S03-1

Molecular and stable isotopic characterization of nitrification and denitrification in hadopelagic sediments

Manabu Nishizawa¹, Takuro Nunoura¹, Miho Hirai¹, Akiko Makabe², Katsunori Yanagawa³, Hidetaka Nomaki¹, Tomo Kitahashi³, Keisuke Koba², Ken Takai¹ ¹JAMSTEC, ²Tokyo Univ. Agri. Tech., ³Univ. Tokyo

海溝堆積物における窒素動態と微生物生態

○西澤 学¹、布浦 拓郎¹、平井 美穂¹、真壁 明子²、柳川 勝紀³、野牧 秀隆¹、北橋 倫³、木庭 啓介²、高井 研¹ ¹海洋研究開発機構、²東京農工大、³東京大学

Key word : nitrogen dynamics, hadopelagic sediments, ammonia oxidizing archaea , nitrate isotopes

Great progress has been made in understanding the nitrogen cycle in oceanic waters by the recent identification of ammonia-oxidizing archaea and anaerobic ammonia oxidizer (anammox), and by the following comprehensive approaches to clarify the abundance and activity of each component in the nitrogen cycle. However, nitrogen cycle in sedimentary habitats is still uncertain. To further characterize nitrogen cycle in the deep-sea sediments, we quantified gene abundance of putative nitrifers, denitrifers and anammox, and determine nitrogen and oxygen stable isotopic compositions of nitrate in the interstitial water in the hadopelagic sediment core taken from the Ogasawara Trench (water depth of 9760 m). Abundance of potential proteobacterial denitrifers correlated with that of nitrifers through the depth, and anammox also likely co-occurred with nitrifers. Further, nitrate isotope compositions suggest the enrichment of ¹⁸O by nitrification process and co-occurrence of nitrification and denitrification in nitrate reduction zone. Overall, the data suggest that aerobic and anaerobic processes of the nitrogen cycle coupled in the nitrate reduction zone in the hadopelagic sediments.

S03-2

Multiple functions of denitrifying bacterium *Azoarcus* sp. KH32C in rice paddy soil as revealed by whole genome analysis

Tomoyasu Nishizawa¹, Daichi Fujiii¹, Aihua Quan¹, Kanako Tago², Satoshi Ishii³, Kenshiro Oshima⁴, Masahira Hattori⁴, Shinnpei Uraguchi¹, Toru Fujiwara¹, Kazuo Isobe¹, Shigeto Otsuka¹, Keishi Senoo¹

¹Grad. Sch. of Agri. Life Sci., Univ. of Tokyo, ²NIAES, ³Div. of Environ. Eng, Hokkaido Univ., ⁴Grad. Sch. of Frontier Sci., Univ. of Tokyo

ゲノム解読から見えた水田土壌脱窒細菌 Azoarcus sp. KH32C の多彩な生態的機能

〇西澤 智康¹、藤井 大地¹、全 愛花¹、多胡 香奈子²、石井 ¹⁸、大島 健志朗⁴、服部 正平⁴、浦口 晋平¹、藤原 ¹、 磯部 一夫¹、大塚 重人¹、妹尾 啓史¹

1東京大・院農生命、2農環研、3北海道大・工、4東京大・院新領域

Key word : denitrifying bacteria, whole genome analysis, rice paddy soil

Agricultural soil is a major source of nitrous oxide (N₂O), one of the greenhouse gases and ozone-depleting substances, due to the application of nitrogen fertilizers. To mitigate the N₂O emission in agricultural soil, denitrifying bacteria showing a high proportion of N₂ in their denitrification end products and capabilities of reducing exogenous N₂O to N₂ were collected from rice paddy and rice-soybean rotation fields. *Azoarcus* sp. KH32C, possessing a strong N₂O-reducing ability, successfully mitigated the N₂O emission derived from the soils. The complete genome sequence of KH32C was revealed to obtain its physiological and ecological features in soil. The genome contained the coding sequences involved in the nitrogen metabolism of denitrification pathway and gene clusters encoding nitrogen fixation. In fact, KH32C exhibited nitrogen fixing ability. In addition, KH32C harbored predicted gene to establish symbiotic association with plants. To examine the plant associating ability of KH32C, seeds of a rice plant were inoculated with KH32C and grown on an N-deficient agarose plate for two weeks. After cultivation, KH32C was detected in the rice rhizosphere, and fresh weight of KH32C-inoculated rice plants was larger than that of the control plants. These ecological functions of *Azoarcus* sp. KH32C will be of great advantage for its survival in rice paddy soil ecosystem.