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   We  present the gauge  covariant  second  quantized field theory for free heterotic strings, which

is leading candidate  for a unified  theory of all known  particles, Our action  is invariant under  the
semi-direct  product of the super  Virasoro and  the Kac-Moedy  Es× Es or  Spin(32)!Z2 group. We

derive the  covariant  action  by  path  integrals in the same  way  that Feynman  originally  derived the

Schrodinger equation,  By  adding  an  infinite number  of auxiliary  fields, we  can  also  make  the

action  explicitly  lecal,

   We  stress that our  path  integral methods  can  be generalized to the interacting case  of splitting

strings,  We  expect  that the complete  interacting theory  will  be a  non-linear  realization  of the

Virasoro and  Kac-Moody  algebras.  Understanding  the geometry  behind  such  theories may  event-

ually  help in a nonPerimrbative  formulation of  the theory, in which  10 dimensional space-time  is

dynamically broken down  to our  four dimensional universe,

'Sl.
 Introduction

   The  heterotic string  of  Gross, Harvey, Martinec and  Rohmi)  is a  promising  candidate

for a  finite theory  which  can  unite  gravity  with  the rest  of  the known  particle interactions.

The  heterotic string  uses  the observation  that the 26 dimensional string  model  ef  Nambu-

Goto2) can  be reduced  down  to a  10 dimensional theory  (which in turn  can  be combined  to

form  the superstring  model  of  Green and  Schwarz3)) by compactifying  the remaining  16

dimensions on  the root  lattice space  of  Es × Eg or  Spin(32)IZ2. The group  Es × Es, in turn,

is suracient  to eliminate  anomalies`}  and  is large enough  to accornodate  symmetry  break-

ings which  can  yield a low  energy  theory compatible  with  all known  particle interactions.5)

   Furthermore, the theory  may  be finite as  well.  Previously, supergravity6)  was  the

most  promising  theory for uniting  gravity  with  the known  partic]e interactions. Unfortu-
nately,  the O(8) supergravity  action  is too,small to accomodate  SU(3) × SU(2) × U(1)
and  the  theory  also  possesses a potential counterterm  at  the  7th loop level, so  the theory

is unlikely  to be finite.

   By  contrast,  the closed  superstring  model  is probably  finite for purely  topological

reasons.  The  ultraviolet  divergences found in quantum  gravity  arise  when  we  pinch the

propagators  of  the Feynman  graphs  and  distort the topology, However,  the closed  string
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has an  entirely  new  topological  structure.  Loop graphs defined for the closed  string  are

spheres  with  handles, which  cannot  be pinched  in the same  way  to yield the usual  infinities.

(Although the divergence structure  of the bosonic string  is known  to all  loop orders,7)  one

must  still check  these results  for the superstring  model.)

   The  theory, however, is only  a  first quantized  one,  i.e., we  treat the location of  the

string  Xy  as  a dynarnical variable,  rather  than  using  a  field functional di(X) which  is

defined at  the location of  the string.  There  are  several  advantages  to formulating the

gauge  covariant  second  quantized field theory  of  strings:

(a) The  theory can  formally be shown  to be unitary.  In the first quantized  theory, the

counting  of  diagrams  is ill-defined. (In fact, the first quantized  action,has  no  interaction

terms  at  all;  the  interactions are  introduced by summing  over  different topologies, which

must  be added  in by hand.) By  contrast,  al] interaction terms  are  explicitly  present in the

second  quantized  theory, so  all weights  are  uniquely  specified  in a unitary  theory,

(b) The  theory can  ultimate]y  be used  for non-perturbative  calculations.  For  example,

geometries  like Calabi-Yau are  at  present  beyond  the scope  of  string  theories (these
geometries are  obtained  as  solutions  of  the Einstein action,  rather  than  as  solutions  of  the

string  action).  Non-perturbative approaches  may  eventually  solve  the question  of  how  a

10 dimensional universe  breaks  down  to a  four dimensional one,  which,  we  feel, can  only

be understood  dynamically.
(c) The  theory may  explain  the underlying  geometry  behind the string  theory. (One
feels that, if Einstein had  never  written  down  general relativity,  a  field theorist would  have

discovered the Einstein action  perturbhtively  as  an  infinite power  expansion  of  an  interact-

ing spin  two  field. A's a  power  series,  however, the field theorist would  completely  miss

the black-hole solution,  the Robertson-Walker  universe,  etc., which  would  only  be dis-

covered  by a  geometer  working  with  curvatures.)  Presently, we  are  constructing  the

covariant  interactions for the theory, proceeding as  field theorists, not  as  geometers,  by

power  expanding  around  free strings.  Hopefully, we  will  be able  to discover the underly-
ing geometry  behind such  a  power  expansion.

   Years  ago,  we  wrote  down  ,the field theory of  interacting strings.S)  Unfortunately, the

theory  was  formulated in the light cone  gauge9)  because we  did not  know  how  to eliminate

the ghosts  of  the theory  covariantly.  Since then, however, our  understanding  of  the

gauges  has been increased by the work  of  mathematicians,  who  have  written  down  the

representations  of  Kac-Moody  algebras.iO)  Using  their results,  we  have  been able  to

formulate the gauge  covariant  field theory  of  bosonic stringsi')  and  superstrings.i2)

   We  will  employ  the Kac-Moody  construction  in order  to write  down  the field theory
of  heterotic strings.  There  are  a  few  new  features of  this second  quantized  theory  which

are  not  manifest  in the first quantized,  light cone  theory. First, we  now  have  a non-trivial

coupling  between the Virasoro algebra  and  the Kac-Moody  algebra  (in fact, the semi-

direct product  of  these two  algebras).  The union  of  the Virasoro algebra  w-ith  the

Kac-Moody  EsXEs  algebra  is crucial  to the 
'construction

 of  the gauge  covariant  field
theory. Second, we  find that the 10 dimensional supersymmetry  of  the  NeVeu-Schwarz-

Ramond  model  (which is obscure  in the first quantized  theory)  is manifest  in the second

quantized  field theory (if certain  matrices  exist).

