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A Hel-Hell interface and second sound shock waves are examined in *He near the superﬂuid
transition on the basis of a phenomenological time-dependent Ginzburg-Landau model. They are
kink solutions of the equations. The former is induced by heat flow and has a structure similar to
that of the interface in type I superconductors in a magnetic field. This interface exists when the
fluid is inhomogeneous with some regions above the transition and others below the transition. It
generally moves slowly and can be stopped for some special boundary conditions. In simple
one-dimensional cases its motion is described by a scheme of a modified version of the Stefan
problem. On the other hand, in superfluid states finite thermal disturbances can propagate as a
shock wave. This paper is the first attempt to examine its properties fully in the nonlinear regime
including the dissipation. Our theory can be used for aribitrary temperature discontinuity. Asa
by-product we calculate in Appendix A the dispersion and attenuation of the linear second sound
modes in the presence of arbitrary thermal counterflow. We take into account a nonlinear
coupling between the order parameter and the entropy in the free energy. This coupling, the
so-called dissipative coupling, is indispensable for our problems. We also discuss in detail a
transition from a normal fluid state to a coexisting state, which is predicted to be discontinuous
sufficiently near the A point.

§ 1. Introduction

Systems near critical points are very sensitive to external disturbances. The author
has been interested in nonlinear effects of dissipative perturbations. There are numerous,
potentially interesting examples of such phenomena and most of them remain unnoticed.
In this paper we investigate two such nonlinear effects induced by heat flow in *He near
the superfluid transition. In the A region we can start with a relatively simple dynamic
model to a great advantage. The first and very general equations were proposed by
Pitaevskii® for a complex order parameter ¢(r, ¢) and the hydrodynamic variables.
They are, however, too general and detailed and have never been solved in nonlinear
regimes out of equilibrium.?»® We stress that they have some inhomogeneous solutions as
in the case of the famous Ginzburg-Landau equations for superconductors in a magnetic
field.?”® However, with the progress of the study of (linear) critical dynamics it has been
shown that Pitaevskii’s model can be much simplified in the A region if only relevant terms
are retained in the dynamic equations.® We thus use the simplest model, the so-called F
model,? to investigate inhomogeneous structures.

Recently the author has shown the existence of a Hel-Hell interface in *He near the
superfluid transition under heat flow.”~'” That is, a superfluid region and a normal fluid
region can coexist and be separated by a thin interface.'”’~*® The temperature in the
superfluid region T is slightly below the transition temperature T as 1— 7w/ Tx~107"8Q%*
with heat flow @ in erg/cm?®sec. The thickness of the interface &. is of the order of the
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correlation length in the superfluid region and is given by 3X107°Q " cm. The
temperature gradient in the interfacial region is of the following order:

(Ta— Tw)]Ec~107°Q%* deg/ cm , (1-1)

where @ is in erg/cm?sec.

However, in real helium, as a complicated effect, vortices can be generated at a
relatively small heat flow. In our case of the two phase coexistence they give rise to a
small temperature gradient in the superfluid region. It is necessary to estimate its
magnitude near the interface. We use the Gorter-Mellink relation'®

ﬂ—(Ap/s)lvs oal®. | (1-2)

Close to the interface the quantities on the right hand sides are constants dependent only
on @ because T:— T= Ti— Twx@Q**. A is proportional to Hall and Vinen’s coefficent B
and behaves as (1— T/ T:)"**"** as T~ T,'® x. being the critical exponent of the thermal
conductivity.’® * The difference of the superfluid velocity vs and the normal fluid velocity
vn is nearly equal to Q/ossT:, where ps is the superfluid density and s is the entropy.
After some calculations we obtain
AL en(Ti- T2/, (1-3)

where ew is only weakly dependent on @ and is of order 107%. Thus, the temperature
lowering due to the vortices is negligible if the distance from the interface is less than
em Ec~10%¢.. Therefore, the temperature depression T:— Tw, which is intrinsic to the
interface, can in principle be observed if the lowering due to vortices can be separated.
Note that the vortex resistance can be neglected if the cell size L is less than 10°&.
~10Q Y2cm where @ is in eg/ cm?®sec. This condition is realized only at very small Q.

In this paper we also report a preliminary theory of second sound shock waves. Lots
of experiments have shown the existence of a rich field of nonlinear wave phenomena of
temperature variations in superfluid helium.'”~?? Its theoretical study is still in its
infancy, however. We may expect considerable progress also in this problem particularly
in the A region.

First theories of the second sound shock fronts were due to Temperley®® and
Khalatnikov.*?*¥ They neglected the dissipation but could calculate the shock velocity
u: in the case of weak shock waves with small heat flow. Note that u. is determined only
from the conservation laws if the shock front region is regarded as a geometrical surface
where discontinuity occurs.?® Khalatnikov expanded u. with respect to the temperature
discontinuity 47 as

ta= waef 1+ 5 AT 0108 w200 )+ 0 477}, (1-4)
where u20 and 90/3T are the second sound velocity and the specific heat far ahead of the
shock front. Here the fluid ahead of the front is assumed to be in equilibrium with
temperature 7', whereas the rear region has a temperature 7+47T and a thermal

counterflow.
Experiments supported Khalatnikov’s theory at small heat flow.'®~*® When a heat
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pulse is injected into superfluid helium, the leading edge of the pulse steepens into a front
if the temperature derivative in (1-4) is positive, whereas the trailing edge becomes a front
if the derivative is negative. Very interestingly the derivative changes its sign at three
temperatures below 7Ti Its experimental consequences were summarized in Ref. 22).
Particularly, the derivative is negative in the A region. From w#z0c0s"2oc( Th— T)'3 we
calculate

1 ﬂ_+...}’

2T~ T (1-5)

U= uzo{l -
where the weak singularity of the specific heat is neglected. More interesting features
would be nonlinear effects which appear with increasing heat flow. For example,
Cummins et al.'® and also Turner?® observed that u. attains its maximum as a function
of heat flow in a temperature region where the temperature derivative in (1-4) is positive.
Also in our case near the superfluid transition, #, has a maximum as we vary the heat
flows on the two sides separated by the front. However, we do not know whether it is
observable or not because it is realized only at very large heat flow. Finally we must also
mention a beautiful work of Kitabatake and Sawada,*” who derived the Burgurs equation
to describe nonlinear second sound waves and investigated the shape evolution of a heat
pulse.?V :

The purpose of the present study is not only to calculate u: but also to examine the
structure of the shock front including the dissipative effect. Its thickness will be found to
be of the order of &/ (1—ps2/0s1) where £ is the correlation length and ps: and ps: are the
superfiuid densities in the rear and forward regions of the front.

This paper is organized as follows. In §2 we present the F model equations and make
them dimensionless in a convenient form for our purpose. In §3 we show inhomogeneous
stationary solutions representing the interface and boundary profiles under heat flow. In
§4 we examine propagating solutions in the ordered phase which represent second sound
shock fronts. We can prove generally that the superfluid density ahead of the front must
be smaller than that behind the front. This is required from the positivity of the heat
production in the front region. We also examine a well-known stability criterion of
shock waves, the subsonic-supersonic criterion,?® in our case. However, we cannot give
complete stability analysis of the second sound shock front at present. In §5 an explicit
solution of the shock front is obtained in the case where a parameter x, which corresponds
to the GL parameter in superconductors,? is much greater than 1. In §6 the interfacial
motion is examined in the two phase coexisting case.’ In §7 we analyze how a superfluid
region appears at a cooler boundary as the boundary temperatures and the heat flow are
changed slowly. This is a transition from a normal fiuid state to a coexisting state and
is discontinuous sufficiently close to the A point. We believe that the arguments are more
persuasive than those of Ref. 7). In §7 we give a summary together with objections to
Turner’'s work.”” In Appendix A we calculate the eigen frequencies of the linear
collective modes for the F model in the presence of thermal counterflow.

§ 2. Model equations

Let ¢(r, t) be a complex order parameter and m(r, ¢) be the entropy density per unit .
mass multiplied by oo/kz, where oo is the average mass density. The simplest dynamic
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model is given by the following equations:®

2 g=ige 9Ly~ =P+ 4wl (2-1)
a—im=golm(¢*w¢)+2072—%—%, (2-2)
where 7 represents a temperature deviation defined by
r= 770+270X0%%: 7o+ 27v0(m~+ 7ox04?). (2-3)
Here H is a Ginzburg-Landau free enérgy defined by
H= [dr| 5 7l 5798+ wal gl 5=(m+ rorl ) | (2:4)

where 7o, w0, %o and 7, are static parameters. In equilibrium we have §H/8m=0 and ¢
is a constant, whereas in nonequilibrium cases 7 can depend on space and time due to the
coupling yom|¢|® in H. We should require 7, >0 because the temperature should increase
as the entropy is increased. The coupling yoml¢|* is essentially important for the
problems in this paper and also for that of the vortex motion near the A point.!® I and
Ao are the kinetic coefficients and ¢, is a reversible mode coupling constant fixed as

goszSo/h, (2‘5)

where s, is the average entropy per particle and 7 is the Planck constant. % is a complex
number with Rel%>0 and Im It/ Rel,~1 near the A point.

