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   A  Hel-Hell interface and  second  sound  shock  waves  are  examined  in `He
 near  the superfluid

transition on  the basis of a phenomenological  time-dependent  Ginzburg-Landau model.  They  are

kink  solutions  of the equations.  The' former  is induced by  heat fiow and  has  a  structure  similar  to
that of the interface in type I superconductors  in a magnetic  field, This interface existts  when  the
fluid is inhomogeneous  with  some  regions  above  the transition  and  others  below the transition. It

generally moves  slowly  and  can  be stopped  for some  special  boundary conditions,  In simple

one-dimensional  cases  its motion  is described by a seheme  of  a modified  version  of iJhe Stefan

problem.  On the other  hand, in superfluid  states  finite thermal disturbances can  propagate  as a

shock  wave.  This paper is the first attempt  to examine  its properties fully in the nonlinear  regime

including the dissipation, Our theory can  be used  for aribitrary  temperature  discontinuity, As a

by-product  we  calculate  in Appendix  A  the dispersion and  attenuation  of  the linear second  sound

modes  in the presence of  arbitrary  thermal  counterfiow,  We  take  into account  anonlinear

coupling  between the order  parameter  and  the entropy  in the free energy.  This coupling,  the

so-called  dissipative coupling,  is indispensable for our  problems. We  also  discuss in detail a

transition from a normal  fluid state  to a  coexisting  state, which  is predicted to be discontinuous
suthciently  near  the A point.

gl. Introduction

   Systems Rear  critical  points are  very  sensitive  to external  disturbances. The  author

has been interested in nonlinear  effects  of  dissipative perturbations. There are  numerous,

potentially interesting exarnples  of  such  phenomena  and  most  of  them  remain  unnoticed.

In this paper we  investigate two  such  nonlinear  effects  induced by  heat fiow in `He
 near

the superfluid  transition. In the A region  we  can  start  with  a  relatively  simple  dynamic
model  to a  great  advantage.  The  first and  very  general  equations  were  proposed  by
Pitaevskiii) for a  complex  order  parameter  di(r, t) and  the hydrodynamic variables.

They are,  however, too general and  detailed and  have never  been solved  in nonlinear
regimes  out  of  equilibrium.2)'3}  We  stress  that  they  have  some  inhomogeneous  solutions  as

in the case  of  the famous Ginzburg-Landau equations  for superconductors  in a magnetic

field.`)'5) However, with  the progress of  the study  of  (linear) critical  dynamics it has been
shown  that  Pitaevskii's model  can  be much  simplified  in the A region  if only  relevant  terms

are  retained  in the dynamic equations.6}  We  thus  use  the simplest  model,  the so-called  F

model,6)  to investigate inhomogeneous  structures.

   Recently the author  has shown  the existence  of  a Hel-Hell interface in `He
 near  the

superfiuid  transition under  heat flow.')p"'O) That  is, a  superfluid  region  and  a  normal  fluid

region  can  coexist  and  be separated  by  a  thin interface.i')n'i3} The  temperature in the

superfluid  region  Tt. is siightly  below the transition temperature 7); as  1-  7k,1 lla -- 10-8Q3'`
with  heat flow Q,in erglcm2sec.  The thickness of  the interface 8c is of  the order  of  the
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correlation  length in the  superfiuid  region  and  is given by 3× 10-3Q-ii2 crn.  The

temperature gradient Sn the interfacial region  is of  the following order:

                     (TA-%)lecp-10-5Q5t`deglcm, (1･1)

where  Q is ln erg!cm2sec.

    However, in real  helium, as  a complicated  effect, vortices  can  be generated at  a

relatively  small  heat flow. In'our case  of  the  two  phase  coexistence  they  give'rise to a

small  temperature  gradient  in the superfluid  region.  It is necessary  to estimate  its

magnitude  near  the interface. We  use  the Gorter-Mellink relationi`)

                         dT
                             =(Apls)lvs-vn13.  (1'2)
                          du

Close to the interface the quantities on  the right  hand  sides  are  constants  dependent only

on  Q  because Tk- T=  71a- TL.o Q3'`. A  is proportional to Hall and  Vinen's coedicent  B

and  behaves as  (1- 71/t Th)-2i3'Xa as  T->  Z,i5) xA  being the critica]  exponent  o.f the thermal

conductivity.i6)  The difference of  the superfluid  velocity  vs and  the normal  fluid velocity
vn  is nearly  equal  to QfpssTa, where  ps is the superfluid  density and  s is the entropy.
After some  calculations  we  obtain

                         dT
                             ZEth(  Ta-  TLe )1 6'e, (1'3)
                          du

where  Eth is only  weakly  dependent on  Q and  is of  order  10-3. Thus, the ternperature

lowering due to the vortices  is negligible  if the  distance from the interface is less than

Et-higc--103gc.  Therefore, the temperature depression Ta-  CI'L., which  is intrinsic to the

interface, can  in principle be observed  if the lowering due to vortices  can  be separated.

Note that the vortex  resistance  can  be neglected  if the cell size  L  is less than  1034c
--10Q-ii2cm  where  Q is in eglcm2sec.  This condition  is realized  only  at  very  small  Q.

   In this paper we  also  report  a preliminary theory of  second  sound  shock  waves.  Lots
of  experiments  have  shown  the existence  of  a rich  field of  nonlinear  wave  phenomena  of

temperature variations  in･superfluid helium.i')ny22) Its theoretical study  is still in its

infancy, however. We  may  expect  considerable  progress also  in this problem  particularly
in the A region.

   First theories  of  the second  sound  shock  fronts were  due to Temperley23) and

Khalatnikov.3)'24) They neglected  the dissipation but could  calculate  the shock  velocity

za2 in the case  of  we4k  shock  waves  with  smal;  heat flow. Note that 42 is determined only
from  the conservation  laws  if the shock  front region  is regarded  as  a geometrical surface

where  discontinuity occurs.25)  Khalatnikov  expanded  u2  with  respect  to the temperature

discontinuity AT  as

               u2  ==  u2o(1+SAT  o6T 
log( u:o  o6TO )+ O(ti T2)1, (1･4)

where  u2o  and  6(of0T are  the 
'second

 sound  velocity  and  the specific  heat far ahead  of  the

shock  front. Here  the fiuid ahead  of  the front is assumed  to be in equilibrium  with

temperature  T, whereas  the rear  region  has a  temperature  TtlT  and  a thermal

counterflow.

  Experiments  supported  Khalatnikov's theory at small  heat flow.iS)N22) When  a heat
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pulse is injected into superfluid  helium, the leading edge  of  the pulse steepens  into a  front
if the temperature derivative in (1･4) is positive, whereas  the trailing edge  becomes a  front
if the.derivati've is negative.  Very interestingly the- derivative changes  its sign  at  three

temperatures below TR. Its experimental  consequences  were  summarized  in Ref. 22).

Particularly, the derivat.ive is negative  in the A region.  From  u2eocpsiJ2oc  l[ Z-  T)ii3, we

calculate

u2=  u2o(lr'l}n'  TZ, mTT  +'"), (1･5)

where  the weak  singularky  of  the specific  heat is neglected.  More  interesting features
would  be  nonlinear  effects  which  appear  with  increasing heat fiow. For  example,

Cummins  et  al.i") and  also  Turner22) observed  that za2 attains  its maximum  as  a  function
of  heat fiow in a temperature  region  where  the temperature  derivative in (1'4) is positive.
Also in our  case  near  the superfluid  transition, uz  has a  maximum  as  we  vary  the  heat

fiows on  the two  sides  separated  by  the front. However,  we  do not  know  whether  it is

observable  or  not  because it is realized  only  at  very  large heat flow. Finally we  must  aiso

mention  a  beautiful work  of  Kitabatake and  Sawada,20) who.derived  the Burgurs  equation

to describe nonlinear  second  sound  waves  and  investigated the shape  evolution  of  a  heat

Pulse.2i)

   The  purpose of  the present study  is not  only  to calculate  za2 but also  to examine  the

structure  of  the shock  front including the dissipative effect. Its thickness will  be found to
be of  the order  of  ev (1 -pszlpsi)  where  8 is the correlation  length and  psi and  ps2 are  the

superfiuid  densities in the rear  and  forward  regions  of  the front.

   This paper  is organized  as  follows. In g2 we  present the F  mode]  equations  and  make

them  dimens'ionless in a convenient  form  for our  purpose. In g3 we  show  inhomogeneous

stationary  solutions  representing  the interface and  boundary  profiles under  heat flow. In

g4 we  examine  propagating  solutions  in the ordered  phase  which  represent  second  sound

shgck  fronts. We  can  prove generally that the superfluid  density ahead  of the front must
be smaller  than  that behind the  front. This  is required  from  the positivity of  the  heat

production  in 
'the

 front region.  We  also  examine  a  well-known  stability  criterion  of

shock  waves,  the subsonic-supersonic  criterion,25)  in our  case.  However, we  cannot  give
complete  stability  analysis  of  the second  sound  shock  front at  present. In g5 an  explicit

solution  of  the shock  front is obtained  in the case  where  a  parameter  x, which  corresponds

to the GL  parameter  in superconductors,`)  is much  greater  than 1. In S6 the interfacial
motion  is examined  in the  two  phase coexisting  case.8)  In g7 we  ana]yze  ho'w a superfiuid

region  appears  at  a  cooler  boundary  as  the boundary  temperatures  and  the heat fiow are

changed  slowly.  This is a  transition from  a normal  fiuid state  to a  coexisting  state  and

is discontinuous suthciently  close  to the A point. We  believe that the arguments  are  more

persuasive  than  those of  Ref. 7). In S7 we  give a  summary  together with  objections  to

Turner's work.22)  In Appendix  A  we  calculate  the eigen  frequencies of  the linear

collective  modes  for the F  model  in the  presence of  thermal  counterflow.

