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INTRODUCTION

Three bacterial strains of Agrobacterium sp.
(B-7, B-15 and B-17) and one of Acinetobacter sp.
(B-60) isolated from Ushiku loam upland soil
metabolized organophosphorus insecticide sali-
thion (2-methoxy-4H -1, 3, 2-benzodioxaphos-
phorin-2-sulfide; SLT) via cleavage of the P-O-
aryl and P-O-aralkyl linkages and/or demethyla-
tion,” and the metabolic reactions by them were
stereoselective,® B-7 and B-17 cleaved the P-O-
aryl and P-O-aralkyl linkages of the (S)p-enantio-
mer of SLT faster than those of the (R)p-enantio-
mer, whereas B-60 cleaved the (R)p-enantiomer
faster. Furthermore, the (R)p-SLT and (S)e-
ST were stereoselectively demethylated by B-17
and B-60, respectively.

This report deals with metabolism of other
organophosphorus insecticides by the above four
SLT-degrading bacterial strains and the sub-
strate specificity in cleaving the P-O-aryl or P-O-
alkyl linkage of phosphorus esters. Chemicals
used were SLT, fenitrothion [O,0-dimethyl O-(3-
methyl-4-nitrophenyl) phosphorothioate; SMT],
parathion (0,0-diethyl O-4-nitrophenyl phos-
phorothioate; PRT) and cyanophos (0,0-di-
methyl O-4-cyanophenyl phosphorothioate;
CYN), which were uniformly labeled with C at
the phenyl ring.

MATERIALS AND METHODS

Each of the isolated SLT-degrading bacteria
was inoculated into 30 ml of 1/10 diluted nutrient
broth (Difco) in a 100-ml Erlenmeyer flask and
incubated at 30°C with shaking. The overnight
culture was taken into four test tubes with
equal volumes (3ml), and the C-prepara-
tion of SLT (42.5 mCi/mmol, >99.9%), SMT
(60.5 mCi/mmol, >99.99%,), PRT (19.0 mCi/
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mmol, >>99.99%), or CYN (30.2 mCi/mmol,
>99.99)) in dimethy! sulfoxide (10 ul) was ap-
plied into each culture at a concentration of 20
ppm. The applied cultures were continuously
incubated under the same conditions. Liquid
media without inoculation were also applied and
incubated as controls in the same manner. Sam-
ples (10 pl) of the culture solutions were directly
analyzed by liquid scintillation counting and
thin-layer co-chromatography (TLC) after 0, 4,
8, 24 and 48 hr of incubation. Radioassay and
TLC were done according to the methods reported
previously.*®

“4C-PRT was purchased from NEN Research
Products, and other “C-preparations were syn-
thesized in our laboratory. The following un-
labeled compounds were used as authentic
standards: SLT, 2-hydroxy-4H-1,3,2-benzodioxa-
phosphorin-2-sulfide (SLT-DM), 2-hydroxybenzyl
alcohol (Sal-alc), 2-hydroxybenzoic acid (Sal-
acid), SMT, O-methyl O-hydrogen O-(3-methyl-4-
nitrophenyl) phosphorothioate (SMT-DM), 3-
methyl-4-nitrophenol (MNP), O,0-dimethyl O-(3-
methyl-4-aminophenyl) phosphorothioate (SMT-
NH:), O,0-dimethyl O-(3-methyl-4-acetylamino-
phenyl) phosphorothioate (SMT-NHAc), PRT,
O-ethyl O-hydrogen O-4-nitrophenyl phosphoro-
thioate (PRT-DE), 4-nitrophenol (NP), O,0-
diethyl O-4-aminophenyl phosphorothioate (PRT-
NH:), 0,0-diethyl O-4-acetylaminophenyl phos-
phorothicate (PRT-NHAc), CYN, O-methyl O-
hydrogen O-4-cyanophenyl phosphorothioate
(CYN-DM), 4-cyanophenol (CP), O,0-dimethyl
0O-4-carbamoylphenyl phosphorothioate (CYN-
CONH;) and O,0-dimethyl O-4-carboxyphenyl
phosphorothioate (CYN-COOH). SLT, Sal-alc,
Sal-acid, SMT, MNP, PRT, NP, CYN and CP
were purchased from Wako Pure Chemical
Industries, Ltd. (Osaka), and other reference
samples were synthesized according to the pre-
viously reported procedures®® with slight modi-
fications.

RESULTS AND DISCUSSION

No other organophosphorus insecticide ex-
amined was metabolized as fast as SLT by all of
the strains. Metabolite distribution in the
cultures after 48 hr of incubation is shown in
Tables 1-4.