In this paper we neglect the deviations of the pressure and the mass density. Gravity
effects will also be neglected, which should be important, however, when the cell size is
long and the heat flow is small. The mass flow may be assumed to be zero. Its
discontinuity across the shock front is negligibly small near the A point. As a result the
normal fluid velocity v. is much smaller than the superfluid velocity vs and nearly equal
to —(1/00)Js, Js being the superfluid current. In our notation the superfluid density os
and Js=psvs are related to ¢ by os=(mu*ks T3/ h?)|¢? and Js=(muks T3/ 2)Im($* T ¢), mu
being the helium mass.?

We also omit the random source terms usually present on the right-hand sides of (2:1)
and (2:2). In our nonequilibrium situations deviations occur only at wavelengths longer
than or at least comparable with the local thermal correlation length £&. We can thus
coarse-grain the small-scale fluctuations smaller than & at the starting equations (2-1) and
(2:2). We will be interested only in average profiles of ¢ and .

. We make (2:1) and (2-2) dimensionless by the following transformations. New
spatial coordinate and time are defined by

x,:kox , t'=(gok02/v 4%0%0 )t . (2'6)

The wave number Ao will be chosen to be the value of |7|*? at x=—o0 or at x =o0. Then
it is of the order of the inverse correlation length at x=—o or co. New dynamic
variables are given

@2(4uo/k02)¢, A= Z’/koz, M:(ZYO/kOZ)Wl. (2'7)
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The dimensionless temperature A and entropy M are related by
A=M+5al9F, (2-8)
where 7, in (2:3) can be set equal to zero without loss of generality and

d:(VOZZo/uo)l/z. (2'9)

The dynamic equations are of the following forms:

__a_ -1 . — __a_ 2 2 : .
FT% O=ia'AQ b1[A <ax,) +| 0| ]@ , , (2-10)
3 9 \? | .
M= aa,a"—l—bz(a )A, (2-11)
where
b= 4 uoxe)"?To/go, b2="(4uo/x0)"*A0/g0 . (2-12)

d is the dimensionless superfluid current:

(2:13)

_ « 0 )_~ 2 0
§ =tm(0*2,0)=|012
where 6 is the phase of ¢ (or @).

It would be convenient to relate the superfluid velocity vs and the shock front velocity
#» to their corresponding dimensionless quantities because the proportionality constants
are different. That is,

n

- ax@ (hko/my) (2-14)

Vs—— —

us=dxs/dt =[goko/ (4uoxe)'*ldxs’/dt’ , (2-15)

where x5 denotes the position of the shock front and dxs’/dt’ will be written as # in §4 and
is of order 1. Thus,

vs/ 2= h(4duoxo)"?/ ( gomH)< a6/ aZf ) (2-16a)
~3, 2(1~T/T1)”3( %)), (2-16b)

The second line is the estimation at saturated vapor pressure, where uo= u«*¢&~* with «*
being a universal number.?® The temperature 7T in (2-16b) represents the typical value
in the fluid. The derivative d0/dx" can be at most of order 1 (see (4:6) below), so that we
always have vs<u, as T T

We also express the heat flow psv, = —sJs= — @ in superfluids in terms of 4 in (2-13).
That is,

Q= Tugolm(9*-2-9), (2-17)

=0.82X10"(1— T/ T)*"*(ke€)*4,  (in cgs) (2-17b)
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where &£=1.4(1—T/T)"**A. We will choose ko such that koE~1, so that the
proportionality constant decreases as T~ T, Hereafter we suppress the primes of x’
‘and ¢ for simplicity unless confusion can occur.

In (2:10) and (2-11) there are three dimensionless parameters @, b: and b.. All of
them depend on 73— T rather weakly. The static parameter a is of order 1,*® b:/b.
= xoRel /Ao is the ratio of the time scale of the entropy to that of the order parameter,®
and 1/b:162(xg*) represents the strength of the reversible coupling between the two
dynamic variables.

§ 3. Stationary solutions

We consider stationary solutions of (2:10) and {(2-11). As trivial solutions in normal
fluid states we find @ =0 and A=A+ Box, where A, and B, are constants. On the other
hand, in homogeneous superfluid states we have A=A, and @ =(|Ad—K?*)"? exp(iKx
+ Aot/ao), where A, is a negative constant. The dimensionless heat flow is — 5.8, and
—aK (|4o|— K?), respectively.

General solutions can be obtained by setting

Oy 0 ar .
at(b—-za}o(b, (%M—O. | (3-1)

First we notice that the heat flow is constant:
a8 +br A= Q"= (a/k) Ao Q@ goks T>), (3-2)

where use has been made of (2:-17a). Equation (2:10) can be rewritten as

Lo =[Avt(1—i/ab)(A— A +|0F]0, (33)

‘where
Ao=aw, . (3-4)

We multiply (3:3) by @* and take the imaginary part to obtain

4 g=—(Lrel)iopa—an), (3-5)

Thus (3-2) can be transformed into

2
L A= 0( A ), | (3-6)
where
‘ 1 1/2
x=(bs/ Re ) = Uuad [ fon"Re 1)1 (3-7)

(A) Hel-Hell Interface

We note that (3-3) and (3:6) are very similar to the Ginzburg-Landau equations for
superconductors in a magnetic field.Y The correspondences between the two cases are as
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follows: temperature<> vector potential A, temperature gradient <> magnetic induction B
=rot A, and heat flow < external magnetic field H. The x is called the GL parameter
in the superconducting case. It is the ratio of the spatial scale of |@| to that of A and 4.
Ginzburg and Landau calculated the normal-superconducting interface in the case x<1.
In our case we can also construct interfacial solutions in the two limiting cases *<1 and
x>1. Inreal helium x depends on T — T, rather weakly. Very close to the A point, say,
for |T— T:—1/<1078, we find x2~1/10, whereas far from the A point it is considerably
larger than 1.7%19  See (iii) of §8.
The boundary conditions for the interface solution are of the forms

A->Ao=—1, O-[1—K?*e**ti®t 75 x—»>—co, (3-8)
%A*Q*/bzzconst, ®-0 asx—-+oo, (3-9)

where
QI=K(1—K?). ' (3-10)

We have-set Ag=—1. Then ko in (2-6) is of the order of the inverse correlation length on
the superfluid side £7'. The interfacial thickness is naturally of order £. The solution
can be obtained particularly simply in the case x>1. That is, we may assume the local
equilibrium relation

loPP=—A  for x>1. : (3-11)
See Ref. 7) and also §5 of this paper. Then (3+6) becomes
_ .
2 f— .
X dsz+A(A+1)—O. (3-12)

The solution which satisfies A(—o0)=—1 is uniduely of the form

AZ%---%--tanh%%—x"x +yo>, (3-13)

where yo is a constant. The superfluid current is obtained from (3-2) in the form

J=a'Q* +—§—( ba/ax )sinh(—éﬁc‘lx +yo>/ cosh%%x'lx +yo>. (3-14)
We require that A-0 as x—~0. Then d must also goto 0 as x »0. These two conditions
lead to yo=1log(2—+3)=—0.66 and

QF=3""2x""b,. (3-15)

This means that, if the temperature on the superfluid side is given, the heat flow is uniquely
determined. Equivalently, the temperature on the superfluid side is a unique function of
the heat flow.* :
On the other hand, in the case ¥<1, we can use the mathematical techniques of GL.
The calculations are rather complicated and the details can be found in Refs. 7) and 8).
In any case we find a unique relation between the heat flow and the temperature on

*) In the superconducting case the external megnetic field, which corresponds to the heat flow, must be equal to
the critical magnetic field proportional to T.— 7 if the interface is one-dimensional and at rest.”
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the superfluid side. Let ro=~ko*Ao=—ko>. Then, for any value of ¥ we obtain

IZ'ool: Coo(4 Uo Q/gokB‘Tx )2/3 . _ (3‘16)

’I‘he proportionality constant C. can be calculated in the two cases ¥ >1 and ¥<1. For
x>1, (3-2) and (3-15) yield