S2. Medel  equations

   Let di(r, t) be a complex  order  parameter  and  m(r,  t) be the entropy  density per unit  ,

mass  multiplied  by polkB, where  po is the average  mass  density. The  simplest  dynamic



Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOffice,Progress  of  Theoretical  Physics

194 A. Onuki

model  is given by the following equations:6)

                   a6t {b=igo'[liiL]I gb-Ih[T-l'2  +4uol  cb[2] gl', (2'1)

                    0                                         aH
                                                                     (2･2)                     m==goIm(di*l72ip)+Ao72
                   6t                                         0m  

'

where  T represents  a  temperature deviation defined by

                             6H
                                ==  ofo+27o(m+7oxolip12). (2'3)                  T=  i:o+2?'exo
                             Sm                                '

Here H  is a Ginzburg-Landau free energy  defined by

           H  ==  1}ir [t r-ei ip i2+-}[7 ip l2+ uol ip [`+ 21x, (m+ 7o xol ip 12 )2], (2･4)

where  r-o, ue, xo and  7e are  static  parameters.  In equilibrium  we  have 6HISm:=O and  r

is a  constant,  whereas  in nonequilibrium  cases  T  can  depend  on  space  and  time  due to the

coupling  romlipI2 in H. We  should  require  ro>O  because the temperature should  increase

as  the entropy  is increased. The  coup]ing  romlipI2 is essentially  important for the

problems  in this paper  and  also  for that of  the vortex  motion  near  the A point.'5) 1'h and
Ao are  the kinetic coethcients  and  go is a  reversible  mode  coupling  constant  fixed as

                             go=  7hse!h, (2'5)

where  so is the average  entropy  per particle and  h is the Planck constant.  I'b is a  complex

number  with  RelUb>O and  Im  Irr1)!Relb'- 1 near  the A point.
   In this paper  we  neglect  the deviations of  the  pressure  and  the  mass  density. Gravity
effects  will  also  be neglected,  which  should  be important, however, when  the cell size  is

long and  the heat flow is small.  The mass  flow may  be assumed  to be zero.  Its

discontinuity across  the  shock  front is negligibly  small  near  the A peint. As  a result  the
normal  fluid velocity  vn  is much  smaller  than the superfluid  velocity  vs  and  nearly  equai

to -(11po)Js,  Js being the superfluid  current.  In our  notation  the superfiuid  density ps
and  Js =psvs  are  related  to ip by  ps =  (mff2kB TIIh2 )l di12 and  Js ==  (mHfeB Tlifh)Im( ip"i7ip ), mH
being the helium mass.6)

   We  also  omit  the random  source  terms usually  present on  the right-hand  sides  of  (2･ 1)
and  (2･2). In our  nonequilibrium  situations  deviations occur  only  at  wavelengths  longer

than  or  at  least comparabie  with  the local thermal  correlation  length g. We  can  thus

coarse-grain  the small-scale  fluctuations smaller  than e at  the starting  equations  (2･1) and

(2'2). We  will  be interested only  in average  profi!es of  di and  m.

   We  make  (2･1) and  (2'2) dimensionless by the following transformations.  New

spatial  coordinate  and  time  are  defined by

                    x'=leox,  t'=(geko21,/41iEIxT)t. (2'6)

The  wave  number  leo will  be chosen  to be the value  of  irliJ2 at  x=:  -co  or  at  x=ool  Then
it is of  the order  of  the inverse  correlation  length at  x=-oo  or  oo.  New  dynamic
variables  are  given

                 ¢ =(4uofko2)ip,  A=  Tlko2,  M=(2rolkoZ)m.  (2'7)
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The dimensionless temperature A  and  entropy  M  are  related  by

                           A=M+5a2idiI2,  (2'8)

where  r-o in (2･3) can  be set  equal  to zero  without  loss of  generality and

                            a==(7oZxoluo)ii2.  (2･9)

The  dynamic equations  are  of  the following forms:

               o9r ¢ =  ia-iA ¢  um bi[Am(  zi l, )2+l ol2]¢  ,                                                                    (2･10)

               o9,M=:: aSts+b2(  all,)2A, (2･n)

where

                 bi=(4 uoxo  )"21-hlgo, b2 ==  (4 uolxo)"2Ao!go.  (2･12)

g. is the dimensionless superfluid  current:

                      S=:Im(¢
"
 S. O)  J=Lop  l2 sil,e, (2･ 13)

where  e is the  phase of  ip (or di).
    It would  be convenient  to relate  the superfluid  velocity  vs  and  the  shock  front velocity

u2  to their corresponding  dimensionless quantities because the proportionaJity  constants

are  different. That is,

                   hO                                    0
              Vs=m.  a. 

0=(lakolMH)arre, (2'14)

              u2=desldt=[gofeo!(4uoxo)"2]dus7dt',  (2･15)

where  xs  denotes the position  of  the shock  front and  dus'!dtf will  be written  as  u  in g4 and
is of  order  1. Thus,

              v,f u,=h(4  za,x, )i,2f (g, m.  )( illie,1 (iiitg' ), (2･16a)

                   =3.2(1-  Tl l';,)it3(tO-e,1 YtS,'> (2･16b)

The  second  line is the estimation  at  saturated  vapor  pressure, where  uo=  u"8-i  with  za"

being a  universal  number.26)  The  temperature T  in (2'16b) represents  the/'typical value

in the fiuid. The  derivative 0(7fart can  be at  most  of  order  1 (see (4t6) below), so  that we

always  have vs<uz  as  T-  T>.

   We  also  express  the heat flow psvn  =- -sJs  iii 
-

 Q in superfluids  in terms of  g in (2･13).
That  is,

              (?=kB  Tagolm(di s[l ip), (2･17a)

                =o.s2 × lo!i(1- nyn)`i3(k,6)3g, (in cgs)  (2･17b)
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                        o

where  4!1.4(1-7Y7)i)-2'3A. We  will  choose  ko such  that koept･1, so  that the

proportiopality  constant  decreases as  T.  TA. Hereafter we  suppress  the prirnes of  x'

and  tf for simplicity  unless  confusion  can  occur.

    In (2･10) and  (2･11) there are  three dimensionless parameters a, bi and  b2. All of

them  depend  on  Ta-T  rather  weakly.  The  static  parameter  a  is of  order  1,i6) bilb2
=

 xoRel"elAo is the ratio  of  the time  scale  of  the entropy  to that of  the  order  parameter,6)

and  Ilbib2(ocgoZ) represents  the strength  of  the reversible  coupling  between the two

dynamic  variables.

                          g3. Stationary solutions

    We  consider  stationary  solutions  of  (2･10) and  (2e11). As  trivial soiutiens  in normal

fluid states  we  find O  :=O  and  A  =Ao+Box,  where  Ao and  Bo are  constants.  On the other

hand, in homogeneous superfluid  states  we  have A=-=Ao and  di=(IAo[-K2)i'2 exp(iKlx

+Aotlevo), where  Ae  is'a negative  constant.  The  dimensionless heat fiow is -b2Bo  and
-aK(IAol-K2),

 respectively.

    General solutions  can  be obtained  by setting

                        oeio:T-im,di, -t-etM=o.  (3-1)

First we  notice  that the heat fiow is constant:

                        d
                 ag+h,                          AiQ':-=(alko3)(4uo(?!goleBTa), (3t2)
                        du

where  use  has been made  of  (2'17a), Equatien (2'10) can  be rewritten  as

                  d2
                 

',ix
 2'¢

=[Ao+(1-'

 ilabi)(A-Ao)+ dii2] di , 
'
 (3･3)

'where

                              Ao:-7 awo,  (3'4)

We  multiply  (3e3) by ¢
'
 and  take  the imaginary part  to obtain

                     
-ESI

 3=  
fi(2Re

 i, )1¢  
2(A-i4e).

 (3･s)

Thus  (3･2) can  be transformed into

                        -2Z- lii-A=xr21 dil2(A-- A,), (3`6)

where

                 x=(b2!  Rei)"2  :=  (4 uoAo  lblZ/go2Re l'b )VZ . (3･7)

(A) Hel-Hell lnterface

   We  note  that  (3'3) and  (3'6) are  very  sirnilar  to the Ginzburg-Landau  equations  for

superconductors  in a magnetic  field.4) The correspondences  between the two  cases  are  as

NII-Electronic  



Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOffice,  Progress  of  Theoretical  Physics

A  HblHla17 intei;fizce and  Second Sound  Shocle Vi7xves 197

follows: temperaturee  vector  potential A, temperature gradient  e  magnetic  induction B
=rot  A, and  heat flow e  external  magnetic  field H.  The  x  is called  the GL  parameter
in the superconducting  case.  It is the ratio  of  the spatial  scale  of  1dil to that of  A  and  g.
Ginzburg  and  L4ndau  calculated  the normal-superconducting  interface in the case  x<1.

In our  case  we  can  also  construct  interfacial solutions  in the two  limiting cases  x<1  and

x>1.  In real  helium x  depends on  T-  TA rather  weakly.  Very close  to theA  point, say,

for IT- Tx-ll:Sle-3, we  find z2--1110,  whereas  far from the A point it is coftsiderably
larger than 1.7)'8>'ifi) See (iii) of  g8.
   The boundary conditions  for the interface solution  are  of  the forms

              A.A,=:-1,  di.[1-K2]ei"X'iWOt asx--oo,  (3･8)

               d
                 A-"Q'lb2:=:const, ¢

-,O
 asx.+co,  

'
 (3･9)

               du

where

                           QS= K(1-K2  ). (3･10)

We  have･set Ao=: -1,  Then  leo in (2･6) is ofthe  order  of  the inverse correlation  length ori

the superfluid  side  e-i. The  interfacial thickness is naturally  of  order  e. The  solution

can  be obtained  particularly simply  in the  case  x>1.  That  is, we  may  assume  the local
equilibrium  relation

                        I¢ l2;-A for x>1.  (3'11)

See Ref. 7) and  also  g5 of  this paper.  Then  (3'6) becomes

                        x2-,zd.exAtA(A+1)=o.  (3･12)

The  solution  which  satisfies  A(-oo)=:  
-1

 is uniquely  of  the form

                      A==-l}---32Ltanh2(-li-x-ix+yo), (3'13)

where  yo is a constant.  The superfluid  current  is obtained  from  (3･2) in the form

         g =  a-i Q'+ i (b2!ax )sinh( l x-ix+yo)l  cosh3(  5 x'ix  +yo). (3･14)

We  require  that A-O  as  x-O.  Then  S must  a]so  go to O as  x-O.  These  two  conditions

lead to yo:=tlog(2-vX3)=-O.66  and

                            Q'==3-i'2x-ib2. (3'15)

This means  that, if the temperature  on  the superfluid  side  is given, the heat fiow is uniqyely
determined. Equivalently, the temperature  on  the  superfluid  side  is a unique  function of
the heat flow.')

   On  the other  hand, in the case  x<1,  we  can  use  the  mathematical  techniques  of  GL.

The  calculations  are  rather  complicated  and  the .details can  be found in Refs. 7) and  8).

    In any  case  we  find a  unique  relation  between the heat flow and  the temperature on

  
')

 In the supercenducting  case  the external  megnetic  field, which  corresponds  to the heat flow, must  be equal  to

    the  critical  magnetic  field proportional  to Te-  T  if the interface is one･dimensional  and  at  rest.`)
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the superfluid  side. Let T.==lee2Ae=  
-leo2.