As previously reported,?” each of the strains
metabolized SLT via cleavage of the P-O-aryl and
P-O-aralkyl linkages and/or demethylation.
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Table 1 Metabolite distribution in cultures?> Table 3 Metabolite distribution in cultures®

with szlithion after 48 hr of incubation.

with parathion after 48 hr of incubation.

9% of the applied 14C

9, of the applied 14C

Compound Compound

B-7 B-15 B-17 B-60 Control B-7 B-15 B-17 B-60 Control
SLT 70.6 737 57.7 1.3 88.1 PRT 910 899 929 933 982
SLT-DM 30 2.6 4.7 27.3 2.7 PRT-DE 0.9 0.9 09 11 08
Sal-alc 102 9.1 12.8 33.6 3.5 NP nd® nd nd 2 8 nd
Sal-acid 1.3 1.0 4.0 0.5 nd®> PRT-NH, nd nd nd 15 nd
I 2.3 1.9 3.6 2.3 2.0 PRT-NHAc nd nd nd 08 nd
II 4.5 3.7 8.6 22.2 0.5 Origin 0.3 04 02 1 2 nd
III 2.6 2.1 1.8 nd nd Others 2.4 2.9 24 2 2 10
v 0.5 0.4 0.6 1.0 nd Total 94 6 94.1 964 102 9 100 0
Origin 61 4.2 6.9 11.5 0.7 > BT B15 i ;
Others 1.4 0.8 1.3 9.1 0.7 , 5 anq B-17 were Agvobactevium sp.,
Total 102.5 99.5 102.0 101.8 98.3 and B-60 Acineiobacter sp.

2)  B-7, B-15 and B-17 were Agrobacterium sp.,
and B-60 Acinetobacter sp.
b)  Not detected.

Table 2 Metabolite distribution in cultures®
with fenitrothion after 48 hr of incubation.

9, of the applied 4C

Compound

B-7 B-15 B-17 B-60 Control
SMT 951 956 94.1 91.8 100.5
SMT-DM 32 3.2 34 3.7 2.7
MNP 07 10 1.0 26 nd®
SMT-NH, nd nd nd 04 nd
SMT-NHAc nd nd nd 0.2 nd
Origin 01 0.1 0.1 0.2 nd
Others 06 04 05 0.8 0.7
Total 99 5 100 3 99.1 99 7 103.9

2) B-7, B-15 and B-17 were Agrobacterium sp.,
and B-60 Acinetobacter sp.
®) Not detected.

Metabolites I and II were O-methyl O-(2-hydro-
xymethylphenyl) hydrogen phosphorothioate and
O-methyl O-(2-hydroxybenzyl) hydrogen phos-
phorothioate, respectively. HI and IV were
unidentified metabolites, which were more hydro-
philic than I and IL

SMT was slightly metabolized by the four SLT-
degrading isolates, with 91.8-95.69, of the ap-
plied *C being recovered as SMT within 48 hr.
MNP, resulting from the cleavage of the P-O-
aryl bond of SMT, amounted to 0.7-2.6%,
showing that the bacteria were weakly active in
hydrolyzing SMT. The amount of SMT-DM
(3.2-3.79,) in the inoculated cultures was little

by Not detected.

Table 4 Metabolite distribution in cultures®
with cyanophos after 48 hr of incubation.

9, of the applied 14C

Compound

B-7 B-15 B-17 B-60 Control
CYN 952 86 939 927 98 5
CYN-DM 3.1 28 31 39 25
Cp 0.4 02 05 21 nd™
CYN-

CONH, 2.4 97 20 02 nd
CYN-

COOH 02 03 01 nd nd
Origin 0.1 0.1 <01 <01 nd
Others 0.3 05 02 06 09
Total 101.7 99.2 999 996 1019

1) B-7, B-15 and B-17 were Agrobacterium sp.,
and B-60 Acinetobacter sp.
») Not detected.

larger than that (2.79) in the control cultures,
suggesting that SMT was mainly demethylated
via non-biological reactions in the liquid media.
The activity of B-60 was also very weak in reduc-
ing the nitro group of SMT to SMT-NH: followed
by acetylation to form SMT-NHAc. The total
amount of these metabolites was less than 0.69;
after 48 hr of incubation. The other three bac-
teria were not active at all in reductive meta-
bolism of SMT. All of the identified metabolites
have been also found in the metabolism studies of
SMT in soil#® and by SMT-degrading micro-
organisms.®

PRT was metabolized by B-60 via cleavage of
the P-O-aryl linkage or reduction of the nitro
group followed by acetylation. The degrading
activity was weak, and the amounts of NP, PRT-
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NH: and PRT-NHAc were 2.8, 1.5 and 0.89,
respectively. In the cultures with the other
three strains, no radioactive spots other than
those of PRT and PRT-DE were detected on the
autoradiograms, but radioactivity in the origin
and others fractions was slightly higher than
those in the control culture. The amount of
PRT-DE was almost equal in all of the inoculated
cultures, as well as in control cultures, suggesting
that deethylation of PRT in the cultures was due
to non-biological reactions. NP and PRT-NH;
have been reported!®!" as degradation products
by PRT-degrading microorganisms, and acetyla-
tion of the amino group leading to PRT-NHAc
was supposed to be a metabolism similar to that
of SMT-NH:, although acetylation of the amino
group of PRT-NH: by microorganisms may not
have been reported.