== (V3ax/b:)"®  for x>1. (3-17)
For x<1 we use results of Ref. 8). Equation (52) of Ref. 8) means

Co=es *=Q2B)"*(1+co®)x* for x<1, (3-18)

where ¢s is defined in (54) and

Co:Imb1/Reb1:ImF0/ReF0. (319)
B in (3-18) is a function of ¢o of order 1 and is calculated numerically below (48) of
Ref. 8).
Now it is convenient to express bi1, b; and Co in terms of x, (3:7), co, (3:19),
and 6),16),27),28) .
w=Reb1/b2= xoRe I'v/Ao . (3-20)
Then,
_ 1+ic _ 1 - -
blu—\/lz_l;—wgoﬂ;xw”2~xw”2, bzw—/—mm V2 jp=12 (3-21)
a**w'’® for x>1,
. .22
¢ {x“’s for x<1. (3-22)

To get the real value of the temperature on the Hell side 7. we must take into

account the temperature dependence of u#o. We estimate 7. by setting #o=u*£" and
7| = E72=&7%(1— Tw/ T1)*®. The result is

1= To/ Th=AxQ**, (3-23)

where A.~107% if @ is erg/cm®sec. The exponent 3/4 in (3:23) is unchanged even if the
correction to the dynamic scaling law'®?"?® is taken into account as long as I'eAe~ &.
(B) Boundary Profiles

At the boundary wall ¥ must go to zero even in the superfluid state. In particular,
¥ =tanh(x/v2) and A= —1=const in equilibrium, where the boundary wall is placed at
x=0. In the presence of heat flow this profile must be modified. Such a calculation was
performed at very small @ by Ginzburg and Sobaynin.” In our scheme their results can
be reproduced simply from (3:6). Namely, we may set | ¥ |*=tanh?*(x/+/2) in (3:6) to first
order in @ to obtain :

dZ

Fx—zAzx‘ztanhz(x/ J2)A+1), (3-24)

where A(c)=—1. The solution of (3:24) can be expressed in terms of the
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hypergeometric function F(e, 8, 7, z) as”

A+1=C(1— §2)“/2F(2a+, 2a-, e1+1, —1—_2—5) (3-25)
where |
1 1/2
e1=v2/x, ai:el/2+1/4i<e12+7> /2, t=tanh(x/V2). (3-26)

The constant C: is determined from dA/dx = Q*/b, at x =0, (3-2). Then, the value of A
at x =0, Ao, is related to Q* by

Ao+1:““CB(Q*/bz), | (3‘27)

Co=I(a)I (@) VoI (a+5)r(a+ ). (3-28)
Use has been made of the identiy F(2¢e, 28, a+8+1/2,1/2)=n"?I"(a+B+1/2)/I'(a+1
/2)I"(B+1/2). Here Cs=x for x>1 and Cs=1.76Vx for x<1.
Equation (3+27) means that there is a boundary resistance arising from the condition
¥ =0 at the boundary. Let us denote the temperature at x =0 by T +(87 )z, T being the
temperature far from the boundary. Then assuming A= —& %(1— T/7:)** we have

2V(5T)B/ ( T:— T); — CB(4u*_Cl/bzgokBTA)$2Q . (3‘29)
A rough estimation can be made as follows:
R:=(0T)s/Q~10"*(1— T/ T:) " deg cm* W . (3-30)

In most experimental conditions R; is much smaller than the Kapitza resistance Rx(~1
deg cm® W1, typically),? although R; diverges as T~ T..

Next we calculate the temperature at x =0 in the two-phase coexistence case (see
Fig. 1). For simplicity we assume a very small heat flow and neglect the vortex
resistance. In this case the value of 7 in the flat region, 7w, is given by (3:16). The value
of 7 at x =0 will be denoted by ro=ko?A0o=|r=|4o. To estimate ro we may use (3-27) to

He I Hel

Ta

/ | X
Teo

L,

Fig. 1. The temperature profile in the coexisting
case. We are neglecting the temperature
lowering due to vortices.

*) In Ref. 2) the temperature is claimed to change over a distance [=/(T:— T)'?, whose temperature
dependence is different from that of the correlation length (oc(7T:— T)*®). This is clearly an error
originating from a wrong order estimation in (4:33) of Ref. 2).
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a good approximation, although it is the formula in the linear response regime. Then, we

find
ITOV|T°°|_1:CBQ*/bz:CBko_3(4uod/bzgokBTA). (3:31)
Using (3-16) we obtain
1/V/3  for x>1 (3-22a)
|70l/ | 7l = 1= @ Ci/ b2 Co?? = ’
’ o {cza\/i for <1, (3-32b)

where C is a number of order 1. Therefore the lowering at the boundary |ze —|ze| is
considerably smaller than the intrinsic lowering |7<|. As a rough approximation we may
assume the temperature at x =0, 7Ty, equal to 7.

§4. Propagating solutions

Next we assume that @ and A depend on space and time in the forms
O=0(x—ut)e’?, A=A(x— ut). (4-1)

- We may assume u>0 without loss of generality. If #<0, we perform the inversion
transformation x » —x. Then, (2:10) and (2-11) are transformed into

/1 d . [ d i
z(-a—A-—wo>(D+u—dx~(D—b1[A dxz—l—ld)l]@, (4-2)

uM+ad +b23d?A=const. (4-3)

Equation (4-3) represents the conservation of energy.

Further we assume that the system tends to homogeneous superfluid states both for
x——o0 and for x»>0. Namely, we are seeking step-wise variations moving with a
constant velocity in superfluid (shock fronts). The boundary conditions are of the forms

’ A—)Al, @"’ﬁ]uzeilﬁx .' as x——)——OO’ (4.4)
A“’Az , @_,7}21/261‘K2x+z’00 as £~ o0, (45)

where A and A. are negative constant temperature deviations and 6o is a constant. The
amplitudes 7: and 72 in (4+4) and (4:5) and the superfluid currents at x = £ 00 are written
as

m=Al—K% n=|Ad—K?, F.=mK, F:=1K. (4-6)

We derive some relations among the parameters at x =00, Taking the imaginary
parts of (4-2) at x =*oco, we find

a)o:d_lA1+ uKlza_lAz+uK2. (4‘7)
Eiiminating wo wWe obtain
Al_Aé:_du(K1_K2). (4'8)

This relation means that the temperature discontinuity at the shock front results in the
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acceleration (or deceleration) of the superfluid velocity (8/dx )0. It cannot be modified by
the details of the dissipative processes occurring in the front region. From (4:3) the
energy conservation leads to

%(Ml—Mz)+(l(£1_gz):O, (4’9)
where
M= (1+%a2 )Aﬁ%azmz , M2:(1+%az)Az+—%~aszz . (4-10)

Experimentally we can measure A1, A2, 1, 2 and u. The above relations constitute
two relations among these five quantities. Especially elimination of % from (4-8) and
(4:9) yields a relation among A, 4., 41 and &2,”

Clz(gi—gz)/(Al“Az):(M1_M2)/(K1—K2). _ (4'11)
Here we show a convenient equation of # derived from (4-9) with the aid of (4-8) and
(4-10):
<1+—%—a2)u2—a([ﬁ+Kz)u+[-§—(A1+Az)+K12+K1K2+ Kzz]:() . (4'12)
If we assume that the last term of (4:12) is negative, then the positive solution of (4:12)
is given by
-1/2 -1 .
uz—‘%%}—m%u%aﬁ H—az<1+%a2> (Ki+ Ko )?
1 / 1/2
~ At A - K- KK-KR | (413)

As ought to be the case, in the limit A:— A and Ki— K, the shock velocity tends to
the (linear) second sound velocity cu in the homogeneous current-carrying state.?¥~%? [t
is the solution of the equation (Appendix A):

(1+—%~dz)cﬁ—f2aKCn+(A+3K2)=0. (4-14)
If the superfluid velocity K is zero, we obtain the equilibrium relation ci=7n/(1++4?).

Note that the fluid far from the front must be stable with respect to small
disturbances. Obviously, the solution of (4:14) must be real and [3—a?/ (1+34?)]K;?
<|Ajlfor j=1, 2.>® However, in Appendix A we show that a stronger condition is necessary
for the stability of the second sound mode propagating in the reverse direction of the
superfluid current. It is independent of « and simply of the form**

Ki*<|A4l/3, K2<|A.l/3. . -~ (4-15)

This criterion was derived from purely thermodvynamic arguments by some authors.?**®
In the case of shock waves of ordinary sounds the entropy behind the shock front must

*) This relation is analogous to the so-called Hugoniot adiabatic in the theory of shock waves of ordinary
sounds®® (see Fig. 1).