 Then, for any  value  of  x  we  obtain

        [ reol :=  Cm(4 zao QlgokB･ 71i )2'3 .

The  proportionality  constant

z>1,  (3"2) and  (3'15) yield

(3･16)

Cm can  be calculated  in the two  cases  x>1  and  x<1.

Coo=(Jiiaxlb2)2'3for x>I,

For x<1  we  use  resu]ts  of  ReL 8). Equation (52) of  Ref. 8) means

              C.:::es-2t3=(2B)ii2(1+co2)ii6x-ii3 forx<1,

For

(3･17)

(3･18)

where  Es  is defined in (54) and

                    co  =Im  bi1 Re  bi =:  Im  I'1}1 Re  Ib .

B  in (3'18) is a  function of  co  of  order  1 and  is calculated  numerically  beiow

Ref. 8).

   Now  it is convenient  to express  bi, b2 and  C. in terms  of  z,  (3'7), co,

and  
6),16)d27).2S)

                      w  ig  Re  bilb2 ::= xoRe  IbIAo .

Then,

            bi=:ttlf-tilge=-ZICe--xwii2tvxwii2, b2=:ffl=aExwmif2evxw-ii2,

(3･19)

 (48) of

(3･19),

(3･2e)

(3･21)

            c.N{.a 
3m',Z,y,

 
i'3

 lg; :ii;l: (3･22)

   To  get  the real  value  of  the temperature on  the Hell side  7-L. we  must  take  into

account  the temperature  dependence of  zao. We  estimate  TL. by  setting  uo=u*e-i  and

1T..1=6-2=8D-2(1- 7'L.171A)`'3. The  result  is

                        1-  7}ef Tli ==  A-Q3'`, (3,'23)

where  Aco -- 10-8 if Q is ergl  cm2sec.  The exponent  314 jn (3'23) is unchanged  even  if the

correction  to the dynamic  scaling  lawi6)'2')'2B} is taken  into account  as  long as  17bAo"Jg.
(B) Boundary  Profiles

   At  the boundary  wall  er must  go  to zero  even  in the  superfiuid  state.  In particular,
er =tanh(xl  s/2)  and  A=  

-1=
 const  in equilibrium,  where  the boundary wall  is placed  at

x=O.  In the presence of  heat flow this profile must  be modified.  Such  a  calculation  was

performed at  very  small  Q  by  Ginzburg  and  Sobaynin.2) In our  scheme  their results  can

be reproduced  simply  from  (3･6). Namely,  we  may  set  1 av2==tanh2(xl s/2)  in (3･6) to first
order  in Q tb obtain

                    Eil22A=x-2tanh2(xln)(A+1), (3e24)

where  A(oo)=-1.  The  solution  of  (3'24) can  be expreSsed  in terms of  the
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hypergeometric function F(a, B, r, z)  as")

               Atl  ==  c,(1- g2)eit2F(2a.,2cr-, E,+1,  
IIilg),

 (3t2s)

where

        Ei==vf21x,  ev± =ei12+V4 ±(Ei2+2)i'212, g==tanh(xlth). (3･26)

The constant  Ci is determined from  clttlldu =Q'lb4  at  x=  O, (3･2). Then,  the value  of  A

at  x=O,  Ao, is related  to Q' by

              Ae+1:=TCB(Q*lb2), (3e27)

              cB ==  r( a.  )r(a- )l vi2r(a+  +S)"(a-+S).  (3･2s)

Use has been made  of  the identiy F(2a,  2B, cr+B+1/2,  lf2):=:zi'21"(a+B+lf2)II'(ev+1

12)I-(B+112). Here CBtr-x for x>1  and  CBZ1.76Mforx<(L

   Equation (3'27) means  that there is a boundary resistance'arising  from the condition

4r =:O  at  the boundary. Let us  deRote the temperature at x  =O  by  T+(6T)B,  T  being the

temperature  far from the boundary. Then  assuming  AZ-eoT2(1-  7)XTa)2" we  have

              2y(6T)Bf(Ta-T)Z-CB(4uralb2gefeB7h)e2Q.  (3･29)

A  rough  estimation  can  be made  as  follows:

              Ri 
'=

 (6T)BIQ-- 10-3(1-  7Y  7)z )-i'3 deg cm2  pm-i. (3･30)

In most  experirnental  conditions  Ri is much  sma]ler  thait the Kapitza resistance  RK(A-1
deg cm2Wrmi,  typically),2) although  Ri diverges as  T-  7h.

    Next  we  calculate  the temperature at  x=e  in the two-phase  coexistence  case  (see
Fig.1). For  simplicity  we  assume  a very  small  heat fiow and  neglect  the vortex

resistance.  In this case  the  value  of  T  in the fiat region,  r.., is given by (3'16). The value

of r at x=O  will be denoted by To ==  leo2Ao=ITcoIAo. To  estimate  ro we  may  use  (3'27) to

TA

TooTo

T
Hen

HeI

x

-m-jS6T>B

*)In
 Ref. 2) the  temperature

dependence is different from

originating  from a wrong  order  estimation  in (4'33) of Rei. 2).

Fig. 1. The temperature  profile in the  coexisting

  case. We  are  neglecting  the  temperature

  Iowering due  te  vortices.

  is claimed  to change  over  a  distance l=go(Ta-T)-U2,

   that of  the correlation  length (oc(Tx--T)'2'3). Thiswhose

 temperature

is clear]y  an  error
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a  good  approximation,  although  it is the formula in the linear response  regime.  Then, we

find

               Iz'oillz`col'1=:CBQ"/b2=CBfeo-3(4uoalb2goleB7h). (3'31)

Using (3･16) we  obtain

              1Tol1IT-[ -  1 =  aCBI  bz Coe3'2 [-'t (lcf, ge,fls- i:i : <> 
Il
 l [iI ll ll:l

where  C2 is a  number  of  order  1. Therefore the  lowering at  the boundary  ITo -lz'..1 is
considerably  smaller  than  the intrinsic lowering 1r..1. As  a  rough  approximation  we  may

assume  the temperature at  x=O,  Tb, equa]  to 7U.

                         S4. Prepagating solutiens

   Next  we  assume  that ¢  and  A  depend on  space  and  time in the forms

                  O:::¢ (x-ut)eiWO`, A=A(x-ut).  (4'1)

We  may  assurne  u>O  without  loss of  generality. If u<O,  we  perform  the invexsion

transformation  x.  
-x.

 Then, (2･10) and  (2'11) are  transformed  into

             i(-l}-A-toe)¢ +u  EEII o=bi[A-  £
22

 +lol2] di , (4･2)

                         d
             uM+aS+b2                           A:r=const. (4'3)
                 ･ du

Equation (4･3) represents  the conservation  of  energy,

   Further we  assume  that the system  tends to homogeneous  superfiuid  states  both fer

x.-co  and  for x-oo.  Narnely, we  are  seeking  step-wise  variations  moving  with  a

constant  velocity  in superfluid  (shock fronts). The  b6undary  conditions  are  of the forms

              A-Ai,  O-rpii/2eiK!X 
'
 asx.-oo,  (4'4)

              A-A2,  O-}rpii2eiK2X+ieO asx.oo,  (4.5)-

where  Ai  and  A2  are  negative  constant  temperature deviations and  ee is a constant.  The
amplitudes  opi and  rp2 in (4･4) and  (4･5) and  the superfluid  currents  at  x=  ± oo  are  written

as

           op,=IA,1-Ki  rp,=IA,1-Kb2,  g,=rp,K,, g,=ny,KL. (4･6)

   We  derive some  relations  among  the parameters  at  x= ± oo.  Taking  the imaginary

parts of  (4･2) at  x  :!:  ± oo,  we  find

                     wo  :=  a-iAi+  uKi=aMiA2+  uKle.  (4･7)

E!iminating uao we  obtain

                        Ai-Ai=-au(Ki-Kle).  (4･8)

This relation  means  that the temperature discontinuity at  the shock  front results  in the

                                                        NII-Electronic  Mbrary  
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acceleration  (or deceleration) of  the superfiuid  velocity  ( 6fax )e. It cannot  be modified  by
the details of  the dissipative processes  occurring  in the front region.  From  (4･3) the
energy  conservation  leads to

                       u(M,-M,)+a(g,-g,)=O,  (4･9)

where

          Mi=(1+:a2)Ai+S'a2Ki2,  M2=(1+-l}-a2)A2+-lla2Kle2. (4･10)

Experimentally we  can  measure  Ai, A2, gi, g2 and  u.  The above  relations  constitute

two  relations  among  these five quantities. Especially elimination  of  za from (4･8) and
(4･9)'yields a  relation  among  Ai, A2, 8i and  g2,')

               a2(8irm82)1(AirvAz)=(Mi-sw)1(KirmKi).  . (4'11)

Here  we  show  a convenient  equation  of  u  derived from  (4･9) with  the ald  of  (4･8) and
(4･10):

       (1+ta2)u2-a(Ki+Kle)u+[t(Ai+A2)+Ki2+KKi+Kle2]=O. (4･12)

If we  assume  that the last term  of  (4･12) is negative,  then  the positive solution  of  (4･12)
is given by

         u=  
a(5t+aK2

 
h)
 +(i+- ±

-a2)rr 
"2[ta2(i+-l}a2)-i(K!

 +Kb  )2

            
-li-(Ai+Az)-Ki2-KiKhmKle2]i'2.

 
,(4･13)

   As  ought  to be the case,  in the limit Ai-A2  and  KlrK>,  the shock  velocity  tends to
the (linear) second  sound  velocity  cii in the homogeneous current-carrying  state,29)ly32) It
is the solution  of  the equation  (Appendix A):

                   (1+S-a2)cft-2aKcii+(A+3K2)==O. (4･14)

If the superfiuid  velocity  K  is zero,  we  obtain  the equilibtium  relation  cfi ='L op1 (1+-l-a2).
   Note  that the fiuid far from  the front must  be stable  with  respect  to small

disturbances. Obviously, the solution  of  (4･14) must  be real  and  [3-a2f(1+-l-a2)IKI2
<IAjlfor  1'=1, 2.33) However, in AppendixA  we  show  that a  stronger  conditi[on  is necessary  .

for the stability  of  the  second  sound  mode  propagating  in the reverse  direction of  the

superfluid  current.  It is independent of  a  and  simply  of  the form">

                      K,2<[A,Il3, Ki2<iA,1!3. (4･15)

This criterion  was  derived from  purely  thermodynamic  arguments  by sorne  authors.3`)'35)

   In the case  of  shock  waves  of  ordinary  sounds  the entropy  behind the shock  front must

 
')

 This relation  is analogous  to tlte so-called  Hugoniot  adiabati ¢  in the theory of shock  waves  of ordinary

   sounds2fi)  (see Fig. 1).

