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Basic ideas and assumptions of CDCC as a phenomenological theory of multi-step direct
reactions are reviewed in such a way as to clarify the formal structure of the method. In particular,
truncation and discretization of the continuum of breakup channels, choice of the model
Hamiltonian, boundary condition for the model wave function, and procedure of calculation of
transition matrix elements are discussed in detail.
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§1. Introduction

The Method of Coupled Discretized Continuum Channels, abbreviated as CDCC, is a
phenomenological method of analyzing direct nuclear reactions which involve breakup of
loosely bound particles, such as deuteron, ’Li, 2C, etc. It is an extension of the conven-
tional Method of Coupled Channels (CC) for bound clusters.” As such, its aim and basic
assumptions are much the same as those of conventional CC. Its primary purpose is to
analyze the mechanism of a specific multi-step direct nuclear reaction through calculation
of some specific experimentally observable quantities, e.g., cross sections, analyzing
powers, etc., and comparison with experimental data. It is not designed to be a method
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of approximately solving the Schroedinger equétion
HYU=FET (1-1)

with a given total Hamiltonian of the system, H, for a wave function ¥ in the entire
configuration space under a given set of boundary conditions. In fact, knowledge of the
wave function over the entire configuration space is not even needed sometimes, depending
on the particular quantities to be calculated and the procedure of the calculation, as
discussed in § 5.

A CDCC calculation starts with adopting a model of the multi-step direct process,
specifying a set of internal states of the system, or channels, through which the reaction
is assumed to proceed, and the way the channels are coupled to each other. In the present
paper, we assume that the model includes only two-cluster channels consisting of two
independent clusters, each in either a bound or an unbound state. We assume that only one
of the clusters may be in an unbound state which can be well approximated by a state of
interacting fwo nucleons or fwo fragments each in a definite bound state.

We use greek letters, a, 8, 7, etc., to denote such channels, and roman letters, a and
A, b and B, ¢ and C, etc, to denote corresponding constituent clusters. We use the
notations rather loosely for specifying sometimes only the kind of the clusters, and
sometimes also various quantum numbers. We work in a representation in which the total
angular momentum, /, and its z-component, z, are diagonal.

Suppose 7 is a channel in the model with clusters ¢ and C which are in eigen-states,
éc and ¢c, of respective internal Hamiltonians, % and %c, with eigen-energies e. and ec

hc¢c: écgbc and hC¢C: EC¢C. (]. * 2)
The internal wave function of the channel, ¢,(&;), is given by

¢r($7)=[¢C(EC), ¢C<‘§C)]A7#n (1'3)

where the & are the internal coordinates, and the square bracket indicates the angular
momentum coupling to form a channel spin A,, with a z-component, g,. It satisfies

hybr= Py, (1-4)

where %, = hc+ he and e,=ec+ &c are the internal Hamiltonian and the internal energy of
channel y, respectively. The clusters are either in a bound or in an unbound state as
already mentioned. Bound states are discrete and are labeled by a set of discrete quantum
numbers. Unbound states are continuous and labeled by a set of continuous quantum
numbers, in addition to discrete ones. We normalize the internal wave functions to a
Kronecker delta for every discrete quantum number and a delta function for every
continuous quantum number.

" The model of a CDCC calculation is defined by a set of discrete and continuous
channels with a corresponding set of internal wave functions {¢,} defined above which
span a functional space, F', for the wave function of the model. Setting up the model must
be done on a sound physical basis supported by experimental evidences, theoretical
plausibility, etc. Its validity is eventually tested by comparison of the calculated result
with experimental data. Another condition for the model, which is very important for the
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feasibility of actual calculations, is that space F be minimal, including only channels
which are important for the particular calculation at hand. Hence, F depends in general
on the type of the reaction, the quantities, {Q}, to be calculated, the procedure of the
calculation of {Q}, the incident energy, angle, etc., of observation, and also the desired
accuracy of the calculation.

Let us denote the projection operator onto F' by p, and its complement, 1—p, by ¢ :

pv*=b», 4¢’=aq, pg=qp=0. (1-5)
The projection of ¥ onto F, p¥, can, by definition, be expanded as

pw:§@7<§h E}')Xr(Ry), (1'6)

where R, and R, are tlle magnitude and the direction of the relative coordinate, R,,
conjugate to &, @,(&,, R,) is a so-called spin-angle function of channel y defined by

D,(&, R)=[¢&), " YiAR)]m, (1-7)

x,(Ry) is the radial part of the wave function of relative motion, and S stands for

7
summation over discrete channels and integration over continuous channels. p¥ satisfies
the Schroedinger equation within

Hefquf:quf, (1'8)

where Hes is the Feshbach effective Hamiltonian
Heu=1 (H+H§H>p (1-9)
q .

with eq=F —qHqg—1e. It has a general form
Hei=p (K+ Vest), (1-10)

where K is the total kinetic energy and Vet is the effective interaction potential given by
Vetr=1 < V+H—eq—H>p, (1-11)
q
where V is the interaction potential in the original Hamiltonian, H, so that
H=K+V. (1-12)

Now, it is obvious from (1-6) and (1-9) that (1-8) is equivalent to

(Qalﬂeff_E'§@7X7>:0 (1'13)

for all the ¢ in F, where the left parenthesis signifies the integration over the arguments
of @®s. Equations (1-13) constitute a set of coupled equations for the unknown wave
functions x of relative motion.