**) In experiments, however, the shock fronts have been observed at the leading or trailing edges of a finite heat
pulse. In such cases (4-15) would be too strong.
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always be greater than that ahead of the front.>® The difference of the entropies is
produced by the dissipation in the thin front region. An equivalent relation should also

- hold in the case of second sound shock waves. In Appendix B we calculate the entropy
production rate Ras in the shock front region, which is defined by”

Rus= [ :dx[bz(g‘—’;A)z+(Reb1)|DdiS|2], (4-16)

where
2
Ddis:[AﬁWﬂ@;z]a) . (4-17)

We are neglecting the dissipation associated with the shear viscosity. In terms of the
parameters at x = 100, Rgs is expressed in a surprisingly simple form,

Rus = u(m—n) (Ko = K. (1s)

Thus if #>0, we must always require
N>72. ‘ (4-19)

The superfluid density behind the front must be greater than that ahead of the front.
Otherwise, there is no solution satisfying the boundary conditions.

We also notice that, if Ras=0, we have-A=const and Das=0. Then dbf/dx=—(A/a
— o)/ u=const from (4-2) and hence |@|*=const from (4:3). Namely, if either of 7: =17
or Ki=K:; is assumed, there remains only a trivial homogeneous solution. In particular,
when A.— A, is very small, the right-hand side of (4-18) is of order (A.— A.)* and (4-16)
means that the thickness of the front should grow as |A.— A.|™!. It should be noted that
(4:-18) is not the sufficient condition for the shock front stability. To examine its
stability, we must examine the time-evolution of corrugation-like disturbances on the
front surface. ‘ :

Further using (4-6) and (4+8) the condition (4-19) is rewritten as

7= =5 (A= A= (Ka+ Ka)aul >0 (4-20)

Therefore there can be the following two cases:
(i) A:>A, and Ki+K.<au, (4-21)
(11) A2<A1 and K1+Kz>du . (422)

In the first case (4-21) the shock front propagates into a warmer spatial region in accord
with the prediction of Khalatnikov which is valid for small values of K: and K3, whereas
in the second case (4:22) the reverse phenomenon occurs.

In the following we will fix the parameters ahead of the front, A: and Kz, and examine
a relation between A4, and K, (or 4.), We may set A.=—1 without loss of generality.
In Fig. 2 trajectories of A and K satisfying (4:19) are shown. They start from points
on the line A;=—1 in the direction determined by #7:>7., (4-19). The starting points, -
where A=A, and K=K, represent homogeneous states. As the distance from the
starting point increases, the discontinuity of the shock wave increases. We notice that
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Fig. 2. The shock adiabatic for ¢=1, where we fix the temperature deviation A. and the superfluid
velocity K- ahead of the front. Each point on the ordinate is a starting point of an adiabatic curve
and represents a homogeneous state in which A1=A4; and K1=K,. The curves AA’ and BB’ are

the trajectories determined by 7:.=7. and by u#=c,, respectively, and K:=v|A4:l/3 on the curve
CC'. The adiabatic curve starting at K;=0 happens to cross the curves BB’ and CC’ at the same
point, which is fortuitous due to the special choice of 4.

the case (4-21) is realized for K,< K., whereas the case (4:22) for K>> K., where
Ke=ald+a?) Y2 A, . (4-23)

From (4-15) we notice that a must be less than +2 in order that the fluid ahead of the front
is stable even at K.=K.. The trajectories end at the marginal curve AA’ on which
71=72. From (4:6)~(4-13) the condition 7 =72 yield

Ki=—K,+a(1—K2)"?, (4-24)
Ar=—1—a*(1— K;?)+2aK.(1— K22 . (4-25)

This marginal curve and the starting line A:= —1 crosses at a singular point S in Fig 2,
where we K1=K,= K. from (4-24). The limiting behaviour near this singular point is as
follows:

—1/2
771Anzzd[(2+%az>(Kc—K2)~A], A= ~1—a(1+%az> A, (4-26)

where 4=K,— K and |K:— K.| are assumed to be small. The first equation of (4-26)
means that |4]|<(2++4?)|K.— K| near the singular point.

Here we must refer to the so-called subsonic and supersonic criterion.?® It requires
that stable shock fronts should travel with a velocity smaller than the sound velocity
behind the front c; and greater than that ahead of the front ¢.. In the case of ordinary
sounds this criterion is equivalent to the positive entropy production in the front region if
(0°V/3p*)s >0 where V=1/o. In our case we compare # with the second sound
velocities at x = +00, ¢, and ca: '

)

1 -1 1 -2 1 -1 1/2
Cj:<1+7612> dKj+[(1+“2“‘dz> (aKj)2+<1+~2—a2) (|A,|—3KJZ)] s (4‘27)

*) This inequality does not hold generally. Particularly, it is invalid near the gas-liquid critical point.*®*®"
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where 7=1, 2 and use has been made of A(=T=T,)
(4-14). We consider only the sound modes X
propagating in the positive x direction.” In Aplr—— — — — = ; —

) . A 7T Equilibrium
Appendix C we show that the supersonic ! Yo 111 Region
condition #>c», can be derived only from v, g
(4-19) and hence holds as long as 71> 7., counterfiow =
whereas the subsonic condition #< c¢; holds
only when |Ki—Ka| is less than a certain
value for fixed A, and K,. In Fig. 2 we
display the marginal curve BB" on which 151
u=c;. In the two regions ASB and A’SB’
we find 7:.>79. and #>c:. As known from
Fig. 2, the two conditions hold at least when
As— A, is small. In fact, to first order in
A>,— A, we have

, | " o3 /1
U~ =i u LAV

E%IZQZKZZ_(].“}‘%QZ)(A?,

A /A,

—-1/2
+ 3K22):| (771_ 772)>0 . (4‘28) Fig. 3. In the inset a “rarefacation” shock wave is
shown schematically. The region ahead of the

In particular, if we assume K.=0, we find front is in thermal equilibrium and there is a heat
3 flow in the negative x direction in the back
%/62“15'1(771/772—1). (4-29) region. In the figure we fix the temperature

» deviation A.. The horizontal axis denotes the

As T~- Ty, (4-29) is asymptotically equiva- superfluid current density in the back region, 4,
lent to the result of Khalatnikov, (1-4), divided by |A:/*?, where 4. is proportional to the

heat flow. The two dimensionless numbers M,
and Ma» are the Mach numbers with respect to
the rear and forward media, respectively.

where #2/u20 in his notation corresponds to
u/c» in our notation.

Keeping A. and K, held fixed and
changing K: from K>, we can also find that « increases with increasing K for K;< K. or
with decreasing K for K, > K. untill #/c., approaches 1 from above 1. Namely, « attains
a maximum when #/c;=1. In Appendix C we calculate the maximum shock velocity
Umax as a function of K, in the form

: 1-Sgz2 |
R 4 /]
Umax — — dlgz + { d[iz } + 41 s (4'30)
2t 2 L 2 2
8<1 16“> 8<1 16") T4

where we have set A2=—1. The ratio #max/c2 is the maximum of the Mach number with
respect to the medium ahead of the front, where c; is defined by (4-27). In particular,

* Thus, if #> c., small perturbations on fhe front surface will not penetrate into the fluid ahead of the front.
If > c., they can be propagated behind the front as linear combinations of the two second sound modes,
whereas, if #<ci, only as the second sound mode propagating in the negative x direction. If the two
conditions #>c¢; and u< ¢; are satisfied, the conservation laws require that the perturbations cannot separate
from the surface. This argument®® is very plausible, but is not rigorous owing to the highly nonlinear nature
of the shock front.
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when K>=0, we have a simple expression
1, 1 L\
umax/czz[(l+7d )/(1———16a )] . (4-31)

At this maximum we also have Ki=%a/ (1—4?)"? and |A:|=1+34?/ (1—4?). In Fig. 3
we write the two Mach numbers Ma:= u/c: and Ma2= u/c,, and |A,| as functions of & in
the case K,=0 for ¢=1. '

§ 5. Shock profiles

The shock profile can be calculated very simply in the case x*>1 as in the case of the
interface profile, where x>~ (Re b:)b; is defined by (3:7). In this section we assume x*>1
and also Im 4, =0, since Im b, gives rise to no essential difference in the final results.