 
**)

 In experiments,  however,  vhe  shock  fronts have been observed  at the leading or  trailing edges  ofa  finite heat

   pulse, In such  dases (4･15) vyould be too  strong,

NII-Electronic  



Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOffice,  Progress  of  Theoretical  Physics

202 A. Onuki

always  be greater than  that ahead  of  the frent.25) The  difference of  the entropies  is

produced  by  the dissipation in the thin front region.  An  equivalent  relation  should  also

hold in the  case  of  second  sound  shock  waves.  In Appendix B  we  calculate  the entropy

production  rate  Rdis in the shock  front region,  which  is defined byi)

                 Rdis=1:du[b2(  2£l A)2+(Rebi)IDdisi2], (4'16)

where

                       D,i, ]=  [A- zZl2, +1 ¢ I2]e, (4･i7)

We  are  neglecting  the dissipation associated  with  the  shear  viscosity.  In terms  of  the

par,ameters at  x  =::  ± oo,  Rdis is expressed  in a  surprisingly  simple  form,

                      Rdis=h  u(  nyi- rp2)( Ki rr Kh )2, 
'
 (4･18)

Thus  if u>O,  we  must  always  require

                               rp,>v,.  
･
 (4･19)

-The  superfluid  density behind the front must  be greater  than that ahead  of  the front.
Otherwise, there is no  solution  satisfying  the boundary  conditions.

    We  also  notice  that, if Rdis=O, we  have  A:=const and  Ddis==O. Then  de!du =  
-(Ala

-tuo)1u=const
 from  (4･2) and  hence lOI2=const from (4･3). Namely, if either  of  rpi =if2

or  Ki=Kb  is assumed,  there remains  only  a  trivial homogeneous  solution.  In particular,
when  A2-Ai  is very  small,  the right-hand  side  of  (4･18) is of  order  (A2-Ai)3 and  (4･16)
means  that  the thickness  of  the front should  grow  as  iA2-Ail-i. It should  be noted  that

(4el8) is not  the suthcient  condition  for the shock  front stability.  To  examine  its

stability,  we  must  examine  the time-evolution  of  corrugation-like  disturbances on  the

front surface.  
'
 

'

    Further using  (4･6) and  (4'8) the condition  (4'19) is rewritten  as

                 ip ua op2=: S''<A2-Ai)[1-(Ki -- Kb )lau]>O. (4'20)

Therefore there can  be the following two  cases:

    (i) A2>AiandKi+K2<au,  (4･21)

    (ii) A2<Ai  and  Ki+Kle>aza.  (4･22)

In the first case  (4･21) the shock  front propagates into a  warmer  spatial  region.in  accord

with  the prediction  of  Khalatnjkov which  is valid  for small  values  of  Kt and  Kle, whereas

in the second  case  (4.22) the reverse  phenomenon  occurs.

    In the  following  we  will  fix the parameters ahead  of  the front, A2  and  Ki, and  exarnine

a  relation  between Ai and  Ki (or gi), We  may  set  A2  =-1  without  loss of  generality.

In Fig. 2 trajectories of  Ai and  Kl satisfying  (4･19) are  shown.  They  start  from  points

on  the line Ai=-1  in the direction determined by nyi>rpz, (4'19). The  starting  points,

where  Ai=A2  and  Ki=KL,  represent  homogeneous states.  As the distance from the

starting  point increases, the  discontinuity of  the shock  wave  increases. We  notice  that

NII-Electronic  
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o 05 1.0 ISAiIA2-1
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Fig. 2. The  shock  adiabatic  for a=1,  where  we  fix the  temperature  deviation A2 and  the superfluid

  velocity  Kb  ahead  of  the front. Each point  on  the ordinate  is a  starting  point of  an  adiabatic  curve

   pnd represents  a  homogeneous  state  in which  Ai=:A2 and  KT=K2. The  curves  AA'  and  BB'  are

  the trajectories determined by  ni=o2  and  by  u=ci,  respectively,  and  Ki=rmi Y on  the curve

  CC'. The adiabatic  cttrve starting  at Ki ='=-O  happens to cross  the  curves  BB'  and  CC' at the same

  point, which  is fortuitous due to the special  choice  of  a.

the case  (4･21) is realized  for Kb<Kc,  whereas  the case  (4･22) for Kb>Kc,  where

                        K,=a(4+a2)m"21A21"2. (4'23)
From  (4･15) we  notice  that a  must  be less than rk in order  that the fiuid ahead  of  the front
is stable  even  at  Kle=K:. The trajectories end  at  the marginal  curve  AA'  on  which

rpi= rp2. From  (4･6)r-(4･13) the condition  opi= rp2 yield

                   Kl=-Ki+a(1unKh2)]'Z, 
'
 (4･24)

                   Ai=-1-a2(1-Kle2)+2aKh(1-Kb2)"2.  (4･25)
This marginal  curve  and  the starting  line Ai=-1  crosses  at  a  singular  point S in Fig 2,

where  we  Ki =Kle=Kh
 from  (4･24). The  limiting behaviour near  this singular  point  is as

follows:

       rpi- rp2=A[(2+'}a2)(Kh  nv K2)-A],  Ai=-1-a(1+ta2)-"2A  , (4･26)

where  AiKi-Kle  and  IKla-KLI are  assumed  to be small.  The  first equation  of  (4･26)
means  that ltil<(2+i-a2)IK-Khl near  the singular  point.

   Here  we  must  refer  to the so-called  subsonic  and  supersonic  criterion.25) It requires
that stable  shock  fronts should  travel with  a  velocity  smaller  than the sound  velocity

behind the front ci  and  greater  than  that  ahead  of  the  front c2. In the case  of  ordinary

sounds  this criterien  is equivalent  to the positive entropy  production in the  front region  if

(02Vlap2)s>O') where  V=11p. In our  case  we  compare  u  with  the second  sound

velocities  at  x= ± oo,  ci and  c2:

     c.･--(1+uliLa2)rm'aKi+[(1 ÷ la2)-2(aK))2+(1+-l}-a2)"-i(FA,--3K)2)]i'2, (4･27) 
'

 
')

 This  inequality dees not  hold generally. Particularly, it is invalid near  the gas-liquid critical point.36)'3')
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where  1`:=1, 2 and  use  has been made  of

(4･14). We  consider  only  the sound  modes

propagating in the positive x  direction.") In

Appendix C  we  show  that the supersonic

condition  za>c2  can  be derived only  from

(4･19) and  hence holds as  ]ong as  epi>rp2,

whereas  the subsonic  condition  u<ci  holds
only  when  IKi-it is less than  a certain

value  for fixed A2  and  Kb. In Fig. 2 we

display the marginal  curve  BB' on  which

u=ci.  In the two  regions  ASB  and  A'SB'

we  find opi>rp2 and  u>ci.  As  known  from

Fig. 2, the two  conditions  hold at  least when

A2mAi  is small.  In fact, to first order  in

A2ndAi we  have

  za -  c2  :-r cl-  u

       #. 2 [a2Kh2-(1+ i a2)(A2

        +3,&2)]-"2 (rp,-rp,)>o. (4･28)

In particular, if we  assume  Kb=O,  we  find

      ulc,  
-1or-

 i-( ij,1rp,-1). (4･29)

As  T.  Tx, (4･29) is asymptotically  equiva-

lent. to the result  of  Khalatnikov, (1･4),
where  u2fu2o  in his notation  corresponds  to

ufc2  in our  notation,

   Keeping  A2  and  Ki  held fiked and

changing  Ki from  Ki, we  can  also  find that

with  decreasing Ki  for K2  >  Kc  untill

a maximum  when  ulci  :1.  In Appendix C
zarnax as  a  function of  K>  in the  form

L5

1

A(ocTmTx>

oA2At

      u  increases with  increasing K

ulci  approaches  1 from  above  1.

       we

Fig. 3. In the inset a  
"rarefacation"

 shock  wave  is

  shown  schematically.  The  region  ahead  of  the

   front is in thermal  equilibrium  and  there is a  heat

  flow in the  negative  x  direction in the back

  region.  In the figure we  fix the temperature

  deviation A2. The horizontal axis  denotes the

  superfluid  current  density in the back region,  ei,
  divided by IAz13'2, where  3i is proportional to the

  heat fiow. The  two  dimensionless numbers  Mai

  and  Ma2 are  the  Mach  numbers  with  respect  to

  the rear  and  forward media,  respectively,

                      i for KL<  Kb  or

                    Namely,  za attains

  calculate  the maximum  shock  velocity

          UMaX  
=-s(iliitfat

 a2)+[  (s(illliilti6 
a,)1

2+

 
i

i

ua

-l

tllllil:l,
2

] 
ir2

, (4 3e)

where  we  have set  A2:= 
-1.

 The  ratio  urnaxlc2  is the maximum  of  the Mach  number  with

respect  to the medium  ahead  of  the front, where  c2 is defined by (4･27). In particular,

 
')

 Thus,-if u>c2,  small  perturbations on  the  front surface  will  not  penetrate into the fluid ahead  of  the front,

   If u>ci,  they can  be propagated  behind the front as  linear combinations  of  the  two  second  sound  modes,

   whereas,  if st<ci,  only  as  the second  sound  mode  propagating  in the negative  x  direction. If the two

   conditions  ">ci  and  u<  c2  are  satisfied,  the conservation  laws  require  that the perturbations  cannot  separate

   from the surface.  This  argumentZ5]  is very  plausible, but is not  rigorous  owing  to the highly non!inear  nature

   of the sihock front.

NII-Electronic  



Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOffice,Progressof  TheoreticalPhysics

A  HlaLl]ieUintehace and  SlacondSbund Shock rvZives 205

whenKh=O,  we  have  a  simple  expression

umaxlc2  ::: [(i+-ltaz)1(1-i6 a2)]U2. (4-3])

At  this maximum  we  also  have Ki=ial(1-+,a2)i'2 and  [Ail=1+i-a21(1-f,sa2). In Fig. 3

we  write  the two  Mach  numbers  Mbi=  ulci  and  Ma2=  ulc2,  and  IAil as  functions of  gi in
the  case  K2=O  for a==l.

S5. Shockprofiles

   The shock  profile can  be calculated  very  simply  in the case  x2>1  as  in the case  of  the
interface profile, where  x2'-(Rebi)b2  is defined by (3･7). In this section  we  assume  x2>1

and  also  Im  bi ==O,  since  Im  bi gives rise  to no  essential  difference in the  final results.

