日本妊娠中毒症学会雑誌 第5巻,75-76頁,1997年

胎盤におけるThioredoxin-Thioredoxin reductase 系の酸化ストレスに対する防御効果

Protective Effect of thioredoxin-thioredoxin reductase system on placental dysfunction by oxidative stress

産業医大健康開発科学、同産婦人科 江島邦彰、南里宏樹、土岐尚之、柏村正道、池田正春

Department of Health Development and Obstetrics and Gynecology, University of Occupational and Environmental Health

Kuniaki Ejima, Hiroki Nanri, Naoyuki Toki, Masamichi Kashimura, Masaharu Ikeda

(目的) Thioredoxin(Trx)-Thioredoxin

Reductase(TR)系は、細胞内外の酸化還元状態を制御することにより抗酸化機能を有している。またTrx は、early pregnancy factor の主成分で、妊娠の維持に関与していることが報告されている」。一方最近、酸化ストレスが、妊娠中毒症の一因である事が示唆され²⁾、生体内で生じる活性酸素は、全身の組織を障害する。その結果生じる胎盤機能障害は、子宮内胎児発育不全や胎児仮死の原因となる。故に今回我々は、Trx-TR系の胎盤における細胞内の分布と組織内の局在を調べること、改定の分布と組織内の局在を調べることがあるミトコンドリアに着目して、酸化ストレスによる胎盤機能障害の防御機構としてTrx-TR系との関係を解明する事を目的とした。

(方法) 1) Trx、及びTRを、ウシ肝臓及び心臓より精製した。

- 2) 精製したTrx、及びTRを、ウサギに免疫してポリクローナル抗体を調製した。
- 3) 妊娠初期または、後期の胎盤より細胞質画分、及びミトコンドリア画分を調製した。
- 4) 調製した細胞質画分、及びミトコンドリア 画分のTRの活性を、DTNB還元活性にて測定 した。
- 5) 調製した細胞質画分、及びミトコンドリア 画分のTrx、及びTRの含量をImmunoblotting にて定量した。
- 6) Trx、及びTRの胎盤内の局在を免疫組織化 学的に検討した。

- 7) H₂O₂で失活したミトコンドリアFum arase に対するTrx-TR系の防御効果を検討した。
- (結果) 1) 胎盤におけるTrx、及びTRは、細胞質だけでなくミトコンドリアにも豊富に含まれていた。(Table-1)
- 2) Trx、及びTRの胎盤内での局在は、 cytotrophoblast、脱落膜、臍帯に認められた。
- 3) H₂O₂で処理したミトコンドリアの Fum arase活性の失活は、Trx-TR系により防御 された。 (Fig.1)

(結論)今回、我々はTrx-TR系の胎盤における細胞内の分布及び、組織内の局在を報告した。更に、酸化ストレスにより失活した胎盤のミトコンドリアより調製した酵素が、Trx-TR系により再生されることを示した。この事より、胎盤においてTrx-TR系は、酸化ストレスに対して防御機構として働いて、正常妊娠の維持に関与している可能性が示唆された。

(対献)

- 1) M. Matsui. et al.; Early Embryonic Lethality Caused by targed disruption of the mouse thioredoxin gene.: Developmental Biology 1996 178: 179-185.
- 2) C.A. Hubel et al. Fasting serum triglycerides, free fatty acids, and malondialdehyde are increased in preecl; ampsia, are correlated, and decrease within 48 hours post partum. Am J Obstet Gynecol 1996 174: 975-982.

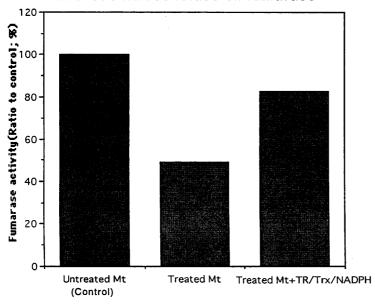
Thioredoxin-Thioredoxin reductase 系の酸化ストレスに対する防御効果

Table 1. Cytosolic and mitochondrial thioredoxin reductase activities of human early and term placenta

		Thioredoxin Reductase			
		Total Activity (%)	Specific Activity (mU/mg)	LDH (%)	S-C (%)
Cytosol	E	100ª	28.6	100°	9.7
	т	100 ^b	14.4±1.1	100d	4.0
Mitochondria	E	8.8	12.5	N.D	100e
	Т	8.8±1.1	6.5±0.9	11.0	100 ^f

 $a \ ; \ 0.2 \ Units/1 \ g. \ of placenta. \ b \ ; \ 0.4 \ Units/1 \ g. \ of placenta. \ c; \ 570 \ mU/mg.$

d; 192 mU/mg. e; 85.6 mU/mg. f; 35.3 mU/mg.


LDH; Lactate dehydrogenase. S-C; Succinate-cytochrome c reductase.

Values are expressed as means of two independent experiments or means ± S.D..

E; early placenat, T; term placenta, ND; not detectable.

Figure 1.

Protective effect of thioredoxin and thioredoxin reductase on fumarase

Treated Mt; H2O2 exposed mitochondria

TR; Thioredoxin Reductase

Trx; Thioredoxin