Let us first set up the equations for 7 and 4 from (4:2) as

a+(-Lo) +r= Ly (L) o+ Lo 2L (5:1)

dx T2 dx?? 4\ dr ! n dr’
(5171%+ u)g +(a ' A—wo)n=0. (5-2)

We will first neglect the right-hand side of (5-1) and will check self-consistently that it is
in fact small. Note that the magnitude of the deviation of A from the average is of order
A,— A, and that of (d0/dx )? from the average is at most of order 2K(K,—K,)=2K (A,
—A,)/au, where K is the greater of |Ki| and |Kz|. Thus, if 2K < au, we simply have

p=—A. (5-3)
Then (5-2) and (4:3) are rewritten as
(b i—Fu)éf—cz“l(?;-l-aw )7 =0 (5-4)
Ydx ° ’ : :
[b —d——|—<1+~1-az>u]77—aé’ =const (5:5)
2 dx 2 :
d can be eliminated to give
2
blbzﬁﬁ”f‘[bz“i“(l‘*‘%az)bl] u%ﬁ
:772+[aa)o—(lﬁ—%az)uz]n-!-const. (5:6)

The right-hand side of (5-6) should be of the form (7 —7,) (7 — 72.) since the left-hand side
vanishes as x - o0, The width of the front region is known to be given by

o= u] b+ (14 5-0)b: |/ (1= 0. (5-7)
We introduce ¥ and F(y) by

v=x/ls, F)=(m—n)/ (3:—n2). (5-8)
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Then (5:6) reads

o B+ 4 p=(1—F)F (5-9)
P dy? dy '
where
602(771ﬁz)(bxbz/uz)[bz+<l+%dz>b1]—z . (5-10)

The boundary conditions are F(—o0)=0 and F(o0)=1.
If ep<1/2, F approaches 1 monotonically, whereas, if ep>1/2, it oscillates around 1
for large y. In real helium we have 5.= 6, and

ep=(m—52)(b1/b2u® )~ (1 —n2/7)w . : (5-11)

Therefore, ep appears to be considerably smaller than 1 in any case. If €p<1, (5:9) is
solved to give

F=1/(1+¢Y). (5-12)
Thus,

7(2)= 5 (7 72)=5-(13— 72 tanh(z/ 2105, (5:13)

A similar profile is known for the pressure variation in the case of weak shock waves of
ordinary sounds.?® The shock thickness is roughly of the following order in the original
units:

kot s~ 5(4 uo/Xo)llz(Ao/go)/ (771_772)"’5/ (1‘032/{%1), (5'14)

where £ is the correlation length assumed to be of the same order on the two sides of the
front and ps: and ps» are the superfluid densities on the two sides. Equations (4:16) and
(4-18) means that the shock thickness grows as 1/ (7.—7:) irrespective of the value of x.
Thus (5-14) will be valid even if x<1.

Now we can estimate the right-hand side of (5:1): the first term ~(1—72/7:)ls7%, the
second term ~(1—72/7:1)%*ls"? and the third term ~(1—75./7:)b:" 1. Because b:< /s
from (5-7), the third term is largest and is more precisely of order (6:162)"*(1—72/7:)(A,

- —Ai). Thus the right-hand side is smaller than the deviation of A(~A.—A:) by the
factor x7* even if 1— 7,/ is not small.

§ 6. I'nterfacial motion

Thermal disturbances in superfluids propagate rapidly in the form of second sound
waves or shock waves. Those in normal fluids, on the contrary, obey the thermal
diffusion equation and their time scales are much slower than those in superfluids. Then,
what is the time scale of temperature variations in the coexisting case? The answer is
that the interfacial motion is slowed down by the slow relaxation in normal fluids.®

In most cases we can neglect the rapid and small temperature variations on the
superfluid side as compared to those on the normal fluid side. The problem is reduced to

*) This is because w=(Re b:)/b2=xo(Re [5)/A$1.19272
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a modified version of the Stefan problem.” Let us consider one-dimensional cases with a
superfluid region in 0<x <x:(¢) and a normal fluid region in x:(¢#)<x <L, where x:(¢) is
the interfacial position and L is the cell size. First, we assume that the characteristic
temperature variation in the normal fluid region is much greater than that in the superfluid
region. Then we have

T(x, t)=T:x for x<x:(¢). (6-1)

Second, note that the heat flow in the superfluid region @ is nearly constant over the region
and that the latent heat across the interface is negligibly small, because the entropy gap
implied by (3:16) is proportional to 72— 7. Thus we obtain the second boundary
condition at the interface:

(455).=@. | (62)

where A is the thermal conductivity and the left-hand side is the heat current extrapolated
to the interface on the normal fluid side. Note that the right-hand side is replaced by
— T4Sdx:/dt in the usual Stefan problem, 4S being the entropy gap. We call (6-2) the
modified Stefan condition. Of course T obeys the thermal diffusion equation in
r:<x<L:

O 0 (17.) 0 | :

where yx is the specific heat. If we give the value of @ and one additional boundary
condition at x =L, the equations are then complete and we can in principle calculate x:(#)
and T(x, ¢). |
The simplest example is the case in which the superfluid region expands with a
constant velocity v:=dx:/dt. Then 07T/ot=—0:0T/dx and (6:3) is integrated to give
WL = — o T T+ Q. (6-4)
x R
Here A=A*(T/T:—1)"** where A* and x.(=0.42)'® are constants and the weak critical
singularity of ¥ may be neglected. If the cell size is sufficiently long, T tends to a
constant 73 far from the interface. It is given by

T:—T:=Q/v:ix . (6-5)

Experimentally, if @ and 7> are given, the velocity »: is uniquely determined by (6+5).

On the other hand, a normal fluid region expands in a quite different way. Let us
supply a heat flow Qw» greater than @ from the warmer boundary x =L. If the fluid is in
the superfluid state for #<0, a normal fluid region emerges for ¢ >0 as

yi(£)~[(Qu— Q)]0 (6-6)

where y;= L — x; is the thickness of the normal fluid region. Details of the calculation can
be found in Ref. 8).

*) This is a problem of a diffusion equation with moving boundaries. One additional boundary condition is
necessary to determine the boundary motion as compared to the usual case of fixed boundaries.®®
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§7. Transition from normal to coexisting states

We are interested in the stability of a stationary normal fluid state under heat
flow.”*® The heat flow is in the negative x direction and the temperatures at the
boundary walls, x =0 and L, are denoted by 7, and 71 with To< 7i. A superfluid region
will emerge from the cooler boundary x =0 as the three parameters @, 7o and 7; are
varied slowly. For simplicity, we consider only stationary states and the boundary
conditions will be assumed to be changed much slower than the thermal relaxation time
of the system (~L?/Dr, Dr being the characteristic value of the thermal diffusivity).

Let us consider the following situations:

(i) We fix the heat flow being subtracted outside at x =0, @, and that being supplied
inside at x =L, @:. If 0Q= Qo— Q1 is positive and very small, the fluid will be cooled as
a whole quasi-stationarily. A Hell layer will emerge when T, is lowered below a certain
value.

(ii) T is fixed above Ti. Then there is a unique relation between 7, and @ in each
stationary state. If 7, is lowered below T (or if @ is decreased with Ty, slightly below
T:), a Hell layer will emerge at a certain value of 7o.

(iii) 7Ty is fixed slightly below T; and Ti (or ) is varied. A Hell region will emerge if
T is smaller than a certain value. This case is essentially the same as (ii).

We shall see that the normal fluid state will become linearly unstable if 7% is smaller
than a critical temperature Tsc, where T:— Tsc=const @**>0. Our main results are as
follows: (1) Ti— Tsc< Ta— Tw for x>1, whereas Tu— Tsc> Ta— Tw for x<1. Then the
fluid is bistable for x<1 (see Fig. 5 below). (2) Moreover, for ¥x<1, the transition at
T ~ Tsc is an inverted bifurcation. The fluid will jump from a normal fluid state to a
coexisting state with an interface separating the two phases. Consequently, 7, changes
discontinuously in the first case (i), whereas @ increases discontinuously in the cases (ii)
and (iii). In the following we give the detailed calculations and discussions.