   Let us  first set  up  the equations  for ij and  g  from  (4･2) as

A+(

(b,

ddu

ddu

e)2+rp=-1
 d22rpdu2

 ij-1 4rp2(

+u)g+(a-iA-to,)ny=o.

dtth7
 rp)2+-ii-b,-i-{f [#' ･ (5･1)

(5･2)

We  will  first neglect  the right-hand  side  of  (5･1) and  will  check  self-consistently  that it is
in fact small.  Note  that the  magnitude  of  the deviation of  A  from the average  is of  order

A2-Ai  and  that of  (devdu )2 from  the average  is at  most  of  order  2K(Ki-Kh)=2K(Ai
-A2)fau,

 where  K  is the greater of  ]Kil and  IKle1. Thus, if 2K<aza,  we  simply  have

Then  (5･2) and

rp =- 
-A

 .

(4･3) are  rewritten  as

(5･3)

(b,ddu+u)3-armi(rp+ateo)rp=O,(5･4)

[b,ddu+(1+ta2) u]  rp 
-
 ag  ==  const  . (5･5)

g can  be eliminated  tQ give

bzb2£
Z,

 rp+[b,+(1+12a2)bi]
  du
 du  ij

.=  ny2+[adio-(1+12a2)u2]rp+const. (5･6)

The right-hand  side  of  (5･6) should  be of  the form (op -  iji) (rp -  ij2) since  the left-hand side

vanishes  as  x-  ± oo.  The  width  of  the  front region  is known  to be given by

We  introduce y

ls=u[b2+(

and  F(y) by

     y=xlls  
,

i+S-a

F(y)

2)b,]1(rp,-ny2)･

=(v,-ij)1(o,-ij,).

(5･7)

(5･8>
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Then (5･6) reads

                          d2                                 d
                       E.  dy,F+  ,ly 

F=(1-F)F,  (5･9)

where

       . eD=(opi-z?2)(bib21za2)[b2+(1+-ll-d2)bi]-2.  (s･lo)

The  boundary conditions  are  F(-oo)=:O and  F(oo)=1.

    If eDK112,  F  approaches  1 monotonically,  whereas,  if eD>112,  it oscillates  around  1
for large y.  In real  helium we  have  b2hbi') and

                   E.=(ij,-v,)(b,lb,u2)--(1-op,1rp,)zv.  ･ (s･11)

Therefore, eD  appears  to be considerably  smaller  than 1 in any  case.  If sD<1,  (5･9) is
solved  to give

                            F;lf(1+eY).  (5･12)
Thus,

                 ny (x)=5(opi+ rp2)- S(rpiT rp2 )tanh(xl 2l, ). (s･ 13)

A  similar  profile is known  for the pressure  variation  in the case  of  weak  shock  waves  of

ordinary  sounds.25}  The  shock  thickness  is roughly  of  the  following order  in the original
units:

            ko-il, 
--

 e(4 zaolzo )"2(Aofgo )1 (rpi- rp2) t- Sl (1-ps2fpsi ), (5'14)

where  e is the correlation  length assumed  to be of  the same  order  on  the two  sides  of  the

front aRd  psi and  ps2 are  the superfiuid  densities on  the two  sides.  Equations (4･16) and

(4･18) means  that the shock  thickness  grows  as  11(rpi-rp2) irrespective of  the value  of  x.

Thus  (5･14) will  be valid  even  if x<1.

   Now  we  can  estimate  the  right-hand  side  of  (5･1): the first term  '-(1un  rp2ini)ls-2, the
second  term  ---(1-rp21rpi)21s-2 and  the third term  '-(1-op2loi)bi"'ls-i.  Because biSls
from  (5･7), the third term  is largest and  is more  precisely of  order  (bibz)-i(1-,rp2lai)(A2
-Ai).

 Thus  the right-hand  side  is sma]ler  than the  deviation of  A("-A2-Ai)  by the

factor x-2  even  if 1-  op21opt is not  small.

                           g6. Interfacial motion

   Thermal disturbances in superfluids  propagate rapidly  in the form  of  second  sound

waves  or  shock  waves.  Those in normal･fluids,  on  the contrary,  obey  the thermal

diffusion equation  and  their time  scales  are  much  slower  than  those  in superfluids.  Then,

what  is the time  scale  of  temperature  variations  in the coexisting  case?  The  answer  is
that the interfacial motion  is slowed  down  by  the slow  relaxation  in n6rmal  fluids.B)

   In most  cases  we  can  neglect  the  rapid  and  small  temperature  variations  on  the

superfluid  side  as  compared  to those on  the norrnal  fluid side. The problem  is reduced  to

 
')

 This is because w=-(RebiYb2=xo(Re  I'b)IA,S1.i6),Z7LZS)

NII-Electronic  



Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOffice,  Progress  of  Theoretical  Physics

A  HbLIibff intedece and  Second Sound  Shacle Pekeves 207

a  modified  version  of  the Stefan problem.")  Let us  consider  one-dimensional  cases  with  a

superfluid  region  in O<x<xi(t)  and  a normal  fluid region  in xi(t)<x<L,  where  xi(t)  is
the  interfacial position  and  L  is the cell  size. First, we  assume  that the characteristic

temperature variation  in the normal  fluid region  is much  greater  than that in the superfluid
region.  Then  we  have

                      T(x,t)=Ta  for xSxi(t).  (6･1)

Second, note  that the heat flow in the superfluid  region  Q is nearly  constant  over  the region

and  that the  latent heat across  the interface is negligibly  small,  because the entropy  gap
implied by  (3･16) is proportional  to 71x-TL..8) Thus  we  obtain  the second  boundary
condition  at  the interface:

                             (A Odr" ), =  Q , <6･2)

where  A is the thermal  conductivity  and  the left-hand side  is the heat current  extrapolated

to the interface on  the normal  fiuid side.  Note  that  the right-hand'side  is replaced  by
-

 T:LIS(ixVdt in the usual  Stefan problem, AS  being the enttopy  gap. We  call (6･2) the
modified  Stefan condition.  Of course  T  obeys  the thermal  diffusion equation  in

xi<x<L:

                         
'EII'T=

£ (A!x)6iil T,  (6･3)

where  x  is the specific  heat. If we  give  the value  of  Q and  one  additional  boundary
condition  at  x  ==L,  the equations  are  then  complete  and  we  can  in principle calculate  xi(t)

and  T(x,t).

   The  simplest  example  is the case  in which  the  superfluid  region  expands  with  a

constant  velocity  vi=duildt.  Then  07;!Ot=-vi67Yax and  (6･3) is integrated to give

                        dT
                       A",inL, 

=Lvix(Tfu
 7>)+Q.  (6･4)

Here A=A*( 7Y Ta-l)"X" where  A' and  xx(=O.42)i6)  are  constants  and  the weak  critical

singularity  of  x may  be neglected.  If the cell size  is suthciently  long, T  tends to a

constant  Tli far from  the interface. It is given by

                            7]irm Tn=Qlvix. (6'5)

Experimentally, if Q  and  TL are  given, the  velocity  vi is uniquely  determined by  (6'5).
   On  the other  hand, a  norma]  fluid region  expands  in a quite different, way.  Let us
supply  a  heat flow (?w greater than O  from  the warmer  boundary x=L.  If the fluid is in,

the superfluid  state  for t<O,  a normal  fluid region  emerges  for t>O  as

                      y,(t)-- [( Q.-Q)t]"mXA)1(2-"A) 
,
 (6 ･6)

where  yi 
--

 L-xi  is the thickness  of  the  normal  fluid region.  Details of  the  c:a!culation  can

be found in Ref. 8).

  
*)
 This is a problem  of  a  diffusion equation  with  moving  boundaries. One  additional  bpundary  condition  is

   necessary  to determine the boundary motion  as  compared  to the usual  case  of  fixed boundaries.3S)
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S 7. Transition from  mormal  to coexisting  states

   We  are  interested in the stability  of  a stationary  normal  fluid state  under  heat

flow.'}'9)'39> The  heat flow is in the negative  x  direction and  the temperatures  at  the

boundary walls,  x=O  and  L, are  denoted by  7}) and  Ti with  7b<  Ti. A  superfluid  region

will  emerge  from  the coo]er  boundary x;O  as  the three parameters Q, Tb and  Ti are

varied  slowly.  For simplicity,  we  consider  only  stationary  states  and  the boundary
conditions  wili  be assumed  to be changed  much  slower  than  the thermal  relaxation  time
of  the system  ( --LZIDT,  DT  being the characteristic  value  of the thermal diffusivity).

   Let  us  consider  the following situations:

(i) We  fix the heat fiow being subtracted  outside  at  x=O,  Qe and  that  being supplied

inside at  x  =L,  Qi. If 6Q!  Qo- Qi is positive and  very  small,  the fluid will  be cooled  as

a whole  quasi-stationarily. A  Hell layer will  emerge  when  Tb is lowered below a  certain

value,(ii)

 Ti is fixed above  7-la. Then  there is a  unique  relation  between Zl-b and  Q in each

stationary  state.  If 7"b is lowered  below  Tx (or if Q  is decreased with  Tb $lightly  below
7>), a Hell,layer will  emerge  at  a  certain  va]ue  of  7'b.

(iii) To is fixed slightly  below  71i and  Ti (or Q) is varied,  A  Hell region  will  emerge  if

Ti is smaller  than a certain  value.  This  case  is essentially  the same  as  (ii).
   We  shall  see  that the normal  fiuid state  will  become linearly unstable  iC Tb is smaller

than  a  critical  temperature  7"lic, where  TA-  7kc=const  Q3i`>O. Our  main  results  are  as

follows: (1) 71a-' 71,c<Ta-%  for x>1,  whereas  TA-Tbc>7)z-  l"t. for x<1.  Then  the
fiuid is bistable for x<1  (see Fig. 5 below). (2) Moreover, for x<1,  the transition at

T'v 7-kc is an  inverted bifurcation. The fluid will  jump from a  normal  fluid state  to a

coexisting  state  with  an  interface separating  the  two  phases. Consequently, Tb changes

discontinuously in the first case  (i), whereas  Q increases discontinuously in the cases  (ii)
and  (iii). In the following we  give the detailed calculations  and  discussions.

   For  simplicity  we  consider  the case  in which  the thermal resistance  due  to vortices  can

be neglected.  Equation (1'3) indicates that the vortex  resistance  is always  negligible

when

                         L<elhi e. -- 10 Q- 
'i2cm,

 (7･1)

where  Q is in erg/sec  cm2.  We  further neglect  the boundary lowering from  the

estimation  (3･32). Under (7･1) the temperature  at  x=:O  is nearly  equal  to 7L.. For

example,  in Bhagat's experiment  Q was  of  order  105 cgs  and  the right-hand  side  of  (7･1)
was  of  order  10N2cm,  which  was  probably  even  smaller  than the size  of  his thermometer.

