶存空気の拡散である。

図9をみると、収縮する気泡の経時変化は推測値と ほぼ一致した。計算されたドウ中溶存空気の見かけの 拡散係数は、 $D_{app} = (3.2 \pm 1.5) \times 10^{-11} \text{ m}^2/\text{sec} (19^{\circ}\text{C})^{6}$ で水中の約 1/100 であったが、見かけの拡散係数にド ウの粘度や拡散のバリヤーなどの種々の因子を含ませ た結果と思われる。

Ingredient	System							
	F-S-FA-W	F-W	WE-S-FA-W	WE-S-W	WE	PS-S-FA-W	PS-S-W	PS-W
Cake flour (F)	100	100						
Sugar (S)	120		120	120		190	190	
Whole egg (WE)			150	150	150			
Foaming agent (FA)	5		5			8		
Water (W)	40	151	40	40		240	240	240
Prime starch (PS)						100	100	100

(498)

表 2. Compositions of Simple Model Systems for a Cake Batter

文献 3)

74

- ☑ 9. Characteristic Radius r'_c as Compared with Experimental Behavior of Bubbles in Wheat Flour Dough at 19 °C.
- ○, \bullet , \triangle , \triangle , \triangle , \Box , experimental; ×, characteristic radius r'_{c} . 文献 5)

図 10⁷ はイースト以外の小麦粉,水,砂糖,塩を配 合して,自動パン焼き機で無発酵のドウを混ねつし, 混ねつ後のドウ中気泡の分散状態を測定した結果であ る。曲線はベストフィットする対数正規分布を示した。

表3⁷¹は無発酵,発酵中および焼成後の気泡の分散 状態をまとめたものである。これらを見ると,混ねつ 3分後のドウ中には直径4×10⁻⁶~8×10⁻⁵mの気泡が 1.48×10⁸/m²も含まれているが,時間の経過にともな って数は激減した。したがってドウ中に分散した微小 気泡は前述のように消滅の過程をたどるのであるが, ここでもう少し詳しく減少の様子を見てみよう。

時間の経過にしたがって、気泡径分布の中央値は大 きい方へと移行している。図 10 B は気泡径分布から算 出した気泡の断面積分布であるが、気泡の全面積の減 少は少なく、分布が大きい方へ移行している。すなわ ち小気泡の消滅によってドウ中に溶解した空気が、大 気泡中へ離脱することによって分布が大きい方へと移 行しているのである。

これと同じことが図9にも見られ,図9の比較的大 きな気泡は成長しているが,これも消滅した小気泡の 空気が大気泡中に離脱したことによると考えられる。 これらの測定結果を見ると気泡の大きさによって消滅

☑ 10. Time course of air cell distribution in unfermented dough during aging.

A: cell size distribution, B: sectional area distribution. Lines are calculated by normal distribution function. Symbols are experimental data for samples aged for \triangle ; $3\min$, \diamondsuit ; $30\min$, \bigtriangledown ; $60\min$, \bigcirc ; $100\min$ and \square ; $160\min$, respectively. 文献 7)

するものと成長するものがあるように観察されるの で、次にその臨界について考えた。

(2) 粘弾性体中に分散する気泡の成長の臨界径

Gent と Tompkins⁸⁾ は粘弾性体中に存在する球形 気泡の力のバランスをつぎのように導いた。

$$\Delta \mathbf{P} = \frac{\mathbf{E}}{6} \left\{ 5 - \frac{4 \mathbf{r}_0}{\mathbf{r}} - \left(\frac{\mathbf{r}_0}{\mathbf{r}}\right)^4 \right\} + \frac{2\sigma}{\mathbf{r}} \tag{4}$$

ここで、 ΔP :気泡内外の差圧 (N/m²)、E:弾性率 (N/m²)、 σ :表面張力または界面張力(N/m)、r。:元 の気泡半径 (m)、r:気泡半径 (m)、である。すなわ ち、気泡内外の圧力差はその物質の弾性と表面張力の 合わせたものとバランスしているということである。 この式を図示したのが図 11⁵⁾である。ある大きさより 大きな気泡は、右辺第1項の弾性により、気泡が変形 した点で気泡内圧とバランスするが、小さな気泡は右 辺第2項の表面張力の影響が大きくなり、内圧が上昇 し続けることを示している。式(4)から内圧が極大値 を持たない臨界半径を求めると次のようになった。