For simplicity we consider the case in which the thermal resistance due to vortices can
be neglected. Equation (1-3) indicates that the vortex resistance is always negligible
when

L<Lertéc~10Q cm, (7-1)

where @ is in erg/sec cm®. We further neglect the boundary lowering from the
estimation (3:32). Under (7-1) the temperature at x =0 is nearly equal to 7. For
example, in Bhagat’s experiment € was of order 10° cgs and the right-hand side of (7-1)
was of order 107 ?cm, which was probably even smaller than the size of his thermometer.
On the other hand, in Ahlers’ first experiment,'” @~1 cgs and L~1 cm, and (7-1) was
satisfied. ‘

We first investigate the linear stability analysis of the normal fluid state. We
linearize (2-10) around the solution ¥ =0 and A=A4.,+ Gx, where A, represents the
temperature deviation at x =0. G is related to Q* in (3:2) by Q*=56.G. Therefore,

G=Q*/b:=(alke®*b2)(41:Q/ 9ok T>). (7-2)

We analyze the linear equation for the small deviation ¥ varying only along the x axis:
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D =ia AW — b Ao+ A1V, (7-3)
where
. 92 _
H=— aszr(l—z/ab])Gx. | (7-4)

We are interested in disturbances localized at x =0. Then the system size L may be
pushed to infinity if L is of a macroscopic size. We seek a growing solution of (7+3) under
the boundary conditions ¥ (0)= ¥ (c0)=0. In Appendix D we shall see that the eigen
functions ¥, and the eigen values E» of K can be expressed in terms of the Airy function
Ai(z)** in the forms

a(x)=0""BrAilox —an), (7-5)
Enzaﬁ‘oz , (7-6)

where =0, 1, 2, --- and
o=1—i/ab))'*G"* with l|argol<n/3. . (7-7)

The series ao<a:<-- represents the zeros of Ai(—z) and £.=(—1)"/Ai'(—a»r). In
particular, @o=2.34 and 8,=1.43. Because Im ¢°=—(G/a)Re(1/6:)<0, we find 0>arg ¢
>—(7/3). Then, ¥.(x) goes to zero rapidly as x — +oo as shown in Appendix D. The
¥,(x) are orthogonal in the following sense:

Let /.an](;mden(x)qf(x, 0). Then,

U(x, t):§oun U, (x)explia * Aot — b1 Aot — b1 Ent]. (7-9)

In Appendix D we will show Re (5:0%)>0. Then, the deviation pro‘portional to ¥, first
becomes unstable as Ao is lowered. Therefore, we find a critical value of Ao, which will
be denoted by Asc and is given by

Ase=—aoRe(b10%)/ Re b1 = — aoRe[(1+ico)(1—i/ab, **] G**, (7-10)

where co=Im %/ Re .
In the original units zsc=/ko’Asc is written as

Tse™= — Csc(4 Uo Q/gokB T, )2/3 y (7 11)
where use has been made of (7-1) and
Cse= aob2""*Re[(1+ ico ) a—i/b:1)*2]. (7-12)

This value of zsc should be compared with the value of 7 on the Hell side in the case of
the two-phase coexistence. The latter value was denoted by 7. and given by (3:16).
The proportionality constants C. and Csc behave quite differently as x (or T:— T) is
varied. For x>>1 we may assume a>1/b:| and Csc=2.34(a/b:)*"®. Hence,
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Fig. 4. The expected discontinuous change of the Fig. 5. The bistability for x<1 in the case of fixed
temperature at the cooler boundary, T, for x<1 boundary temperatures. The fluid will jump
in case (i). from the normal fluid state to the coexisting

state.
CSC/Coo;234/ (x/g)f )2/3<<1 . (7' 13)

For #<1, on the other hand, we have a<1/bil~x"w| ™% and Csc=aox~*®. Thus,
Cse/Co=2.34(2B) 2%~ 1> 1 . (7-14)

The above two relations suggest a continuous change for x>1 and a discontinuous
change for x<1 in the situations (i)~ (iii). The expected behavior of T is schematically
shown in Fig. 4 for the case of fixed heat flow (i). In the cases of fixed boundary
temperatures (ii) and (iii) the temperature profile changes discontinuously for x<1,
resulting in a discontinuous increase of the heat flow, as is evident from Fig. 5. If Cs¢/C
>1, the fluid is bistable for fixed boundary temperatures.

To confirm the above expectation we derive the Landau equation for the amplitude o
in (7-9) and examine the type of the bifurcation occurring at Ao=As.. The definition of
Un 1S given by

fn(ry, z):fowdan(x)mr, £), (7-15)

which are generally dependent on r,=(y, z) and t. We define
8E_A0+Asc. (7'16)

We assume a@o~|8]*%, an~|5|** for »=1, and |0A|~38, where S§A is the temperature
deviation defined by

A=A¢+ Gx+58A. (7-17)
As the boundary conditions for §A we assume
SA(0, t)=0A(0, t)=0. (7-18)

The ‘prime means the spatial differentiation. The heat flow at x=0 is fixed. The
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Fig. 6. |@o(x)? and Im(¥o*(x)d/dx ¥o(x)). Here
ab,=0.35+0.237, which is the value of the F
- model to first order in e=4—d.

superfluid density and current are |¢ol? @o(x ) and | o’ Im( &o*(9/0x ) &), respectively, to
first order in §. In Fig. 6 we plot | ¥o(x )I* and Im( &0*(8/0x ) ¥,). The two functions are
positive-definite for x >0 (see Appendix D).

Multiplying (2:10) by ¥.(x) and integrating over x we obtain

%ﬂo: [( ia”'— b, )Ao“ b1a/oGz+ blVLZJﬂO_ldlblFllﬂOIZ#O

+(ia“~b1)[£mdx¥fo(x 2SA(r, t)]ﬂo, (7-19)
where V 2= 0?%/0y?+ 0%/9z? and
Fi=gt [ drAi(zPAi(="). (7-20)

Here z=e*x —a, with 6=argo and F, is a function of 4. The first linear term on the
right-hand side of (7-19) is rewritten as (iw:1+6:8 +6:F *)uo with wi1=(a *—Imb1)Ao
—aolm(b10%). We redefine poe™' as uo and then the term iw: o disappers in (7-19). The
second cubic term (oc|uol?140) always serves to suppress the growing of 1. In fact, we can
numerically verify Re(6:F1)>0.

However, the third nonlinear term has a destabilizing effect for ¢ !>|5:]. We can
show that the third term becomes dominant over the second term for x<1 and '

[ de m wo(x P8 A(r, 1)<0. (7-21)
To show this we express 64 in terms of #o for |§|<1. We can assume that the time scale
of ¢ and 8A is of order |8|™* and the spatial scale on the yz-plane is of order [§|7*2. Then

(8/0t)M is of order 82 and can be set to zero in (2-11). Thus 64 follows the variation of
J instantaneously as

SA(r, t)z~(a/bz)j;xdx5(r, t)
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Im ¥?

Fig. 7. H(x), (7-23) and Im ¥o(x )? for ab:=0.35+0.237. The inequality (7-24) can be seen to hold.

= —(a/tpol* e T WLy ), 7
where the corrections of order 6 have been neglected. The right-hand side of (7:22) is
negative-definite for x >0. Namely, the temperature inside the fluid must be lowered with
the appearance of the Hell layer if the temperature at x =0 and the heat flow is fixed. Let

us define H(x) by

H(x)= [ dx Im( qro*%wo). (7-23)

Then, (7-21) is rewritten as
L=~ ["dx[lm ¥s(x Y1H (x)>0. (7-24)

Usé has been made of /& dxIm ¥o(x)*=0 which is derivable from (7-8). Figure 7
confirms (7-24).
After some manipulations we arrive at the desired Landau equation

a—atﬂo:bl[a 7 10— by Zol pol* 1o (7-25)

where
Zo=|o|Fi—1ol(i — ab1/b2)(6:162)' F, (7-26)

where
FZ:BO“medx[zAz'(z)Z—Az"(z)Z]Im[Az'(z)*Az"(z)e"”]. (7-27)

The definition of z is the same as in (7-20). Note that 1 and F; are complex numbers
of order 1. For x>1, we have Zo=|o|F, and Re(6:2,)>0. For x<1, on the contrary,
Zog - i|0|(61b2)_1Fz and

NI | - El ectronic Library Service



Publication O fice, Progress of Theoretical Physics

A Hel-Hell Interface and Second Sound Shock Waves 213

Im(b:Zo)=l0]b; '(Im F>)=— b, [,<0, (7-28)

where Io is defined by (7-24). In Ref. 7) F: is calculated numerically as a function of 6.
The author has not yet succeeded in proving the inequality (7-21) or (7-24) analytically,
but there should be a general proof.

In summary, the mode coupling terms, those proportional to go in (2:1) and (2:2),
decrease the surface critical temperature 7s. and result in the bistability sufficiently close
to the criticality as shown in Fig. 5. The importance of these terms increases as 7~ 7%
with the increase of x '(o<cgo). We have found that the transition is an inverted
bifurcation, but we cannot determine in our scheme the exact temperature or heat flow at
which the jump from the normal to coexisting states occurs. In the following we give
some discussion which might be relevant to experiments, assuming that the transition
takes place at a value of T:— T, considerably greater than T:— 7.