On the other  hand, in Ahlers' first experiment,ii)  Q"-1 cgs  and  L'-1  cm,  and  (7･1) was
satisfied.

   We  first investigate the linear stability  analysis  of  the normal  fluid state.  We

linearize (2･10) around  the solution  ep=O  and  A=Ao+Gx,  where  Ao  represents  the

temperature  deviation at  x  :=O.  G  is related  to Q' in (3･2) by Q'=b2G. Therefore,

                   G=Q'lb2=(alko3b2)(4ue(?lgoleBTx). (7'2)

We  analyze  the linear equation  for the small  deviation T  varying  only  along  the x  axis:
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                                                                    'r

                    oOt T=ia-iA,  4r-b,[A,+ .4r]  ep , (7･3)

where

                      st=-- Al22 +(1-  i!abi)Gx. (7'4)

   We  are  interested in disturbances localized at  x  ==O.  Then the system  size  L  may  be

pushed  to infinity if L  is of  a  macroscopic  size.  We  seek  a  growing  solution  of  (7･3) under
the boundary conditions  gP"(O)= IP'(oo)=O. In Appendix D  we  shall  see  that the eigen

functions IP'n and  the eigen  values  En of  L4r  can  be expressed  in terms of  the Airy function
Ai(z)`O)･`i) in the forrris

                    gP'.(x )= oi'2BnAi( (m  
-an

 ), (7'5)

                   En=evn02, (7'6)

where  n=O,  1, 2, ･･+ and

                 o=(1-ilabi)"3G"3  with  largol<n!3. (7'7)

The.series ao<evi<"'  represents  the zeros  of  Ai(-x)  and  Bn=(-1)"IAi'(-an). In

particular, ao 2-2.34 and  BD2i1.43. Because  Im a3==-(Gfa)Re(11bi)<O,  we  find O>arg  o

>-(z/3).  Then, Vn(x) goes to zero  rapidly  as  x-+oo  as  shown  in Appendix D. The

ern(x > are  orthogonal  in 'the fo]lowing sense:

                     .4'coduTn(x)erm(x)=E)nmJ

 ･ (7'8)
                                                                    '

   Let ptni.,CepcixIP'n(x)T(x,O). Then, 
,

                     ep

             er (x, t) = 2  un  Tn(x  )exp[ia-iAot-biAot-biEnt]. (7'9)
                     n==e

In Appendix  D  we  will  show  Re  (bio2)>O. Then, the deviation proportional  to qo first
becomes  unstable  as  Ao is lowered. Therefore, we  find a  critica}  value  of  Ao, which  will

be denoted by Asc and  is given  by

         Asc="aoRe(bio2)!Rebi=-aoRe[(1+ico)(1-ifabi)2t3]G2'3,  (7･lo)

wher&  co  i  Im  ILbf Re  IVb.

    In the original  units  Tsci-  leo224sc is written  as

                     Tse=-Csc(4ueQ!goleB71a)2'3,  (7'11)

where  use  has been made  of  (7･1) and

                  Csc=evob2m2'3Re[(1+ico)(a-ilbi)2'3]. (7･12)

This value  of  rsc should  be compared  with  the value  of  T on  the Hell side  in the case  of

the two-phase  coexistence.  The  ]atter value  was  denoted by r.  and  given by (3･16).
The  proportionality constants  C.. and  Csc behave quite differently as  x  (or Tk-T)  is

varied.  For x>1  we  may  assume  a>11ibil  and  Csc=2.34(alb2)2'3. Hence,
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TL

Fig. 4. The expected  discontinuous change  of the

  temperature  at the cooler  boundary, Tb, for x<1

   in case  (i).

TA

k

"

Fig. 5, The  bistability for x<1  in the case  of  fixed

  boundary  temperatures.  The  fiuid wlll  jump
  from the normal  fluid state  to the coexisting

  state.

                       Cscl C. or 2.34!(sf3x )2'3<1. (7' 13)

For x<1,  on  the other  hand, we  have a<lflbiltvx7ilzv[-ii2  and  C,.=- aex-`i3. Thus,

                      Cscl C.. =- 2.34(2B )- i'2xTi  >1.  (7' 14)

   The above  two  relations  suggest  a  coRtinuous  change  for x>1  and  a discontinuous
change  for x<1  in the situations  (i)･- (iii). The expected  behavior of  Tb is schematically
shown  in Fig. 4 for the case  of  fixed heat flow (i). In the cases  of  fixed boundary
temperatures (ii) and  (iii) the temperature profile changes  discontinuously for x<1,

resulting  in a discontinuous increase of  the heat flow, as  is evident  from  Fig. 5. If CsclC..

>1, the fluid is bistable for fixed boundary  temperatures.

   To  confirm  the above  expectation  we  derive the  Landau  equation  for the  amplitude  po

in (7･9) and  examine  the type  of  the bifurcation occurring  at  AoZAsc. The  definition of

ptn is given  by

                     pt.( n, t)=  .{i 
eO

 du T. (x)ep'(r, t), (7'15)

which  are  generally dependent on  il- ==(y,  z)  and  t. We  define

                           6!!!-Ao+Asc. (7'16)

We  assume  ao-ali'2,  evn--L6I3'2 for n>1,  and  16Al'-6, where  6A  is -the temperature

deviation defined by

                          A=Ae+Gx+6A.  (7'17)

As  the  boundary conditions  for 6A we  assume

                        6A(O, t)=  6A'(O, t)=O.  (7･18)

The'prime  means  the spatial  differentiation. The  heat flow at  x=O  is fixed. The
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O.5

o
       1 2 3

Fig, 6. 1ero(x)[2 and  Im(eo'(x)cU`Zr  ero(x)).

  abT=O.35+e.23i,  which  is the value  of

  model  to first order  in E=:4-d.

  4
  .Herethe

 F

x

superfluid  density and  currefit  are  lxio121 Wo(x)12 and  IKtol2Im( ero"(Olax ) evo), respectively,  to

first order  in 6. In Fig. 6 we  plot qo(x)l2 and  Im( epo"(616lt: ) ero). The two  functions are

positive-definite for x  >O  (see Appendix  D).

   Multiplying (2･10)by qo(x)and  integrating over  x  we  obtain

oatuo=
 [(ia-i-bi)Ao-bTaeo2+biiZL2]ptorlolbiMlpto12pte

+(  ia-i 
L
 bi )[.Cco du ero(x )26A(r, t )]po , (7･19)

where  7i2 =o21ay2+o21a2  
2and

Fi=B,4.{IeoduAi(z)3Ai(Z')･ (7･20)

Here  z==e'ex-ao  with  0=:argo ancl  A  is a function of  0, The  first linear terrn on  the

right-hand  side  of  (7･19) is rewritten  as  (itoi+bi8+biV±

2)pto
 with  wi=(aTi-Imbi)Ao

-aelm(bio2).  We  redefine  ptoeitui` as  pto and  then the term  iwipodisappers in (7･19). The
second  cubic  term  (ocluo12pto) always  serves  to suppress  the growing  of  pto. In fact, we  can

numerically  verify  Re(bi]Fl)>O.

   However, the third nonlinear  term has a  destabilizing effect  for a-'>lbil.  We  can

show  that  the third term  becomes dominant over  the second  term  for x<1  and

.Ccodu 
Im  epo(x )20A(r, t)<O  . (7･21)

To  show  this we  express  6A in terms  of  pte for IBI<1. We  can  assume  that the time  scale

of  xio and  6A  is of  order  l61-i and  the spatial  scale  on  the yz-plane  is of  order  l(SITi'2. Then

(blOt)M is of  order  62 and  can  be set  to zero  in (2･11). Thus  6A  follows the  variation  of

Y instantaneously as

6A(r, t)or- h  (alh2).CXcinr g (r, t)
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Fig, 7.

o

-1

U(x  ), (7･23) and  Im  ero(x )2 for abi=O.35+O.23i.The  inequality (7-24) can  be  seen  to hold.

                    or-(alb2)pto2.CXcin: Im( ero" 2Ell epo), (7'22)

where  the corrections  of  order  62 have  been neglected.  The  right-hand  side  of  (7･22) is

negative-definite  for x  >O,  Namely,  the temperature inside the fluid must  be lowered with

the appearance  of  the Hell layer if the temperature at  x  =O  and  the heat flow is fixed. Let

us  define H(x)  by

                    H(x)=-  .)COO du Im( T,* IS w,). (7 rp 23)

Then, (7･21) is rewritten  as

                   k!  -Xco  de [Im T,(x )2]H(x )>O. (7t 24)

Use  has been rnade  of  foco cZxlm ¢ o(x)2=O  which  is derivable from  (7･8). Figure 7

confirms  (7･24).
   After some  manipulations  we  arrive  at  the desired Landau  equation

                   
'Sl'"o=:bi[6+P

±

2]pto-biZolpto12"o,
 (7'25)

where

                  Zo=IolA-j61(i`abilb2)(bib2)-il1], (7±26)

where
                  '

          Ph=Bo`Xicocin;[zAi(z)2-Ai'(z)2]Im[Ai(g)'Ai'(z)e'e]. (7･27)

The definition of  z  is the same  as  in (7･20). Note  that iFl  and  Ei are  comp}ex  numbers

of  order  1. For x>1,  we  have Zo2i alFl  and  Re(biZa)>O. For x<1,  on  the contrary,

Zo=-i1ol(bib2)LiJi}i and
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                  Im(biZo)2!lolb2-'(Im]Fli)=-b2"ik<e, (7･28)

where  k  is defiped by (7･24). In ReL  7) ]F}] is calculated  numerically  as  a  function of  e.

The  author  has not  yet succeeded  in proving  the inequality (7･21) or  (7'24) analytically,

but there should  be a  general proof.

   In summary,  the mode  coupling  terms, those proportional  to go  in (2･1) and  (2･2),
decrease the surface  critical  temperature  71ic and  result  in the  bistability suthciently  close

to the criticality  as  shown  in Fig. 5."> The importance of  these terrns increases as  T-> TA
with  the increase of  x-i(ocgo).  We  have found that the  transition is an  inverted

bifurcation, but we  cannot  determine in our  scheme  the exact  temperature or  heat flow at

which  the jump from the normal  to coexisting  states  occurs.  In the following we  give
some  discussion which  might  be relevant  to experiments,  assuming  that the transition
takes  place  at  a  value  of  Tii- Tb considerably  greater  than TA-  7L..