   We  want  to stress  the  fact that  this theory  is gtizrge invariant, (If we  explicitly  break

this gauge  invariance, then we  would  obtain  a  BRSTi3)-type theory,) This gauge  invar-

iance may  prove  decisive in reformulating  the model  geometrically.
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   Also, we  note  that we  can  always  make  this model  local by  adding  an  infinite number

of  auxiliary  fields. These  fields simply  soak  up  the  non-Ioca]  terms  arising  from the zeros
of  the determinant of  the Shapovalov  matrix.

   Lastly, we  stress  that we  are  using  the language of  path  integra]s because we  wish

ultimately  to write  down  the theory of  interacting strings,  which  should  be invariant under

a  non-linear  realization  of  the  Virasoro and  Kac-Moody  algebra.  This  is currently  under

investigatlon.

             g2. Path  integra] derivation of  covariant  fieid theories

   In our  previous work,  we  showed  how  to use  path integrals to write  down  the gauge
covariant  second  quantized  field theory  of  Nambu-Goto  and  Green-Schwarz strings.

   We  will  now  quickly review  this approach,  which  is based on  the method  used  by
Feynman  to extract  the SchrOdinger equation  from the first quantized  action  mv212.'4}

We  will  use  the path  integral formalismi5) which  has been generalized  for strings.

   First, we  begin our  discussion with  the identity which  establishes  the link between  the

first quantized  and  second  quantized  theories, which  works  both for propagators  as  well

as  the interacting string:

Gij'=.4i'9Xexp[iLbd.xnd.=(x)]

-f9)diMditip(X,,Ti)  g5 
'(X,･,

 T,)exp[if.L'(g6)  g) X]  , (2･1)

where  .C(di) is the second  quantized  action  that we  want  to extract  from the heterotic
string,  This path  integral expression  represents  the Green's function for the propagation

of  a  string  at  
"time"

 Ti and  location Xi  to 
"time"

 Tj. (When we  generalize  this expression

for gauge  theories, we  must  be careful  because we  are  manipulating  quantities which

cannot  be inverted.)

   Second, we  must  rewrite  the action  in terms  of  the  first order  formalism  (defined in

terms of  Xpt and  its canonical  conjugate  Ra). This will  allow  us  to make  
"time"

 slices

and  then to calculate  the  propagation of  the string  from  one  
"time"

 to the next  slice:

Gi,- =  .Lli'mxgpexp[i.L,T'dTXZdolpX+AMC.]]

"f11  

-=

 l. sc X,  g  P,exp[ i 
.C

 
"dtiP,.

 (X,# -  Xe.  ,) III 6 ( C.,,) ]
=flil.Ii.<X,IP,>MX,MP,<p,Ix,.,>"6(C.,,). (2･2)

Notice that, because  we  are  dealing with  a  gauge  theory, the Hamiltonian  is formally
equal  to zero  (actually, it is equal  te a sum  of  first and  second  class  Dirac constraints  Cm).

   The  transition to quantum  mechanics  and  to harmonic  oscillators  is now  made  by

noticing  that w. e can  convert  a  c-number  expression  into an  operator  expression:
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iX> =  
.nco=,IXn>=

 
.IcoI=
 
,exp(-

 ± Xn2L  is/2Xnan' +  5 a.t  a.t)lo>,

lP> =:: 
,Pco=,1Pn>

 :=  
,IcoII=,exp(-

 S Pn2tyXllPnan'- ; a.'a.')1o>,

<PIX>=  
.fi.,

 ?i exp(-  iPnXn) ,

pexp('ipX)=-i-'6r'vue6x xp(iPX)  ., (2･3)

   Third, we  now  change  the basic intermediate states  of  the theory, Instead of  insert-

ing complete  sets  of  string  eigenstates  at  every  
"time"

 slice,  we  can  equally  insert

complete  sets  of  string  functionals at  every  slice:

     1 :=: .fi  ip>M di < di [exp [ -f9  xrp 
t(x)

 ep (x)] ,

     lip> EE  di (Xo)iO>+A"(Xo)ai'10> +gptva i" pt aly  O> +''' ,

     g6(X)!<gblX>,

     Mip==Mq(Xo)MApt(Xo)Mgp)(Xo)･".  (2'4)

   Dirac now  tells us  that we  should  apply  the first class  constraints  directly onto  the

basic eigenstates  of  the  theory. These  first class  constraints  are  preserved  as  the string

evolves  in "time",
 so  we  can  apply  them  at  each  slice:

     (.C"etnodoc.istciass(p, x)l  gs>=o, n>1.  (2･5)

   This means,  of  course,  that we  must  now  project out  the spurious  states  from  the
theory  using  standard  projection operator  techniques. In this sense,  the propagator of  the

theory  is generated  by the  delta functions over  the first class  constraints.  The  projection
operator  P  can  be constructed  in a  variety  of  ways,i6)  Putting everything  together, we

now  integrate over  the restricted  Hilbert space  given  by P]ip>:

     f(  di)= ip 'P(  iOT"(Lo rm cro))Pdi.  (2'6)

   We  have  the option  of  eliminating  the 
"time"

 derivative in the action  by  making  a

Fourier transforrn. The  
"energy"

 corresponding  to the 
"time"

 can  then be absorbed  in a
redefinition  of  the intercept, and  in this way  we  simply  retrieve  the rnass  shell  condition.

