Microdetermination of 3,3'-Dimethyl-4methoxybenzophenone (NK-049) in vegetable by Mass Fragmentography

Hiroko KOBAYASHI, Osami MATANO and Shinkō GOTŌ

Institute of Environmental Toxicology, Kodaira, Tokyo 187, Japan (Received December 27, 1977)

A simple and sensitive mass fragmentographic method for quantitative determination of 3,3'-dimethyl-4-methoxybenzophenone(NK-049) in lettuce, carrot and sweet potato was developed. After gas chromatographic separation, NK-049 was determined by a mass spectrometer (MS) with a multiple ion detector (MID), The lower limit for detection by this method was 0.004 ppm, and the average recoveries of NK-049 were 83-92%.

INTRODUCTION

Application of gas chromatography-mass spectrometry (GC-MS) technique was popular in the biochemical and biomedical field. In contrast, only a few reports on the application of GC-MS in pesticide residue analysis have been published.^{1,2)} We developed the analytical method using MID for quantitative determination of trace level of NK-049 in lettuce, carrot and sweet potato.

EXPERIMENTAL

1. Reagents

Pure NK-049 was obtained from Nippon Kayaku Co. Ltd., and all other chemicals used in this study were of reagent grade.

2. Instrumentation

GC-MS analysis: A Shimadzu LKB-9000 GC/MS system and a Shimadzu High-Speed MID-PM 9060S were employed. The glc parameters, MS, and MID settings were listed in Table 1.

glc analysis: glc settings were given in Table 2.

3. Extraction of NK-049 from Vegetable

A 50-g sample of the homogenized vegetable was transferred to 500 -ml Elenmeyer flask followed by 30-min shaking with 150 ml of acetonitrile at room temperature. The sample was filtered and the filtrate was washed with The acetonitrile was n-hexane (100 ml). evaporated under vacuum at 40°C. The residue was dissolved in saturated sodium chloride (100 ml) and re-extracted twice with chloroform (100 ml+50 ml). Then the chloroform layer was separated, dried over anhydrous sodium sulfate and evaporated to dryness The residue was under vacuum at 40°C. dissolved in 3 ml of *n*-hexane and applied to a column $(10 \text{ cm} \times 1.8 \text{ cm} \text{ i.d.})$ of Florisil (Floridine Co.). The column was washed through with 100 ml of 10% chloroform in *n*-hexane and then with 30 ml of 30% chloroform in *n*-hexane. Then NK-049 was eluted with 100 ml of 30% chloroform in *n*-hexane. The solvent of the effluent was removed under vacuum at 40°C, and blown to dryness with a stream of nitrogen, and the residue was An aliquot of this dissolved in *n*-hexane. solution was then injected into glc and GC-MS.

RESULTS AND DISCUSSION

The mass spectra of NK-049 are shown in Fig. 1. A relatively strong peak of the molecular ion was observed at m/e 240 and this ion was used for monitoring of NK-049.

Calibration curve was prepared by known

302

日本農薬学会誌	第3巻	第3号	昭和 53 年 8 月
			1011000 1 0 14

	MS and MID operating litions.		
GC–MS			
GC column	glass (25 cm \times 3 mm i.d.)pack- ed with 5% PEG 20 M on Gas-chrom Q (80-100 mesh)		
Temperature	Sample: 260°C Separator: 260°C Column oven: 220°C Ion source: 270°C		
Electron energy	70 eV		
Trap current	60 µA		
Accelerating voltage	3.5 kV		
Carrier gas	helium, 30 ml/min		
Sample size	2 µ1		
MS gain	5		
MID			
Mass on MID	240		
MID gain Additional voltage	30 3500 V for mass 230 (BG) 3354.167 V for mass 240		

amounts of the chemical without internal standard. The calibration curve obtained showed excellent linearity, as seen in Fig. 2.

Figure 4 shows the mass fragmentogram of NK-049 in the vegetable. The separation by glc was not complete for the quantitative determination of NK-049 as shown in Fig. 3, because of the existence of interfering compound in the vegetable. And, a troublesome process for clean-up was required for precise

Table 2 GC operating conditions.