(499)

ここ

膨化のメカニズム

日本調理科学会誌 Vol. 33 No. 4 (2000)

time	total number	median diameter	standard deviation	total sectional area
(min)	$(\times 10^{8}/m^{2})$	$(\times 10^{-5}m)$	(<i>o</i>)	(m^2/m^2)
aging				
3	1.48	1.5	0.18	0.046
30	0.51	2.4	0.18	0.035
60	0.32	3.0	0.19	0.035
100	0.25	3.5	0.18	0.035
160	0.19	3.8	0.16	0.029
fermenti	ng			
3	3.18	1.5	0.21	0.13
30	1.95	1.8	0.21	0.30
60	1.12	1.7	0.22	0.51
100	0.79	1.6	0.22	0.58
100^{*}	3.13*	1.5^{*}	0.21^{*}	0.25^{*}
160	0.84	1.6	0.22	0.56
160*	1.05^{*}	1.7^{*}	0.20*	0.53^{*}
baked				
	0.0096	4.1×10	0.42	0.62

(500)

表 3. Gas cell distribution in dough and in baked bread

*: fermentation with 3 punches.

文献 7)

〇, experimental; ——, calculated by Eq. (1) where $r_0=200$, 10, 1, and $10^{-1}\mu$ m. 文献 5)

である。

(1) と(2) を合わせて考えると、粘性体中の気泡は 表面張力の影響で内圧が上昇し、気泡内の空気が溶解 するために気泡は消滅するが、粘弾性体では、弾性が 作用する比較的大きな気泡は、力がバランスしたとこ ろで変形が停止することが導かれた。

ここで、図9と図10で用いた小麦粉ドウの臨界半径 を文献値を用いて算出した。 $\sigma: 0.043 \text{ N/m}^{9}$, E: $1.0 \times 10^4 \text{ N/m}^{5}$)を用いて臨界半径を計算すると、 $1.3 \times 10^{-5} \text{ m}^{5}$)であった。図9では消滅の臨界半径とよく合い、図10では正規分布の曲線からはずれる大きさと一致していた。

2) 気泡分散系における気泡の成長

前述のように、粘弾性体中に分散した気泡は、その 大きさによって存在状態が異なる。図 12⁷⁾は、図 10 に 示したドウにイーストを添加した発酵ドウの経時変化 で、A:気泡径分布、B:気泡の断面積分布、C:気泡 径分布の正規確率紙を示したものである。前述の表3 にはこの発酵過程の分布状態も記述されている。これ らを見ると発酵過程のドウ中の気泡数は、減少はする が、CO₂の発生があるので無発酵のドウより減少が少 なく、気泡径中央値も変化しなかった。また気泡の全 面積は大きく増加した、などの特徴が見られた。

図 12 A で気泡の大きさによる成長の違いを見る と、小気泡は正規分布を示したが、これらは時間とと もに数が減少した。一方、直径 10⁻⁴m 付近より大きな 気泡は、正規分布より数多く分布していた。これらの 大気泡は発酵が進むにつれて数が増加し、気泡の大き さもより大きくなることが示された。図 12 B では直径 10⁻⁴m より大きな気泡の断面積が大きく増加した。し 膨化のメカニズム

⊠ 12. Time course of gas cell distribution in fermented dough during fermentation. A: cell size distribution, B: sectional area distribution, C: cell size distribution plotted on normal probability paper with common logarithmic scale. Lines are calculated by normal distribution function. Symbols are experimental data for samples fermented for \blacktriangle ; 3min, \blacklozenge ; 30min, \blacktriangledown ; 60min, \blacklozenge ; 100min and \blacksquare ; 160min, respectively. 文献 7)

かし図 12 C を見ると, 直径 10⁻⁴ m より大きな気泡の 数の割合は全体の数 % であり, その数 % の大気泡中 に気体が集中して発生していることが示された。

次に,発酵ドウのガス抜きから焼成後の気泡分布変 化を見た。図13には、ガス抜きを3回行った直後の気 泡分布,その後60分発酵した焼成直前の分布,180℃ 45分間焼成したパン内部の気孔分布が示されている。 ガス抜きの気泡分布に対する効果は、気泡数が発酵初 期にまで回復し、大気泡は消滅して直径10⁻⁴m付近の 気泡が増加したことなどがあげられる。焼成直前には 小気泡が減少して大気泡が成長したが、ガス抜きの効 果で極端に大きな気泡はなかった。さて、焼成後の気 孔径分布を見ると、直径10⁻⁴m以下の気孔は観察され ず、したがって気孔数は焼成直前の約1/100にまで減 少した。