Although  we  can  always  eliminate  the  
"time"

 derivative, we  will  find that the 
"time"

evolution  of  the string  will  be extremely  va]uable  when  we  generalize  our  results  to the

interacting case,  where  there are  non-trivial  complications  due to counting  prob]ems.

(Notice that, properly  speaking,  our  formalism is a  
"deuble

 time" theory. This  is a

common  feature of  covariant  string  theories.)
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g3. The  heterotic string

   We  will  now  apply  these results  directly to the heterotic string.  Our notation  will  be
as  follows: M  will  be a  26 dimensional index which  contains  a 10 dimensional index pt and

a  16 dimensional index I. The  two  dimensional space  will  be represented  by a fiat index

a, while  a  will  represent  the  curved  2D  index, i.e., M=(",  I)=1  to 26 ; Lt=1  to 10 ; J=1

to 16; a=:1,2;a=1,2.  All fermions will  be 16 component  real  Majorana-Weyl spinors,
We  take

     ?te=-i62,  7ti=oi, nyOO=-1,  17ii:::+1, gb=cbT?tO

and

eaarpabebfi=gaB,'e=]e.al.

   We  begin by  using  the Neveu-Schwarz-Rarnond  model  for the right-inoving  sector.

Later, we  will  generalize  our  results  for the Green-Schwarz action  in the right-moving

sector.

   We  begin our  discussion by  rewriting  the  first quantized  action  in the first order  form,

where  we  have  conjugate  variables  X"  and  Pp. (This transition to the first order  form

must  be carefully  checked,  because in principle it is not  at  all obvious  that the separation

into the left- and  right-moving  sectors  will  be preserved  under  a reparametrization.

Naively, in fact, we  expect  that a  reparametrization  will  mix-up  the lefV and  right-moving

sectors,  
'so

 we  will  check  this carefully  when  we  go to the first order  formalism.)

   We  begin with  the action  (with the NSR  modeli6)  in the right-moving  sector):

l-Xo+fr+ft'

      1fo=-
      2ea.XptOpX.gaB

 
,

ft=-;eaaXiOBXlo"P+Arm"(e-aOaX')2,

fr=-Seip"7aeaaaa ¢
"-iegarB7"ipptapXP+-2e--

 g-.7fi7adi, g-p¢ ps
 +  to.r+ e.aO.ip  

pt,
 (3･ 1)

where  A-- and  di are  Lagrange  multipliers  which  elirninate  the left- and  right-moving

sectors.

   Notice that the action  is invariant under  local 2D  SUSY,  also  local Lorentz invarian-

ce, local Weyl invariance, and  lecal 2D  reparametrization,  but not  under  global Lorentz

transformations  (because of  the left- and  right-moving  separation).

   In order  to extract  out  the first and  second  class  constraints,  we  will  find it useful  to

break  local Weyl  invariance by setting  e  :=  1 and  local 2D  Lorentz invariance by  setting

elO=o.

   With this particular parametrization  of  the metric  (which still preserves  2D  SUSY
and  reparametrization  invariance), we  can  write  the  metric  as

NII-Electionic  
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     o

p -l

M  ; gafl.. 
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m  
-fi

M. Kaku

 
-
 fi

A-X
(3･2)

We  wil]  choose  this particular  parametrization  because p  and  A will  conveniently  become

the Lagrange  multipliers  for the first class  constraints.

    Because  the original  action  was  also  invariant under  6ija ==  rae, we  can  choose  7"gcr =O.

    With this choice  of  parametrization, the calculation  is now  entirely  straightforward'.

However,  since  the details are  rather  tedious, we  will  present  the calculation  in the
Appendix.

    We  complete  the transition to the first order  formalism  by  introducing the conjugate

variab]es  PM  and  I]rpt. Putting everything  together, we  find that our  new  action  is equal
to

     f=P"XM+ff"dip+p(P"X'M-ll'ip')

         --il-(pMZ+xtM2+2I]b,di')+2i,ag,(Po,+X').ew

         +[1+A2-2-Ae-20-2.A-,,](p'± x'i)z+(ll+S  f'O-a-,(g 8)VJE-)6 (3･3)

Notice that the Hamiltonian  is formal]y equal  to zero  and  that A,p and  g are  the
Lagrange  multipliers  for the first class  constraints.  The second  class  constraints  merely

tell us  that we  can  set  the left-(right-) moving  parts to zero,  i.e., Pi+X'  :=:O  and  one  of  the
spinor  components  of  the fermion is set  to zero.  These  second  class  constraints  can  be
incorporated into our  theory  by  making  the transition from  Poisson brackets to Dirac
brackets (which siinp]y  set  equal  to zero  the left- or  right-moving  commutators  that we

wish  to eliminate).

   We  can  now  apply  these first class  constraints  directly onto  the bosonic field fun-
ctional  Ia5> and  the fermionic field functional lcb>:

     <pMZ+x'M2+21]b3di'+2p"x'"-2ll･ ¢
'>.