We first estimate the value of Ti— Tsc from (7-11). If #o in (7-11) and #o in (3-16)
are assumed to be the same, then rsc/7e=/[(Ti— Tsc)/ (Ti— Tw)]*?*=Csc/Co with @
common in the two states. If #ooc(Ti— Tsc)??in (7-11) and #oo<(Ti— Tw)*® in (3:16), we
find a slightly different result, (73— Tsc)/ (Ti— Tw)=(Csc/Cx)”®. In any case we have

RmaxE(T/l_'Tsc)/(TA_Tw):(Csc/Coo)y Wlth ')”\’1. (7'29)

We cannot determine y exactly because our arguments are based on the mean field
calculations.

In the cases of fixed boundary temperatures (ii) and (iii) we denote the heat flow in
the normal fluid state by @~ and that in the coexisting state by @s. We assume that the
transition takes place for 72— To=R(T:— Tw), where R is greater than 1 and smaller than
Ruax, (7:29). Then at the transition we find

T,— To:RTAAooQNSM:: T,{AooQSSM . (7’30)
Therefore,
Qs/Qn=R**. | (7-31)

On the other hand, the temperature in the normal fluid region not close to the cooler
boundary and the interface is given by'?

T—Ti= T (A1 —x)Qux/A* T ]MO~*» for 0<x <L, (7-32a)
=T(1—x)Qs(x —x:)/A* TW ]V *or x:<x<L. (7+32b)

The first expression is valid for the normal fluid state and the second for the coexisting
state. The constant x; in (7-32b) represents the interfacial position. The two constants
x2 and A* are defined by the expression for the thermal conductivity above Ti, A=A*(T
/T:—1)"**. The boundary temperature at xr =L, 7, can be obtained from (7-32) by
setting x =L. Therefore, QnL. = Qs(L—x:) or

2:=L(1—Qnx/Qs)=L(1—R~*?). (7-33)

We can also calculate the entropy difference between the two states for the cases (ii)
and (iii). Let us assume that the specific heat per unit volume x is a constant, for

*) A similar result was found for a one-dimensional superconductor under electric field.*?
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simplicity. Then the entropy difference 4S per unit volume is determined by
L L
LAS=z [ dr[T(x)= T~z drlT(x)=Ti) (7-34)

where 7T'(x) in the first term is given by (7-32a) and 7'(x) in the second term by (7-32b).
After some calculations we find a very simple expression

AstN(ILf):sN(l—R-m (7-35)
with
Sv=(§=2H(Ti— T). (7-36)

Here Sy is the first term of (7-34) divided by L and represents the entropy in the normal
fluid state measured from the criticality. From (7-31), (7-33) and (7-35) we can eliminate
R to obtain

l*Qn/Qs:xi/L:AS/SN. (7‘37)

§ 8. Summary and remarks

(A) Hel-Hell Interface

There are three aspects of the problem of the two-phase coexistence as noted in the
final section of Ref. 8).
(i) The structure of the interface as explained in §3. The intrinsic lowering T:— T
(~107%Q%* @ in cgs) can be detected only by special thermometry. One possibility is to use
a thin thermometer which can detect temperatures in a very narrow region. Another
possibility is to use a very precise thermometer working at small heat flow under the
condition L<K10Q "*cm with @ in cgs.
(ii) The motion of the interface as explained in $6.
(iii) The phase changes among the normal fluid, the coexisting, and the superfluid states
under heat flow as discussed in §7. In particular, emergence of a Hell region from the
cooler boundary is the most interesting phenomenon. Its transition changes over from a
continuous one to a discontinuous one as the criticality is approached (or the heat flow is
decreased). The two cases are characterized by »>1 and ¥<1, where x is defined by
(3:7). In the recent literature®!®*”?® the strength of the mode coupling has been
represented by a dimensionless number f= Kqg0°&/ARel, where K, is a constant. In
terms of f we have x*=0.1/f. Here f increases from numbers of order 107? to a number
of order 1 as |T/T:—1| is decreased. The saturation occurs for |7/ T:—1/<107%. We
notice that the intrinsic lowering reduced temperature is in most cases much less than 1072,
so that the condition x*>~0.1 will be realized at the transition near the cooler boundary if
experiments are performed.

(B) Shock Waves

(i) In the A region the shock relations and the shock velocity are dependent essentially
only on the static parameter ¢, (2:9), if the physical quantities are appropriately scaled.
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Their behavior is quite different for the two cases ¢=1 and ¢<1. Hence it is highly
desirable to calculate the parameter a precisely as a function of 7:—7 by the
renormalization group method.”® We also notice that Khalatnikov’s theory of the second
sound entrainment®® can give us a method to estimate . He expanded the second sound
velocity c: in counterflow as c2= czo+ yvn- B/k+-+- where cz is the equilibrium velocity
and k is the wave vector of the sound. The entrainment coefficient y can be expressed in
terms of thermodynamic quantities. We can determine @ by comparing his expression
and (4-14). We must also remark that the entrainment coefficient y and the steepening
coefficient in (1-4) behave quite similarly in the whole temperature region below 7:. See
a striking resemblance between the figure of Ref. 24) (or Fig. 1 of Ref. 19)) and the figure
- of Ref. 29). This suggests that the second sound velocity in counterflow and the shock
velocity are very similar as functions of the temperature and the heat flow.
(ii) As can be known from Fig. 2 a cooler region can expand into a warmer region as a
shock wave in the A region unless the superfluid velocity far ahead of the front is very
large and in the same direction as the shock wave. This means that the trailing edge
steepens into a front in the case of a heat pulse. If a negative heat pulse can be realized,
the leading edge becomes a front. Then it might be possible to observe the maximum of
the shock velocity which has been discussed at the end of §4. :
(iii) We have discussed on the supersonic-subsonic criterion. The supersonic condition
u> cz is always satisfied, whereas the subsonic condition 2 < ¢: can be violated for large
counterflow behind the front. Interestingly, when the marginal condition #=c; is
attained, the shock velocity # takes a maximum. Furthermore, if #>c., large
disturbance will develop in the back region of the front. As a definite result we have
found that the superfluid density ahead of the front must be smaller than that behind the
front. However, this condition is not sufficient and our analysis of the front stability is
still inadequate. We should examine the time-development of corrugation-like
disturbances on the front starting with the dynamic equations (2-1) and (2:2).
(iv): We have neglected effects of vortices on the shock wave, expecting their role as
secondary. This is in contradiction with Turner’s analysis*® (see below).

We comment on Turner’s analysis of his own experiment. He send a heat pulse into
equilibrium helium and observed a maximum of the shock velocity with increasing heat
power at 77=1.65’K. There, Khalatnikov’s steeping coefficient in (1-4) is positive and a
front appears at the leading edge. He interpreted this maximum as indicating vortex
nucleation®® in the pulse region where a large counterflow exists. We disagree with this

interpretation. We consider simply that the shock velocity will increase first linearly
with increasing heat power by the entrainment effect and then it will saturate and decrease
by the decrease of ps in the pulse region. The maximum is attained when these two
effects balance. It should be noted that the second sound velocity cu behaves in the same
way with increasing counterflow. Turner also found that the pulse shape is distorted
from a simply formed trapezoidal shape if the heat power is greater than a breakpoint
value at which Khalatnikov’s relation breaks down. He considered this as arising from
“a breakdown in superfluidity of Hell”, whereas we expect that this phenomenon should
be caused by the breakdown of the subsonic condition. Vortices would not distort the
pulse shape so strongly. We of course admit that our objections to Turner’s
interpretation have been obtained from the calculation near the A point. We must extend
our results outside the A region. Some of them should be general and remain unchanged.
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Appendix A
We examine linear modes varing along the x axis in homogeneous current-carrying

state. We assume that deviations 6@ =@ — @, and A=A — A, are infinitesimal, where
Qo=[|Aol— K?]e®**i®t  Then (2-10) and (2-11) may be linearized as

2 50=ia" A0+ ia 0 A~ b Av—(2) +loul |50
b1 D[OA+ DS D + By 5O), (A-1)
Dom=alsd+b(LY)oA. | (A-2)
Let us define W= W,+:W- by
SO =0, W exp(ia *Aot). (A-3)
Then (A-1) becorﬁes
B =iaoa+b|-Lrr2ik 2| W—b16A+2 0o Wi). (A-4)

The deviations M and § § are of the forms

sM=0A-alofW,, 38 =lof(2kWi+ W) (A-5)
At long wavelengths the spatial derivatives in (A-2) and (A-4) are small and we
obtain two oscillating modes and one relaxational mode whose decay rate does not vanish
even in the long wavelength limit. The calculations are rather complicated. We first
consider the oscillating modes in the long wavelength limit. Then we can self-

consistently check that the amplitude deviation W, is determined by

S[A- P +|oFlo= @0(5A+2|¢0|2W1+2K‘93W2) 0. (A-6)

Namely, the amplitude correction satisfies the local equilibrium relation®?®

2IGDOIZW1;_8A—2K%W2. (A-7)
Then,
— .l; 2 2 _li_ .
5M~(1+Za>é‘A+a k2w, (A-8)
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54 =—KsA+(|Ad—3K*) 21, (a9

Further we have (9/0t)W.=a*SA and (8/0t)SM =a(d/ox )5 & from (2:10) and (2-11)
neglecting the dissipation to obtain (4-14).