   We  first estimate  the value  of  l>- Tge from  (7･11). If uo  in (7e11) and  zao in (3･16)
are  assumed  to be the same,  then  TsclT..=[(Tk"Tkc)1(TR-%)]`'3=CsclC.  with  Q
common  in the two  states.  If zaooc(  71i- (I'lic)2i3 in (7･11) and  zaooc(  7'ii- %)2'3 in (3･16), we

find a  slightly  different result,  ( Tx- Tgc)1 ( 71i- 7't.)=(CsclC..)9'8. In any  case  we  have

           RmaxEi(TAu7Ue)1(71x-%)=(CsefCoo)7 with  7'v1.  (7'29)

We  cannot  determine 7 exactly  because our  arguments  are  based on  the mean  field

calculations.

   In the cases  of  fixed boundary temperatures (ii) and  (iii) we  denote the heat ffow in

the normal  fluid state  by  QN and  that in the coexisting  state  by Qs. We  assume  that the

transition takes place for 71z- Tb =R(  7]a- TL.), where  R  is greater than 1 and  smaller  than

Rmax, (7'29). Then  at  the transition we  find

                   Tn- Tb ==RTRA.QN3i`  =T- TUAcoOs3'`. ･
 (7･3o)

Therefore,

Qs!QN=R`t3.

On  the other  hand, the temperature in the normal  fiuid region  not

boundary and  the interface is given byiO)

         T-  Ta : Ti[(1-xA)QixLA71A' Ta]i'{i-""' for O<x<L  
,

              =  71x[(1TxA)Qs(x -xi)IA'n]!'(i'm"A)for  xi<x<L  .

(7･31)

close  to the cooler

(7o32a)

(7･32b)

The  first expression  is valid  for the normal  fluid state  and  the second  for the cQexisting

state.  The constant  xi  in (7'32b) represents  the interfacial position. The  two  constants

xa  and  A' are  defined by  the expression  for the therrnal conductivity  above  Ta,A=T-A'(T
11)a-1)mX". The  boundary temperature  at  x=L,  Ti, can  be obtained  from  (7'32> by

settingx=L.  Therefore, QNL=Qs(L-xi)or

                    xi--L(1-QNIQs)=L(ILR-`'3).  (7･33)

   We  can  also  calculate  the entropy  difference between  the two  states  for the cases  (ii)
and  (iii). Let us  assume  that the  specific  heat per unit  volume  x is a constant,  for
 

')
 A  similar  result was  found for a one-dimensional  superconductor  under  electric  field.`2)
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simplicity.  Then  the entropy  difference nS  per unit  volume  is determined by

              LAS-x.CLdu  [T(x )- 71tl-x,Ctcix[T(x )- 1-1i], (7'34)

where  T(x) in the first term is given  by (7･32a) and  T(x)  in the second  term  bY (7･32b).
After some  calculatioRs  we  find a very  simple  expression

                      ,zlS=S.(  
XLi
 )= S.(1-R-4t3) (7･3s)

with

                        S.-(-5if:)x(  T,-Z).  (7･36)

Here  SN  is the first term  of  (7･34) divided by L  and  represents  the entropy  in the normal

fiuid state  measured  from  the criticality.  From  (7･31), (7'33) and  (7.35) we  can  eliminate

R  to obtain

                       1-QnlQs:=xilL=ZSISN.  (7･37)

g8. Summary  and  remarks

(A) Hel-Hell lnterface

   There  are  three aspects  of  
-the

 problem  of  the two-phase  coexistence  as  noted  in the

final section  of  Ref. 8).
(i) The  structure  of  the interface as  explained  in g3. The  intrinsic lowering Z-  7ts

( -- 10rSQ3t`, Q in cgs  ) can  be detected onlyby  special  thermometry.  One possibility is to use

a  thin thermometer  which  can  detect temperatures in a  very  narrow  regicn.  Another

possibility is to use  a  very  precise thermometer  working  at  small  heat flow under  the

condition  L<10Q-i'2cm  with  Q in cgs.

(ii) The  motion  of  the interface as  explained  in g6.
(iii) The  phase changes  among  the normal  fiuid, the coexisting,  and  the superfiuid  states

under  heat fiow as  discussed in g7. In particular, emergence  of  a  Hell region  from  the

cooler  boundary is the most  interesting phenomenon.  Its transition changes  over  from  a

continuous  one  to a discontinuous one  as  the criticality  is approaehed  (or the heat fiow is

decreased). The  two cases  are  characterized  by x>1  and  x<1,  where  x  is defined bY

(3･7). In the recent  literature6)'i6)'27)'28) the strength  of  the mode  coupling  has been
represented  by a  dimensionless number  f!KdgoZelAoRel-b where  Kb  is a  constant.  In

terms Qf f we  have  x2{  O.1/f. Here  f increases from  numbers  of  order  10-2 to a  number

of  order1  asICTYTa-II  is decreased. The  saturation  occurs  for 7YTi-11SIOm3.  We

notice  that the intrinsic lowering reduced  temperature is in most  cases  much  less than 10m3,

so  that  the condition  xZ  
'-

 O.1 will  be realized  at  the transition near  the cooler  boundary  if

experiments  are  performed.

(B) Shock Waves

(i) In the A region  the shock  relations  and  the shock  velocity  are  dependent essentially

only  on  the static  parameter a, (2'9), if the physical quantities are  appropriate}y  scaled,
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Their behavier is quite different for the two  cases  akl  and  a<1.  Hence it is highly
desirable to calculate  the  parameter  a  precisely as  a  function of  TA-T  by the

renormalization  group method.26>  We  also notice  that Khalatnikov's theory  of  the second

sound  entrainment29)  can  give us  a  method  to estimate  a. He  expanded  the second  sound

velocity  c2  in counterflow  as  c2:=c2o+rvn･klfe+･･･  where  c2o is the equilibrium  velecity

and  h is the wave  vector  of  the sound.  The  entrainment  coeMcient  r can  be expressed  in

terms of  thermodynamic  quantities. We  can  determine a  by  comparing  his expression

and  (4b14). We  must  also  remark  that the entrainment  coeMcient  r and  the steepening

coethcient  in (1･4) behave  quite similarly  in the whole  temperature  regionbelew  Z. See
a  striking  resemblance  between the figure of  Re £ 24) (or Fig. 1 of  Ref. 19)) and  the figure

of  Ref. 29). This suggests  that the second  sound  velocity  in counterfiow  :and  the shock

velocity  are  very  similar  as  functions of  the temperature  and  the  heat flow.

(ii) As can  be known  from Fig. 2 a cooler  region  can  expand  into a  warmer  region  as  a

shock  wave  in the A region  unless  the superfluid  velocity  far ahead  of  the front is very
large and  in the sarne  direction as  the shock  wave.  This means  that the trailing edge

steepens  into a front in the case  of  a  heat pulse. If a  negative  heat pulse can  be realized,

the ieading edge  becomes a frent. Then  it rnight  be possible to observe  the maximum  of

the shock  veiocity  which  has been discussed at the end  of g4. '

(iii) We  have discussed on  the supersonic-subsonic  criterion.  The  supersonic  condition

u>c2  is always  satisfied,  whereas  the subsonic  condition  u<ci  can  be vio]ated  for large

counterflow  behind the front. Interestingly, when  the marginal  condil:ion  ee=ci  is
attained,  the shock  velocity  za takes  a  maximum.  Furthermore, if u>ci,  large
disturbance will  develop in the back region  of  the front. As a definite result  we  have

found that the superfiuid  density ahead  of  the front must  be smalier  than that behind the
front. However,  this condition  is not  suficient and  eur  analysis.  of  the front stability  is

still inadequate. We  should  examine  the time-development of  corrugation-like

disturbances on  the front starting  with  the  dynamic equations  (2･1) and  (2･2).
(iv) We  have  neglected  effects  of  vortices  on  the shock  wave,  expecting  their role  as

secondary.  This is in contradiction  with  Turner's analysis22)  (see below).
  We  comment  on  Turner's analysis  of  his own  experiment.  He  send  a heat pulse into

equilibrium  helium and  observed  a  maximum  of  the shock  velocity  with  increasing heat

power  at  T=1.650K.  There, Khalatnikov's steeping  coeficient  in (1･4) is positive and  a

front appears  at  the leading edge.  He  interpreted this maximum  as  indicating vortex

nucleation35)  in the pulse region  where  a  large counterflow  exists.  We  disagree with  this

interpretation. We  consider  simply  that the shock  velocity  will  increase fir'st linearly

with  increasing heat power  by the entrainment  effect  and  then it will  saturate,and  decrease

by the  decrease of  ps in the pulse region.  The  maximum  is attained  when  these  two

effects  balance. It should  be noted  that the second  sound  velocity  cii behaVes in the same
way  with  increasing counterflow.  Turner also  found that the pulse shape  is distorted
from  a  simply  formed  trapezoidal  shape  if the  heat power  is greater than a  breakpoint
value  at  which  Khalatnikov's relation  breaks down.  He  considered  this as  arising  from
"a

 breakdown in superfiuidity  of  Hell", whereas  we  expect  that this phenomenon  

'should

be caused  by the breakdown Df  the subsonic  condition.  Vortices would  not  distort the

pulse shape  so  strongly.  We  of  course  admit  that our  objections  to Turner's
interpretation have  been obtained  from the calculation  near  the  A point. We  must  extend

our  results  outside  the A region.  Seme  ef  them  should  be general and  remain  unchanged.
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                              Appendix  A

   We  examine  linear modes  varing  along  the x  axis  in homogeneous current-carrying
state.  We  assume  that  deviations 60=O-Oo  and  6A=A-Ao  are  infinitesimal, where

Oo ==  [IAol-K2]eiK:'iWot. Then (2･10) and  (2･11) may  be linearized as

        
'zilt-6 ip =  ia-'AoSO  +  ia-i dio6A -  bi[Ao-( Eill )Z+I ¢ e12]60

               -bidio[6A+Oo6di'+Oo'6di],  (A'1)

        -zllt-6M ==  a-51-6g+b,(-51-)26A.  (A･2)

Let us  define vai= VVI+iPVh by

                      60  ==  ¢ o VV exp(ia-iAot).  (A'3)

Then  (A･1) becomes

          oOt Hi= ia-i8A+bi[  ES}22 +2iK'Ei}-]Wrbi[6A+2Idie2Wl].  (A"4)

The  deviations 6M  and  ag  ar'e of  the forms

            6M=8Ama21 ¢ ol2 PVi, 6c4 ==1 ¢ oi2(2KWI+ £ ma). (A'5)