観察によれば、焼成前の大気泡の分布状態は、CO₂の 発生によって気泡周囲の膜が伸びきった状態で、その 膜の中に小気泡が数多く分布していた。したがって昇 温によって CO₂の発生が停止したために、小気泡の収 縮が急激に進み、大気泡の膜中に溶解したのではない かと考えられた。

発酵ドウの臨界半径は、文献値の $\sigma: 0.040$ N/m (38 °C)⁹, E:1.6×10³ N/m² (38°C)⁷, を式 (5) に代入すると, 0.75×10⁻⁴m⁷⁾ であった。したがって予測された臨界半径は実測値に近い値であり、物性値の正確な測定によって、より正確な予測も可能と考えられた。

以上のようにパン生地の発酵および焼成過程を例 に,粘弾性体中に分散する気泡の成長を見た。発酵ド ウでは CO₂ の発生があるので, 無発酵ドウに比較する と気泡の消滅は少ない。しかし収縮しつつある気泡の 内圧は上昇し続けるので, CO₂ の発生は, 収縮の無い 大気泡へと集中するのであろう。この傾向は, 焼成過 程において一層明確に表れた。

3. おわりに

膨化のメカニズムを体積の増加と気孔構造の形成に 分けて考えたのは、コントロールの工程が異なるので はないかと考えたからである。

膨化調理の難しさは、焼いてみないとどんな形にな るか分からない点である、という認識があるが、調理 工程があまりにも見事に組み合わされているために、 かえってどの工程で何をコントロールしているのか不 明確になっていた。

この稿における議論は不十分とは思われるが,著者 なりにまとめると,体積の増加は,気体の発生,放出, 生地硬化のタイミングが重要と考えられるので,膨化 中の温度や時間の管理が重要であろう。気孔構造に関 しては,加熱前,あるいは気体発生前の構造が重要で ある。気泡成長の臨界半径は加熱前の生地物性によっ てコントロールされることもあり,加熱前の生地調製 がその後の変化に大きく影響すると考えられる。

文 献

 Mizukoshi, M., Maeda, H. and Amano, H. (1980): Model studies of cake baking. II. Expansion and heat set of cake batter during baking. *Cereal Chem.*, 57, 352~355

(501)

日本調理科学会誌 Vol. 33 No. 4 (2000)

☑ 13. Gas cell distribution of fermented dough at proofing and that of baked bread.

A: cell size distribution, B: sectional area distribution. Lines are calculated by normal distribution function. Symbols are experimental data for samples proofed for \bigcirc ; 100min, []]; 160min, and \times ; baked bread. 文献 7)

- 2) 三田朝義, 松本 博 (1978):発酵 dough の内圧と気 泡の大きさの関係, 農化, **52**, 111~116
- Mizukoshi, M., Kawada, T., and Matsui, N. (1979): Model studies of cake baking. I. Continuous observations of starch gelatinization and protein coagulation during baking. *Cereal Chem.*, 56, 305~309
- 4) 四宮陽子, 矢野俊正 (1985): 食品膨化初期過程の解 析, New Food Industry, 27, 66~76
- 5) Yano, T., and Shimiya, Y. (1988) : Expansion of a spherical hole in elastic food materials with surface tension. *Agric. Biol. Chem.*, **52**, 3113~3117
- 6) Shimiya, Y., and Yano, T. (1988) : Rates of shrinkage and growth of air bubbles entrained in wheat flour dough. *Agric. Biol. Chem.*, **52**, 2879~2883
- Shimiya, Y., and Nakamura, K. (1997) : Changes in size of gas cells in dough and bread during breadmaking and calculation of critical size of gas cells that expand. J. Texture Studies, 28, 273~288
- 8) Gent, A. N. and Tompkins, D. A. (1969) : Surface energy effects for small holes or particles in elastomers. J. Polym. Sci. A-2, 7, 1483~1488
- 9) 熊谷日登美(1987): 食品膨化における基礎的研究, 東 京大学大学院博士論文