We can obtain complete solutions of the linearized equations (A-1) and (A-2) by
assuming the forms

Wi=Re(a,e’**?), W,=Re(a,e’***t),

SA=Re(Be'¥**?t), (A-10)
where a1, a2 and S are appropriate complex numbers. Then we obtain a matrix equation
of the form

W) Wi
b I/Vzl :EI' W, . (A'll)
SAJ 0A

Note that the derivative d/dr in [ can be replaced by ig, whereas this procedure is not
allowable in (A-4) because W is complex. After some calculations the determinant of
the 3X3 matrix ff—p7 can be successfuly transformed into the following cubic equation
of p:

(p+ bzqz){2b11(77 +q2)p +2|bl|2 ngq +2iblqup]
+bunla?p?+27q*+4iagKp+ (p+ b2q?)p*+ 1+ iabi|*npg*=0, (A-12)

where b1=bu+ibis, 7=|Aol—K? and 7 =|Aod—3K?++4¢* Equation (A-12) is very
general and has never been obtained. It gives the dispersion and attenuation of the three
modes for arbitrary ¢, K and a.

We expand p with respect to g as

p:_iqu_é-anz"}""’- (A-13)
Then we find

21)1177[(1 +—%—42>CH"— dK]Du

= cul206:/°(9n —2K?)+2b11b20 + |1+ dabi|*n] — chi+ 261 Kch . , (A-14)

In particular, if K =0, we obtain the damping coefficient near equilibrium for the F
model:

Du=16: b+ bof (1450 )+ @2/ | (14 50) bu | abuat | (1450 | . (A-15)
The last two terms are specific to the F model and vanish if ¢=0. The ratios of the
second term and the others are estimated as follows: the first/ the second~w, the third
/the second ~x"%a?/ 4(1+ a?/2), the fourth/the second ~ —a(Im o/ Relb)w'?/x, where
w=b1/bs and x*=|b1|?b2/b11~ b1:b.. Sufficiently close to 7% the existing theories indicate
a~1, x*~1/10, w~1/10, and Im I,/ ReIs~1. Thus, the third and fourth terms appear to
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be important unless ¢<1. Note that experimental results of the second sound damping
have been analyzed in terms of the expression for the E model (where ¢=0).*~*® Our
calculation suggests that better agreement would be obtained if analysis is made on the
basis of the F model. _

Next we assume |Ao|=3K? or »=2K2 Then one solution of. (4-14) tends to zero as

cn= —(|Ao—3K?)/ 2aK . (A-16)

The corresponding sound is propagating in the reverse direction of the superfluid current
if 3£2<|A,|. Its damping coefficient is also small as

Dy ey (1Al —3K* [2"’2+_bl:|1+ z'abllz]. (A-17)

4(

The right-hand side changes its sign when K? exceeds |A.l/3. Thus we obtain the
criterion (4-15).

Appendix B
Let us consider the following (dimensionless) free energy density:
— 1 -2 A2 1 2 1 4
5—761 A +7IV®| +I|‘D| . (B-1)

Here @ and A obey (2:10) and (2-11). Some manipulations yield

-G = —(Reb)(A—F*+| 0O — (ba/ W AP~ -J (B-2)
where the current J, is given by
— _L 0 v 0 rx
Jr=—(bo] ) AV A~ 27 @ VD" +—-0"-F D). (B:3)

In the case of propagating solutions & depends on space and time only through x—u¢
and it satisfies

0g__, 0 .
atff Uy — . (B-4)

The x-component of J,, which will be simply written as J, is of the form

(B-5)

Jf:'—(bz/a)AgA—womu[%@

where use has been made of (4-1). Integrations of (B-2) over space now gives

Rdis:[:dx[u_a‘i—g_%]f]: Z{[Wz“‘ W1] (B6)
with
W= Fy—--wol,— |3%a> (B+7)

where the subscript 7(=1, 2) denotes the values at x = =0 and use has been made of (4-9).
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Using (4+4)~(4+6) and (4:10) we eliminate M; and 7; and express W; in terms of A; and
Kj as
Wy=(+ e (A~ 2a00A0) + K| At 3K S aws (B-8)
J 4 Zaz J 04325 J J 4 J 2 0.
Equations (4-7) and (4-8) imply that
Ajz—ZawoAchzzusz“r Clza)o2 s | (B'g)
du(Kzz“‘Klz):(Al‘Az)(K1+K2)~ (B'lO)

Thus,

Wom Wi=| 5145 @ )u —au( Kt K)+- (0 + K (2~ K27)

—%(/h“Az)(Kl+Kz)2+A2K22—A1K12“Lda)o(Kzz_Klz). (B' 11)

+ 5

The two underlined terms cancel each other due to (B:10). Now we can eliminate «
using (4-12) and w, using

Qoo Ko — Kt = (Ar 4 Ao (K= K=+ (Ao— AN K+ Ko ) (B-12)
Then we obtain (4-18).
Appendix C
Let us define the following polynomials:
E(x)=(1+—%—a2)x2——2af<jx+A,~+3Kﬁ, (C-1)

where 7=1, 2. 'The second sound velocity c; is defined as the greater of the two solutions
of F;(x)=0. First we will show F:(#%)>0 as follows:l

Fz(u):(u"Cz)[(1+ s )(u+02) ZaKz]

:’2‘(?71_772)+‘%_(K1_K2)2. (C-2)

The second line has been obtained using (4:6) and (4-8). From (4:15) the smaller
solution of F:(x)=0 is negative and we have u#>c,. Thus «>c. as long as 71> 7..
On the other hand, the sign of Fi(%) is not definite:

Fi(u)= =1+ Ki— Kx)
= (Kot K 3-au—2K:—K2), (C-3)

In the marginal subsonic case #=c¢: we have
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2

u:§(2K1+Kz). (C-4)

Next we fix A, and K- and calculate the derivative du/dK.. Differentiations of (4-8)
and (4-12) with respect to K. yield equations for du/dK: and dA.:/dK:. They are solved
to give

[(H—%az)u—%af(l . Kz} ;Ku *iau—Kl—%—Kz. (C-5)

The right-hand side of (C-5) vanishes under the condition (C-4) and we have du/dK,=
We can easily check that # is maximum under (C-4). The maximum u#max can be
obtained by eliminating K: from (C-4) and (4-12). It is the solution of the equation

<1—‘%d2> u12113x+'L]i'dKzumax:1—“%K22 . (C'G)

The solution of (C:6) greater than c: is given by (4-30).

Appendix D

The Airy function Ai(z) is the solution of the differential equation

Ai"(z)—z Ai(z)=0. | (D-1)

Its asymptotic behavior at large |z| is given by*”

AI(Z)E'L ——1/22——1/4exp|:_%z3/2] (D.z)

where larg z|< 7 and |z|>>1. Then ¥.(x) defined by (7-5) decays as exp[—20*°2%?] as
x—co if largol<an/ 3. Next we show (7-8). The orthogonality is evident from the
symmetric nature of Y. Note the relation

Aiz)= [z Ailz P~ Al (2] | (D-3)
Integration of (D-3) from —a» to oo yields

T 4z Az )= AT (—an )= 1/8.%. (D-4)

—Qan

Thus ¥, is normalized if 8 is chosen as in (D-4).
In (7-10) we have assumed |arg(b:0*)|<x/2. This can be proved if we notice the
relation

arg(b.0?)= -arg1)1+ 3arg —ila). (D-5)

Here |argb:|<n/2 and |arg(s1—i/a)|<r/2 because the two complex members have a
common positive real part.

We also show the positivity of the function Jo(x )=Im( ¥o*(d/dx ) ¥o) for —n/ 3<argo
<0. From ¥, =0*(ox —a.)¥o we obtain
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L J,=[(Im o*)x — as(Im o*)]| 2. (D-6)

Since — 1/ 3<argo<0, we find Imc®<0 and Im6?<0. Thus J, increases from zero up to
a maximum Jo(a@oIm ¢°/Im6?) in the region 0<x < @Im 6%/ Im¢® and decreases to zero in
the region aoIm¢®/Imo®<x <co. It cannot be zero for x >0.
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