 2> ;L.  $) =O,

     <(Pa3+X')#ip">n-y21ip>=Gn-u21di>=O,

     <(Po3+X')ptdi">nl¢ >=Etldi>=O,  n21.  (3'4)

             g 4. Green-Schwarz  action  in the right-moving  sector

   In the previQus  section,  we  wrote  down  the heterotic string  action  (with the NSR
model  in the right-moving  sector)  in the first order  formalism. This allowed  us  to

calculate  the first class  constraints,  which  are  essential  in calculating  the 
"time"

 evolution

of  the string  from one  slice  to the next  slice.

   We  will  now  quantize the Green-Schwarz action  in the right-moving  sector,  where  10D

SUSY  is manifest.  This  has the advantage  that instead of  two  field functionals 1di> and
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iip>, we  only  have one  field functional in the  theory.

   We  start with  the usual  Green-Schwarz  action,  where  0  and  e2 are  Majorana-Weyl

spinors  in 10D  with  16 real  components.  Notice that these two  spinors  are  2D  scalars  and

do  not  form  2D  spinors  in the two  dimensional space  spanned  by the string.  The  action

has a  term  which  will  set  the left-moving sector  to zero:

f  =  -  Fg  -  iO.X" e-r"O ope  +  iO oXpt  e-7"O.pO

   +e'rptO.eie27ptO.02-e'7#0.0iO27ffO.02+ge.er0.ei,

ar"

g-

io.xp-ie7pa.o

-(ffT.ll6)2+(ai

p-(gg)･

;ll.p  =:  o.xp-  ierpto.e 
,

･a.)(ffo'lla),

(4･1)

   The  transition to the first order  form is made  by  introducing the  canonical  fields P  and

Pe. After a  fair amoinnt  of  algebra,i2)  we  find

f=aX"-Peo+g(fa2+  ll,2) +p(17,I]r,)+  QaEa+ ge.iO,ei 
,

MpEfiA+i07pOape

Q-i=

; II,, ii! a.X.-i07.a.e 
,

Pei-iei7#IIIe"+ieirptLiri"-eirpt6dei0i7pt-ge+O

Q2 :Pe2-i027pt176"-ie27ptfl,P+e27"ode2e2f,

'

(4･2)

   Once again,  notice  that the Hamiltonian  of  the system  is equal  to zero  and  that the

second  class  constraints  simply  remove  the unwanted  left-moving spinor  from  the theory,

   The new  feature of  this first order  action,  however, is that the Q field contains  both

first and  second  class  constraints.  Previously, when  Green  and  Schwarz  began  the

covariant  quantization of  their action,  it was  found that all the commutators  were

formally infinite.i') For example,  if one  starts  with  the  term  07peU"  in the action  and

then forms  the canonical  conjugate:  Pe =6-C/6e  =  eM7ptll", then we  find the absurd  result

that

[e-,e].v17ptll"tv oo, (4･3)

where  llpt2 is the Virasoro generator,  which  is set  equal  to zero.

   Thus, a  naive  covariant  quantization of  the model  leads to meaningless,  infinite

resu!ts.  The reason  for this infihite result  !ies in the dithculty of  separating  the 16+16

components  of  Q into 8+8  components  without  destroying Lorentz invariance in ten

dimensions. Because  a  16 component  spinor･is  the smallest  representation  of  the Lorentz

group,  then  one  must  necessarily  break  Lorentz invariance when  reducing  out  the 16+16

components  in, Q down  to 8+8  components.  Indeed, this is precisely the way  in which  the

light cone  formalism for the superstring  was  first introduced.i8)

   Recently, however, we  found a  way  in which  we  can  separate  out  the 8+8  first class
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constraints  contained  within  Q without  violating  Lorentz invariance.i2) The  trick is to

notice  that although  (Oh±  lli)2 ==  O, we  can  show  that n+ 
-
 fl- "O.  In this way,  we  can  now

write  down  the correct  separation  of  Q into 8+8  first class  and  8+8  second  class  con-

stramts:

     si=QiI7)-r",

     s2=  Q2llpt+rP 
,

      Ti=Qillpt+r"  
,

      T2== Q2ll.-7ps,' (4･4)

where  S  are  first class  and  T  are  second  class.

    Notice that we  have  eliminated  all  infinities from  the model  while  retaining  10D

Lorentz invariance and  10D  SUSY.  The  price we  pay for this, however, is that we  must

employ  rather  involved Dirac brackets to incorporate the effect  of  the second  c]ass

constraint  generated  by  T.

                       g5. Construction of  the algebra

   At this point, we  have now  reformulated  the heterotic string  in first order  formalism
(for the NSR  and  the GS  model  in the right-moving  sector)  . We  have  explicitly  displayed

the first and  second  class  constraints,  and  can  show  that the effect  of  the second  class

constraints  is simply  to set equal  to zero  the left- (right-) moving  sectors  that we  wish  to

eliminate.  Thus, reparametrization  invariance is maintained  although  we  have the

separation  into left- and  right-  moving  sectors.

   We  will  now  proceed to construct  the algebra  of  the system.  (We will  use  the NSR
formalism, although  our  results  can  be generalized  to the GS  model  in the right-moving

sector.)