Instrument	Yanako G-1800 ECD (63 Ni), glass (2 m × 2 mm i.d.), pack- ed with 5% OV-17 on Gas- chrom Q (60-80 mesh)
Temperature	Column: 240°C Injection: 250°C Detector: 250°C
Carrier gas	nitrogen, 1.0 kg/cm² (6.6 ml/ min)
Chart speed	5 mm/min

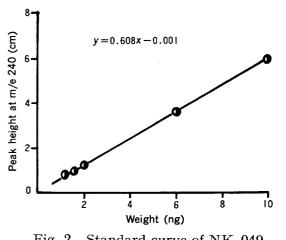


Fig. 2 Standard curve of NK-049.

analysis. On the contrary, MF analysis was free from any interfering compound, and gave completely separated peaks of NK-049 (Fig. 4). The sensitivity of this method is at the nanogram level.

The data in Table 3 indicated the good reliability of this method. This method proved substantially simple and specific.

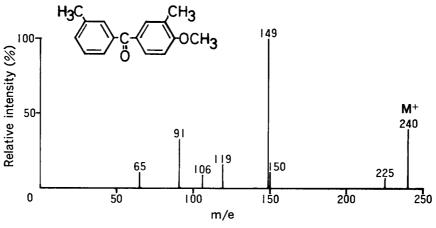


Fig. 1 Mass spectrum of NK-049.

Journal of Pesticide Science 3 (3), August 1978

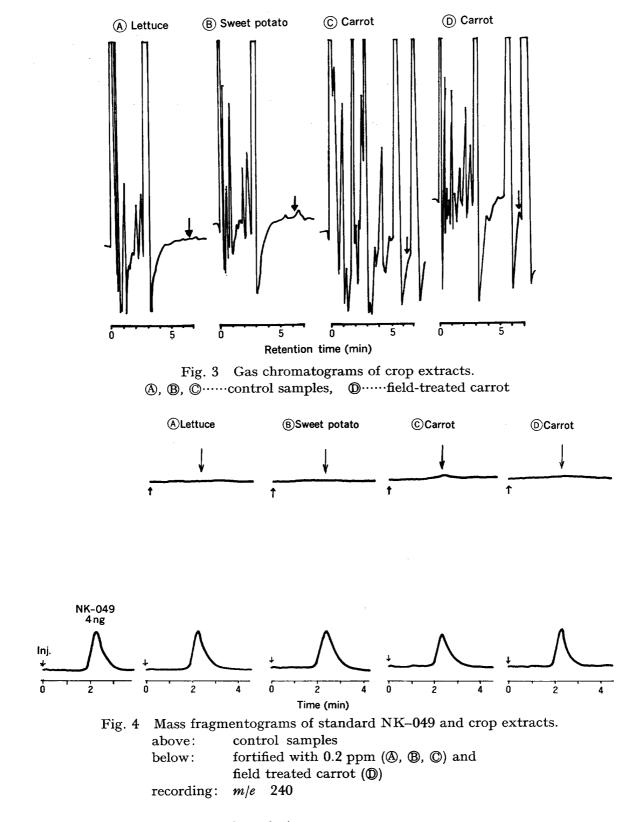


Table 3 Recoveries by MF and glc analysis.

	MF	glc
Lettuce	92.1 ± 4.1	83.8 ± 2.3
Sweet potato	86.9 ± 1.5	72.8 ± 3.8
Carrot	82.8 ± 1.1	73.6 ± 7.1

fortification: 0.2 ppm

REFERENCES

- B. A. Karlhuber, W. D. Hörmann & K. A. Ramsteiner: Anal. Chem. 47, 2450 (1975)
- 2) R. A. Chapman & J. R. Robinson: J. Chromatogr. 140, 209 (1977)

要 約

Mass Fragmentography による野菜中の 3,3'dimethyl-4-methoxybenzophenone (NK-049) の微量分析

小林裕子, 保野修身, 後藤真康

作物中の3,3'-dimethyl-4-methoxybenzophenone (NK-049) の定量に際し,選択性の高い方法である mass fragmentography (MF)の応用を試み,レタス, にんじん,かんしょ中の NK-049 を ECD と同感度 で,より選択的に定量する方法を確立した.最小検出量 は,0.004 ppm であり,平均回収率は,83~92% で あった.