   At  long wavelengths  the spatial  derivatives in (A･2) and  (A･4) are  small  and  we

obtain  two  oscillating  modes  and  one  relaxational  mode  whose  decay  rate  does not  vanish

even  in the long wavelength  limit. The  calculations  are  rather  complicated.  We  first

consider  the  oscillating  modes  in the long wavelength  limit. Then  we  can  self-

consistent!y  check  that the amplitude  deviation Wl  is determined by

           6[A-  72+1 ¢ I2] di =  o,(sA  +21 di,12 wl +2K  
OdrWli

 )=o . (Ae6)

Namely,  the amplitude  correction  satisfies  the local equilibrium  relation3)'29)

                     21o,l2vvig-SA-2K'  ES ma. (A･7)

Then,

                  8M  =(1+--21-a2)6A+a2K £ wa, (A･8)
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                                          o
                   6S=-K6A+(IAol-3K2)                                            vai. (A･9)
                                          dr

Further we  have (OlOt)IIZi=a-i6A and  (a16t)6Mora(Olax)6S from  (2･10) ancl  (2･11)
neglecting  the dissipation to obtain  (4'14).
   We  can  obtain  complete  solutions  of  the linearized equations  (A･1) and  (A･2) by
assuming  the forms

              PVI=Re(aieiq"+Pt), WL=Re(a2eig"+Pt),

              8A  ='  Re(BeiqX"  ̀), (A'10)

where  ai, ev2 and  B are  appropriate  complex  numbers.  Then  we  obtain  a  matrix  equation

of  the form

                         "i,"Vi.i =ii' I,
'taVi

.l
 `""'

Note that the derivative a!Elx in 
,l7

 can  be replaced  by iq, whereas  this procedure is not

allowable  in (A･4) because VV is complex.  After some  calculations  the determinant of

the 3 × 3 rnatrix  
,ti-P7

 can  be successfuly  transformed  into the following cubic  equation

of  P:

    (p+b2q2)[2bii(rp+q2)P+2Ibi12rp-a2+2ibi2Kop]

       +biirp[a2P2+2op-q2+4iaqKb]+(P+b2q2)P2+11+iabil2rpPq2==O, (A`12)

where  bi=bii+ibi2, rp=IAolfiK2  and  ij'=IAol-3K2+i-q2. Equation (A･12) is very

general and  has never  been obtained.  It gives the dispersion and  attenuation  of  the three

modes  for arbitrary  a, K  and  a.

   We  expand  P  with  respect  to q  as

                       P=-iciiq- ±Diiq2+-t  (A･13) ,

Then  we  find

     2bn rp [(1 +ta2)  cn rr aK]Dii

     =:  cii [21bil2( rp -2K2  )+2biib2 rp +[1+  iabi12 op] -  cii+2bi2Kc  i2i ,
 (A･14)

   In particular, if K=O,  we  obtain  the damping coethcient  near  equilibrium  for the F
model:

    Du=lbi21bii+b21(1+ia2)+a21[4(1+ ±a2)2bn]-abi2/[(1+-}a2)bH].  , (A･15)

The  last two  terms  are  specific  to the F  model  and  vanish  if a=  O. The  ratios  of  the

second  term  and  the others  are  estimated  as  follows: the firstl the second'vw,  the third

!the second  '-x-2a214(1+a212),  the fourthlthe second  '--a(ImlThlReIMU)tv"21x,  where

w=biilb2  and  x2=1bi12b2!bii  
'-

 biib2. Suficiently close  to Tx the existing  theories indicate
ar-  1, x2-11  10, w  

--
 lf lO, and  lm  l'5f Re  J'1) -- 1. Thus,  the  third and  fourth te]rrns appear  te
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be important unless  a<1.  Note  that  experimental  results  of  the secbnd  sound  damping
have been analyzed  in terms  of  the expression  for the E model  (where a=O).`3)'"`5) Our
calculation  suggests  that  better agreement  would  be obtained  if analysis  is made  on  the
basis of  the F model.

    Next  we  assume  IAol=-3KZ or  op :-:2K2.  Then  one  solution  of･ (4･14) tends to zero  as

                      cii=--([Aol-3K2)!2aK.  (A･16)

The  corresponding  sound  is propagating in the reverse  direction of  the  superfluid  current

if 3le2<IAol. Its damping  coethcient  is also  small  as

              Dii pt 4( .IK  )2 (IAel-3K2)[2b2+ i, ll+ iabil2]. (A'17)

The  right-hand  side  changes  its sign  when  K2  exceeds  IA2113. Thus we  obtain  the

criterion  (4-15).

                               Appendix  B

   Let us  consider  the  following (dimensionless) free energy  density:

                     Si- ±a-2A2+5Ie7 ¢ I2+21¢ i`. (B"1)

Here  O  and  A  obey  (2'10) and  (2･11). Some  rnanipulations  yield

           
-zili

 Ei' :=  -(Re  bi )l(A-J72+1012)di 12L(b21a )IVAI2-J7` .Jf  , (B-2)

where  the current  .Lf  is given by

              Jl,r =:  
-(b21a

 )A7A-  ±( o6t O'J7 di'+LziltT di"'r7O). (B'3)

   In the case  ofpropagat･ing  solutions  g  depends  on  space  and  time only,through  x-ut

and  it satisfies

                         8tg=i 
-u

 Eil; s.  (B･4)

The  x-component  of  Jf, which  will  be simply  written  as  1), is of  the form

                 .[,==-(b,fa)A-aa,-A-to,g+u  Ell¢
2,

 (B･s)

where  use  has been  made  of  (4･1). Integrations of  (B･2) over  space  now  gives

                Rdis-.(:du[u Eil Eli- ziil Jnyf]=  za[va-  PVI] (B'6)

wit.h

                      PP}=E,-Zw,11(,-  £ ¢ i., - (B･7)

where  the subscript  i( :=: 1, 2) denetes the values  at  x  
--

 ±  oo  and  use  has been  made  of  (4･9).
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Using (4･4)-- (4･6) and  (4･10) we  eliminate  1va and  iji and  express  M7] in terms  of  A.･ and
K}  as

          VV) =(t+  21a2)(Aj2-2acaoAj)+ Ki2[Aj+-[l-Ki2- -}awo].  (B'8)

Equations (4･7) and  (4･8) imply that

             Aj2-2atooA,･=a2u2Ki2+a2tuo2, (B'9)

              au(K22-Ki2)==(Ai-A2)(KltKle).  (B'1O)

Thus,

     vrh-PVI=[-IK1+-li-a2)za2-S-au(Ki+Kb)+-i-(Ki2+K22)](Kle2-Ki2)

             +ill'(AimA2)(Kl+Kb)2+A2Kle2mAiKi2rm-IFawo(Ki2-Ki2).  (B･11)

The  two  underlined  terms  cancel  each  other  due  to (B･10). Now  we  can  eliminate  u

using  (4'12) and  tuo using

       evwo(Ki2-  K12)== E (Ai+A2)( Ki2-Ki2)-  l (A2nAi)(Kl+Ki )2i (B'12)

Then  we  obtain  (4･I8).

                               Appendix  C

   Let us  define the following polynomials:

                jFli(x)==(1+-IYa2)x2-2aKix+Aj+3Ki2,  (C･1)

where  1'=1, 2. The  second  sound  velocity  cj  is defined as  the greater of  the t;wo solution$

of  Ei(x):=O. First we  will  show  jF>(u)>O  as  follows:

              ]F>(za):=-(u-c2)[(1+ia2)(u+c2)-2aKle]

                  --;-(op,-rp,)+-e(K,-Kle)2.  (C･2)

The  second  line has been obtained  using  

'(4'6)
 and  (4･8). From  (4･15) the smaller

solution  of  I>(x)=O  is negative  and  we  have  u>c2.  Thus  u>c2  as  long as  iji>op2.

   On  the other  hand, the  sign  of  i71( za) is not  definite:

                 FL(u)=-g(rp,-op,)+-li-(K,-Kle)2

                      =(K)+Ifi)(gau-2I"-K).  (C･3)

In the marginal  subsonic  case  u=ci  we  have

.
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                         aza ==  --23'(2Ki+Kh ). (C'4)

   Next we  fix A2 and  Kh and  calculate  the derivative duldKi. Differentiations of  (4･8)
and  (4･12) with  respect  to Ki yield equations  for duldKi and  dt4ildKl. They are  solved
   .to

 glve

           [(1+-12-a2)u-XaKi-t-aKb] ddKza, =rri"au-Ki-L}Kb.  (C'5)

The  right-hand  side  of  (C･5) vanishes  under  the condition  (C･4) and  we  have dzaftlKl :=O.

We  can  easily  check  that  u  is maximum  under  (C･4). The  maximum  zamax can  be

obtained  by eliminating  Ki from  (C･4) and  (4･12). It is the solution  of  the  equation

                 (1- 116 
a2)  uSax+2aKL  umax  :1-2rc2.  (c･6)

The  solution  of  (C･6) greater than  c2  is given by  (4･30),

                              Appendix  D

   The Airy function Ai(g) is the  solution  of  the differential equation

                        Ai"(z)-zAi(z)=O.  (D･1)

Its asymptotic  behavior at  large lzi is given by`i)

                   Ai(k)=-li-nrmit2gmiMexp[--Z-x3i2], (D.2)

where  largzl<rr and  lzl>1. Then  Tn(x) defined by (7-5) decays as  exp[-go3'2x3'2]  as

x-co  if largal<n7'3. Next we  show  (7･8). The  orthogonality  is evident  from  the
symrnetric  nature  of  L4r.  Note  the relation

                   Ai(z  )2= EEI [g Ai(g)Z-Ai'(z  )2]. (D･3)

Integration of  (D･3) from  
-an

 to oo  yields

                   ,(I:.dzAi(z)2=Ai'(ran)2=1IBn2.  (D'4)

Thus  Tn  is normalized  if Bn is chosen  as  in (D･4).
 ･ In (7･10) we  have  assumed  arg(bio2)1<rrf2.  This can  be proved if we  notice  the
relation

                  arg(bio2)=  El-arg bi+-;-arg(bi- i!a). (D･5)

Here  largbil<rrf2 and  larg(bi-ila)1<rr12 because the two  complex  members  have  a

common  positive real  part.

   We  ,also show  the positivity of the fuhction lo(x ) Ei Im( ero*( dldu ) ero) for -  rr1 3<arg  o

<O.  From  ero" =a2(ax-ae)gifo  we  obtain
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d
  Jo ==  [(Im a3  )x -  ae(Im  a2  )]I erolZ .
du

(D･6)

Since -ir73<argo<O,  we  find Imo3<O  and  Imo2<O. Thus Jo increases from zero  up  to

a  maximum  le(aolm a31  Im  a2)  in the region  O<x  <  aolmo31Ima2  and  decreases to zero  in
the region  aolma31Imo2<x<oo.  It cannot  be zero  for x>O.
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