   First, we  wish  to construct  the field funcfionals l¢ > and  1ip>, which  are  simply  eigen-

states  of  the operator  Lo. If the right-moving  states  are  formed by the bosonic vacuum

10>BR and  the fermionic vacuum  IO>FR, while  the  left-moving states  are  labeled by  Ile>L, then

the field functionals can  be written  as

     le5>=2q`k(Xe)1i>BRop k>L ,

     lgb>=Zgb'k(Xo)li>FRopife>L. (5'1)

   In order  to explicitly  calculate  the eigenstates  of, the string,  let us  first parametrize the

strlng  as

     Xp(a, T)  
=Xpt+

 Rptr+ S .2.,
 
evS"

 e-Zt"<r-cr)+  S .2.
 
ann"

 e-2i"(T'a)  ,

     xi(v+  a) =xi+pi(  zi -t- a) +-{Sz-a-t

"-ni

 e-2m(T-t 
o).

 (s.2)

(We will  follow the  notation  of  Ref. 1), where  the indices are  generalized  to the covariant

case  in an  obvious  way.)  We  find

NII-Electionic  
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         ca

     AJ=.Z=,(a-ptnanpt+bEn+v2bn-v2"+d-"ndnge),

      J. OO

     N=  7(  a- -"n dn"+  dln evA- n'),  (5' 3)
         n=1

where  we  have  introduced the NSR  creation/annihilation  operators  ,b and  d.

   Then  the on-shell  condition  Lo-1  =O  is given  by

      tP.2=N+ ab -1+IX.,(Pi)Z.  (s･4)

The Hilbert space  is also  constrained  by  the condition

     N-  lgr -1+-li-tif.l, (Pf)2, (s･s)

which  is simply  a  reflection  of  the  fact that closed  strings  must  be indepe:ndent of  where

we  choose  the origin  of  our  a  parametrization.

   Let us  now  begin a  simple  description of  the  Hilbert space  of  the covariant  theoryi

which  is the product  space  of  the right-  and  left-moving sectors.  Before the projection
operator  eliminates  the spurious  states  of  the theory, we  find the right-moving  states  are

given  by

     bEu210>BR; gb O>FR (5･6)

and  the left-moving states  are  given  by

     a-'-i"IO>L.  ev-m'.i[O>, IPi;(Pi)2=2> (s･7)

for p"2=o.
                                             '

   Notice that if thePi  are  defined on  the root  lattice bf a 16 dimensional se]f-dual  lattice,
then there are  480 states  with  (P')2=2. When  combined  with  the 16 c'omponents  of  ev', we

find that we  have 496 states  in the left-meving sector  generated  by compactification  on  the

self-dual  lattice, which  form  the adjoint  representation  of  Es × Es.

   At  the next  levelP2=8, the states become  more  complicated,  In the right-rnoving

sector,  we  have

     bff3/210>BR, b{fu2b'ltv2b"-ix210>BR, a-PibZu210>BR

     d-"ilO>FRip, a-"ilO>FR ¢ , (s･8)

while  in the left-moving sector  we  have

     aA'L"210>, a'r-"ia-ViO>, aAV-'210>, a'"-'iev--JilO>,

      evA-E,lpi,(Pi)2=2>,  IPi,(P')2=4>. (5･9)

For  the  states  generated  by  compactification,  we  have  16+16 × (1712)+16× 480

+480 × (1+2')=69,752 states,  which  in turn  can  be decomponed  into EsXEs  representa-

tions:'9)
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     (3875,1)+(1,3875)+(248,248)+(248,1)+(1,248)+2(1,1).

   The  states  generated  by  compactification  rapidly  proliferate. For  example,  at  the

next  ]evel, just the compactified  left-moving states  can  be written  down  as

     ev"-i,10>, di-u',evA'{,10>, aA'.'.,crA--J,aA'-",IO>,

     evn'-i,lpi,(pi)2=2>,  ev=J,a"'-J,Ip',(Pi)2:=2>

     a---J,IPi,(Pi)2=4>,  Pi,(P')2=6>,  (5'10)

which  in turn  form 16+16 × 16+816+480 × 16+480× 16× (1712)+16× 480x(1+2')+480
× (1+3') =- 2115008 states.  These  states,  in turn, can  be reduced  down  to:i9)

     (3038e,1)+(1,30380)+(3875,248)+(248,3875)+2(248,248)
     +(3875,1)+(1,3875)+3(248,1)+3(1,248)+2(1,1).

   Obviously, we  wish  to find another  way  in which  to show  that these states  can  be

grouped  into Es × Es representations.  We  will  use  the Kac-Moody  construction  to show

that we  can  regroup  all these states  into representations  of  the algebra  to all levels in the

theory,

   To  begin a  discussion of  the Kac-Moody  construction,  let us  first parametrize the  open

string  (for the sake  of  argument)  as

     xi(e)=xi+pv+i2  evneMe  
,

                      nto  n

     q'(0)=C':exp(iX'(e)):,  (5'11)

where  Ci defines a 
"twist".20)

   From  these operators,  we  can  now  define three types of  operators  which  generate a

closed  algebra,.  the semi-direct  product  of  the Virasoro algebra  Diff(Si) with  the Kac-

Moody  algebra  g. (We will  follow the notation  of  Ref. 20), See also  Ref. 19).)

   Let ei be an  orthonormal  vector  in the  16 dimensional root  lattice space.  For  SU(n),

for example,  we  know  that the roots  can  be represented  by  eJ-ei.  This allows  us  to

construct  the fotlowing operators:

                            d
     J(I, 0) 

==:qi'(0)
 qi(e):=-  do 

X'(e) ,

     J(a,e)=:q'J'(0)qi(e):, a=:eJ-ei,

           N
     L(e)=-2-[Z:J(I,  0)2:+\:1(a,  e)J(-a,  e):) (5･12)
                                          '

where  N=:(1+  C2(G)12)-i and  C2(G) is the value  of  the quadratic Casimir operator  for

the adjoint  representation.