As in the metabolism of SMT, the P-O-aryl or
P-O-methyl linkage of CYN was cleaved by all
of the SLT-degrading bacteria, but to a small
extent. On the other hand, hydrolysis of the
cyano group of CYN leading to CYN-COOH via
CYN-CONH: was observed as a main metabolic
reaction, especially by Agrobacterium sp. (B-7,
B-15 and B-17). After 48 hr of incubation,
CYN-CONH: amounted to 9.79 in the culture
with B-15, which had the highest activity among
the strains examined. In a previous degrada-
tion study of CYN in so0il,!'? cleavage of the ester
linkages was a main degradation pathway and the
cyano group was not transformed. No nitrile
transformation of CYN has been reported in
metabolism by mammals,'® plants,!® and photo-
decomposition,® although hydrolysis of aromatic
nitrile by microorganisms has been well examined
in metabolism of nitrilic herbicides such as
bromoxynil'*® and ioxynil.!*»!'” It is known
that nitrile hydrolysis by microorganisms pro-
ceeds via two types of transformations: a two-
step reaction from the cyano group to the cor-
responding carboxylic acid wviae amide inter-
mediate!®!® and a single reaction of the cyano
group to the corresponding carboxyl
group.!»15:26.20  Transformation of the cyano
group of CYN by the SLT-degrading bacteria
seemed to proceed via the former metabolic reac-
tion.

A recent investigation with an organophos-
phate-degrading enzyme, parathion hydrolase,??
shows that the enzyme has a broad substrate
range for dialkylthiophosphates. Insecticides
hydrolyzed by this enzyme include methyl para-
thion, diazinon, fenitrothion, cyanophos, chlor-
pyrifos and coumaphos, in addition to parathion.
Another two Pseudomonas strains isolated from

soil and sewage were able to utilize eight or-
ganophosphorus insecticides as sole phosphorus
sources, showing a broad substrate range.?®
Munnecke?® has also demonstrated that the
crude phosphoesterase obtained from a mixed
bacterial culture hydrolyzed at least nine or-
ganophosphates.

Three SLT-degrading A4grobacterium sp. strains
(B-7, B-15 and B-17) hydrolyzed SMT and CYN
to a small extent, but not PRT. One Acineto-
bacter sp. strain (B-60) with the highest SLT-
degrading activity was slightly more active than
the Agrobacterium sp. strains in hydrolyzing SMT
and CYN. It also hydrolyzed PRT. These
results suggest that enzymes catalyzing the
cleavage of the P-O-aryl linkage of SLT in the
bacterial strains used were fairly specific to the
cyclic organophosphorus insecticide SLT and
that they are different from the phopshoester-
hydrolyzing enzymes described above in terms
of substrate specificity. The SLT-demethylating
enzyme in B-60 also seemed to be considerably
specific for substrate since the P-O-alkyl linkage
of SMT, PRT and CYN was hardly cleaved by
the strain. This high substrate specificity
might be due to the unique cyclic structure
of SLT.
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THEMSEBE LY IFA U SRBREACKS 7=
AFAy, NFFFVHEXTLT /I RADORH
FEEFIA
¥y FF ok P-O-7 Y —vE LK P-O-7 7 0¥ VG DR
Z BEOiAFMALIC E D R T B 38D Agrobacterium
sp. & 1 ¥k Acinetobacter sp. (%, 7 z=buFAtr, X
SFEFFLBIRVT I HAAD P-O-7 ) —vBLK P-O-7v¥
VB DRBIT RN TIE LA LEREZ RS LA PH0EELY
T, MEES NI Y 4 2 5 MR E DB R OB LR
BEEEEL A LT3 2 SR bz, —F, Acinetobacter
sp. i, Zx=boFFrBISFF L O=buHDT I/
HADETT, BIEThRBIERL 7 I/ EDT £ F v {Licsy
WIEME TR LT, E1, 3BkD Agrobacterium sp. (X7 /K
Ay 7/ EE 2EHIIVKARL, v 7/ R ADT I FikE
I ANKF UVERDSEEER ICED B,

NI | -El ectronic Library Service