   Then  the algebra  generated by this construction  c]oses:

     [1 (J, e),1(J, e')]=o ,

     [1 <I, e), J(a, 0')] =:  
-2n6

 (e- 0')aV(a, 0),

'

NII-Electionic  
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     V(a, 0),1(-a, e')]==2rr6(e-e')ZadU,  o)+2rri6'(e-o'),
                                 I

     [J(.a,e),J(B,e')]=2rr6(e-e')J(a+B,e) if a+BEiA]

                    =O  otherwise,

     [L(0),J(a, e')]=1(a, 0)6'(0-  e'), aci  G, (5･13)

     [L(0),L(e')]::=2rri6(0-e')(L(e)+L(e'))

                  
--iS-2rri(6M(0+et)+6t(0-ef)),

 (s･14)

where  c=n-1  for SU(n);  c=n+112  for SO(2n+1); c=n(2n+1)1(n+2)  for Sp(n);
c=  n  for SO(2n) and  En.

   We  can  easily  generalize these commutators  for the case  when  a  is not  equal  to a

simple  difference of  two  et  vectors,  e.g., Es  is represented  by the system  of  roots  eiumeJ

(IiJ), and

     ± (-i}-t9. 
,
 ei -  eL  -  eM  -  eN  ),

     L#M#Ai=1-q.  (5'15)

   Each commutator  has an  important meaning.  The first few commutators,  for exam-

ple, simply  show  that the J's generate  representations  of  EsXEs. Because the  J's have
nice  commutation  properties  with  Lo, we  can  now  show  that the entire  Hilbert space

spanned  by these compactified  states  rearrange  themselves into representations  of  Es × Es.

   The  last commutator  between the Virasoro generator and  the  Kac-Moody  generator
shows  the nontrivial  relationship  between these, two  systems,  which  was  missing  in the

]ight cone  formulation of  the model.

   At first, however, there seeMs  to be a  problem  with  this last' commutator.  If this
commutator  were  zero,  then the Kac-Moody  states would  commute  with  the Virasoro
algebra  (much like the DDF  states)  and  thus we  can  create  new  real  physical  states  by
simply  multiplying  real  states  with  an  arbitrary  number  of  Kac-Moody  o]perators.

    However,  the last commutator  in (5･13) is not  zero,  which  shows  that the Kdec-II4body

operators create  spun'ous states, which  at  first sight  seems  absurd.

    The resolution  to this seemingly  bizarre result  is because the true Virasoro generator
extracted  from  the original  first class  constraints  (3'4) contains  the sum  of  Virasoro

operators  constructed  out  of  the usual  oscillators  and  the Kac-Moody  oscillators.  Thus,

one  can  easily  show  that the application  of  the sum  of  these two  operators  onto  the states

of  the theory  produces  real  states  which  are  obtained  by re-shuLMing  bhe two sectors.

Thus, the ghost  states  of  the  theory  contain  Kac-Moody  operators  mixed  along  with  the

usual  oscillators,  such  that the total number  of  real  states  is the same  as  that given  by  the

light cone  gauge  theory. Thus,  there is no  contradiction  to having ghost  states  cohtain

mixtures  of  Kac-Moody  operators.

    Notice also  that the Kac-Moody  algebra  is a  global two  dimensional symmetry,  not  a

local one.  The  Kac-Moody  operators  do not  emerge  as  first class  constraints  of  the

theory. (In fact, if the Kac-Moody  a]gebra  were  a  local one,  then  in principle we  could
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use  all of  its 496 generators te kill ghosts, which  is far too  many  generators.) We  note,

however, that a  new  reformulation  of  the model  may  exist  in which  the  Kac-Moody

algebra  is alocal  one.  (The Kac-Moody  algebra,  although  it is aglobal  2D  symmetry,

turns into a  local Yang-Mills type symmetry  once  the interactions are  turned on,  which  is

a  remarkable  feature of  the model.)  
'

   In summary,,we  now  have  a  general understanding  of  the importance of  the semi-

direct product of  the Virasoro algebra  with  the Kac-Moody  algebra.  It is now  a  straight-

forward task  to construct  the projection  operator  for the theory from the Shapovalov
matrix.2i)  The  projection  operator,  like we  found in Re£  11), is constructed  level by level
in an  iterative process.

   Using this projection operator,  we  can  now  write  down  the free field theory  Lagrang-
ian for the second  quantized  heterotic string  (with the NSR  model  in the right-moving

sector)  :

     ol7(e5, gb)=  e5 
'PB(iOT-

 (Lo- aB))  Pip +  gbPF(iST-(Iih  
-aF))

 PF  gb . (5･ 16)

   (Once again,  we  can  reabsorb  the  
"time"

 derivative if we  wish  by taking  the Fourier

transform, which  simply  shifts  the intercept of  the trajectories to the values:  aB.1,  aF.O.

In this way,  we  retrieve  the mass  shell  condition  if we  take  the equations  of  motion  for the
theory.) 

'

   This action  is manifestiy  invariant under  (a) local 2D  SUSY  (generated by  the G  and

F  gauges) (b) the Virasoro algebra  (c) 2D  global Kac-Moody  algebra,  but not  10D  SUSY.
In order  to show  10D  SUSY  for the even  G-parity sector  of  the theory, we  can  either  use

the GS  formulation of  the right-moving  sector  (see S4) or  we  can  use  the  observation  that

there must  exist  matrices  A  and  B  which  mix  the fermionic and  bosonic modes  such  that

the action  is invariant under:

6di =Aip  
,

6¢  ==  B ¢ . (5･17)

S 6.10Dsusy

   In principle, it should  be possible  to construct  the matrices  A  and  B  to any  level in the

Hilbert space.  For  example,  take the massless  level of  the open  NSR  string.  The  action

has the leD  SUSY:

     8AptN eM7"ip  
,

     6ip --  apuFP"e  .

This symmetry,  in turn, can  be represented  explicitly  as  matrices  A  and  B

field functionals:

     SIip>--6(A"bEu210>B)=Alip>=AIO>Fsb ,

         =>A.=  eMb-ii2ptIO>B<OIFr" ,

(6･1)

acting  on  the
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Slip>--6({blO>F)=:Bldi>=B(A.bEw21e>B)

=>B  ==  a7t.IO>,<Oi,bf,,e . (6･2)

   It is easy  to show  that these matrices  A  and  B  to lowest order  generate  the correct

10D  SUSY  in the presence of  the projection operators  (which absorb  an  unwanted  term).

   The generalization of  this result  to the next  massive  mode  is also  straightforward.  In
fact, we  can  write  the matrix  A  as  fol!ows:

A  =  e- {be,1,( as,,  +  ba,) +  be ,f,b!u,bl,I,(  cn..&].+  czl-T..,,)

          +aeib{u2(e6ptuJ-1,+.i{SFpl-1,+g8mpll+hl'lemp)}10>B<OIF(mdi"+nari")¢ ,
 (6･3)

B  can  always  be written  in terms of  A  such  that the action  is invariant. For higher levels,
however, the calculation  becpmes more  tedious. Can we  find A  and  B  to all levels, which

would  make  10D  SUSY  manifest  in the NSR  version  of  the heterotic string?

   The  answer  is probably  yes. For  example,  it has already  been  shown  for the  on-shell,

light cone  formalism  that matrices  XFB!S) and  XBF  exist  which  transform fermion states

into bosonic states  and  which  satisfy:

     XS,BFXB,FB+(?'OXn,BF)b(Xm,FB70)a :6abSm+n,o  .

   These  operators  are  constructed  out  of  the fermion-boson vertex  function,22) which  is

a non-trivial  coupling  between  the bosonic and  fermionic Hilbert spaces.  If the above

relationship  can  be generalized to the off-shell  case,  then-it should  be possible to construct
the A  and  B  matrices  explicitly.

   There  is seme  irony here. Originally, supersymmetry  hacl its origins  in the  work  of

Gervais and  Sakita,23) who  demonstrated  2D  SUSY  for the Neveu-Schwarz  model.  Later,

this was  generalized  to 4D  SUSY,2`) which  gave  rise  to the current  interest in supersym-
metry.  However,  it was  only  much  later25) that it was  realized  that the NSR  model  itself

in the even  Gparity sector  possessed  10D SUSY  as  well  as  2D  SUSY.
   Now,  with  the second  quantized  action,  both 10D and  2D  SUSY  are  manifestly  obvious

(depending on  the  existence  of  the A  and  B  matrices).

   One may  still  object  to our  action,  however, on  the grounds  that it is not  local.

However, by introducing an  infinite number  of  auxiliary  fields, we  can  soak  up  all

unwanted  non-local  terms  and  obtain  an  explicitly  local action.  In particular, we  notice

that the non-local  terms  correspond  to the zeros  of  the determinant of  the Shapovalov
matrix.2i)  Kac,iO) however, has explicitly  calculated  all  these zeros,  so  it is now  possible

to introduce an  infinite number  of  auxiliary  fields which  can  absorb  the non-loca]  terms

and  convert  them  into harmless local ones.  For  details of  this construction,  for the

bosonic case,  see  Ref. 26), where  the result  for all ordexs  is given in terms of  the zeros  of

the determinant of  the Shapovalov  matrix.  (At least for the lower levels, it can  be shown

that this series  of  auxiliary  fields reproduces  the  result  of  Ref. 27).) Since our  results  are

perfectly general, it. should  also  be possible to construct  the fully local version  of  our

heterotic string  field theory by simply  introducing auxiliary  fields which  

'soak
 up  the

unwanted  non-loca}  terms  introduced by the zeros  of  the (heterotic) Shapovalov deter-
  .mlnant.
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g7. Conclusion

   In this paper,  we  have  presented  the second  quantized  field theory  of  free covariant

heterotic strings. We  have  been careful  to preserve  the original  gauge  symmetries  of  the
first quantized theory. The second  quantized action.  is therefore  a genuine gauge  theory

defined for both 2D  and  10D  SUSY  as  well  as  a non-trivial  union  of  the  Virasoro and

Kac-Moody  algebras.

   The  action  is expressed  in terms of  the projection operator  P, which  selects  out  only

real  states.  The  novel  feature of  the real  states  of  this theory  is that they  are  non-trivial

mixtures  of  Kac-Moody  and  ordinary  oscillators,  because  of  the last commutator  in

(5'13). Thus, Kac-Moody  operators  can  create  ghdst states,  but the total number  of  real

states  is equal  to the number  given by the light-cone theory.

   Furthermore, the projection  operator  P  is non-local,  but we  know  all  the location of
its poles. Thus, by  suitably  introducing an  infinite number  of  auxiliary  fields, it is a
simple  matter  to render  the theory  explicitly  local.26)

   Throughout  this paper, we  have  been  careful  to express  all our  results  in terms of  the
path  integral method.  The  reason  for this is because the path integral rnethod  can  be

generalized to include interacting strings  as  well  as  free strings.  The  path  integral

method  creates  a  vertex  function of  splitting  strings  which  should  be part  of  a non-linear

realizat'ion  of  the Virasoro algebra.

   This nonlinear  realization  of  the Virasoro algebra,  in turn, may  give us  a  clue  as  to
how  to reformulate  the model  geometrically.  A  geometrical  formulation of  the model

may  plaY  a  key  role  in understanding  how  10 dimensions can  break  dynamically down  to

4 dimensions. Since the model's  amazing  properties  will  be lost if we  introduce explicit
breaking mechanisms,  it is our  philosophy that  the  model's  symmetries  must  break
dynamically. This  dynamical  symmetry  breaking may  become  transparent if the model

has a  geometric  reformulatibn.
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Appendix

   In this appendix,  we  will  fill in the  details of  how  to make  the transition from  the

second  to the first order  formalism.

   We  begin by calculating  the precise relationship  between the metric  and  the tangent

space

2e-Oe+O=-11A  
,

e-Oe+i+e+Oeuni  :-plA,



Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOEfice,PIogless  ofTheoietical  Physics

             Szipe,gatrge ]FVeld  71i2eo7y of Covan'ant deterotic Strings 123

     2eL'e.'=A-plA. (A'1)

Solving, we  find

     zi:-± A+pi  gil-iA+p. (A･2)

Now  let us  introduce yet  another  Lagrange  rnultip]ier  into the theory
                                              '

     A--(e-aO.X')2.--}o'2+s/F-a'e-aO.X'. (A'3)

   Given this reduction,  we  can  now  write  the comp]ete  action  as

     -C =  iA [X"2+2XM(px'M+A.t'JT==oie-eaM! -2in  g.gaodi,6f)]+-l}-xfM2(-i}-A)

        +[-{i-oi2+dffe-O( ±A+p)X"]+[--g-gitrOeoOdi+dir'e+Ogb]

        +[--S  di7 "eaiOi  ip +  di7' e+'ai  ip]-2i g-ag ai  ip"X'"+[ gMa ip" 8p ip "g  
a"'].

 (A･4)

We  have used  the fact that ragfi=rega.
   There are  several  troublesome terms in the above  expression.  Notice that the last

term  in the brackets is quadratic in the Lagrange  multiplier,  which  is unacceptable.  We
will  find, however, that this unwanted  term  vanishes  if we  carefully  reduce  out  the spinor

compenents  of  the Lagrange  multiplier.  Given 7aga =O,  we  find

     (g･l)-c::izllll) ,..,,

With this decomposition of  the 2-component  spinor,  we  can  reduce  out  the term  in the

bracket,

     8.gb. 8pgb"gaB ==  8iicbi gfi,2gb2[2gii+2(p2-A2)gOO+2gOi(-2p)]. (A･6)

(This unwanted  term  will  be cancelled  later.)

   Now  let us  introduce the canonical  conjugates  P  and  11r:

     oC=-tAP"2+PM[XM+As/Jl=oiemOSMi+pPMX'M-21A8.gaOipM6.M]-tAX'M2

         +[-'ll-d2-pX'zaoJemOVJF+a'vfJF'e-O( ± A+p)x'i--l}-,umToi2e-e']

         +lldiHl[fl+-S-dire-O-tnr'e+O].6"+[--g-di7aea'Oidi+dir'e+iOiip]

         +  [2 i gL.g"O gb 
"pX.i

 -  2i g-.g"i gb.X'"] +  [2A 8.g"O gb" g-pg"O gb" +  g'a sbp g;Bgb"g 
aP].(A'

 7)

Notice that we  have  introduced a  Lagrange  multiplier  6 for the ll field.

   We  wish  to cancel  the  last term  in the brackets. We  can  r'educe  out  the new  texm  that

                                                       NII-Electionic  
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is quadratic  in tlae Lagrange multiplier,which  we  wish  to eliminate

2A gag aO  gb" gsg PO cb, =  giicbigi2ge2(4AgO'2+2AgOO(pZ-A2)+4AgOOgei(-2p)).(A･8)

Notice that this term  exactly  cancels  the other  term  which  is quadratic  in the Lagrange

multiplier,  which  eliminates  totally all unwanted  terms. This leaves the Lagrange
multiplier  appearing  linearly in the action,  which  is what  we  desire.

   Now, we  can  further reduce  our  action:

f=pMXM+flpdi"rS(PM2+X'M!)+pPptX'M+[ol2(1142AA"e.02)

+  a' (.AP's/Jl=eLO+fiemO(±A)Xr')]+[fl'tdi-70ff-
 di(

o1oo)M]6

+[2igagaoip.pxt"-2ig.gai¢ .X'"-2thA;agaoip#].

   Except  for the last term  in brackets, the action  is totally in canonical  f
use  the previous identities to show  that this last term can  be written  asorm.

(A･9)

We  now

[ ] =:  
-2
 i?t g, (P  +o X' -pO+  x,). ip"

=  
-2i>1g,(Po,+Xt),ippt

 . (A･10)

Recombining these terms  with  earlier  terms,  we  now  have  the final result  which  we  used

earlier  in this paper.  The  action  is totally in canonical  form, with  zero  Hamiltonian, with

three sets  of  first class  constraints,  and  with  second  class  constraints  which  simply  remove

the unwanted  right-  (left-) moving  sectors.
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