Now, a CDCC calculation with an /' as described above is unfeasible in practice,
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because it would involve calculations of the exact internal wave functions of F, {®,}, and
the exact effective Hamiltonian, Hers, and solving a coupled equations of the form of (1-13)
for a continuous set of the x. It is a basic assumption of CDCC that one can substitute F°
and Hes by a finite dimensional model space, M, and a corresponding phenomenological
model Hamiltonian, Hu, respectively in such a way that the desired quantities {@} can be
calculated in good approximation with M and Hx by the procedure specified by the model.
The quantities {Q} thus calculated are compared with experimental data. The reality of
the model is judged by the quality of agreement between them.

Thus, a CDCC calculation proceeds in rather distinct steps. In the subsequent sections,
we sketch the formalism of CDCC following those steps. In § 2, the transition from F' to
M is discussed, including truncation and discretization of the continuous breakup chan-
nels. In §3, a general prescription of constructing phenomenological Hamiltonians is
given, and its application to some special cases of practical interest are discussed. In § 4,
the model Schroedinger equation and the boundary condition for model wave functions
are discussed in detail. In § 5, procedures of calculation of transition matrix elements are
discussed. In § 6, a summary and the conclusion of the paper are given.

§ 2. Model space

Let us assume that a reasonable model of the reaction mechanism has been set, and
the space F with the effective Hamiltonian Herr have been defined as discussed in the
previous section. As already mentioned, I and Hes are virtually impossible to be
calculated numerically in most cases, and have to be replaced by some phenomenological
substitutes. In the present section we deal with the replacement of /' by a model space,
M.

2.1. Model internal wave functions )

The first step of the replacement concerns with the internal wave functions in /. They
are themselves solutions of many-body problems : (1:2). In practice, they can be calculat-
ed only approximately with some models, except in the case of the deuteron for which
exact calculations are feasible. One, therefore, replaces them with eigen-functions of
certain model internal Hamiltonians. We denote quantities in the model with a bar. Thus,
for channel 7 with clusters ¢ and C, ¢. and ¢c are replaced by é. and ¢, respectively,
which satisfy

hepo=Eche, hcpe=Ecd, (2-1)
and ¢, is replaced by ¢, given by

$(&)=[d(&), d(E)]ar, (2-2)
which satisfies

Rrr= &1y, (2-3)

where the % are the model Hamiltonians which are assumed to be so chosen that the & and
the ¢ well approximate the corresponding € and ¢ in F. In particular, discrete channels
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in F should be replaced by discrete channels, and continuous channels by continuous
channels. We assume that the ¢ are normalized in the same way as the ¢. Thus, F is
replaced by a space F spanned by {&,}.

Now, p¥ of (1:6) is replaced by

P =50,&, R)ZARy), (2-4)

where p is the projector onto F, and @, is given by
(&5, R)=[0AE,), i7" Yi(R)]w. (2+5)

2.2.  Discretization of three-body continuum channels

The next step of the replacement deals with continuous channels in . Each of those
channels consist of a bound cluster and an unbound pair of fragments as mentioned in § 1.
In CDCC, a continuum of such states is truncated and discretized into a finite number of
“states”. The reason for this is, again, the feasibility of calculation: coupled-channel
calculations can be carried through numerically only with finite number of coupled
channels. Another point is that if one assumes a three-body model Hamiltonian, discussed
later, for such a channel, the Lippmann-Schwinger equation has a Hilbert-Schmidt kernel
and has a unique solution after the truncation in the angular momentum of relative motion
of the fragments.? We describe in the following the procedure of truncation and discret-
ization used in the actual calculations in later chapters of the present review.

Suppose cluster ¢ of channel y breaks up into two fragments 1 and 2, each in a definite
bound state. The model internal wave function of such a state has the form

bk, E=[dclk, ri2), [$1(&), D2(E)]s)renre, (2:6)

where the ¢ are model internal wave functions of 1 and 2, and écm(k, ri2) is the wave
function of relative motion between the fragments with wave number %2 and angular
momentum / and its z-component m where ri: is the relative coordinate. The spin, /., and
its z-component, M., of cluster ¢ is composed from / and the spins of the fragments as
shown in (2+6). The internal energy of cluster ¢ is given by

K

gc(k) - 21112 ’

2-7)

where (42 is the reduced mass between 1 and 2. Now, the truncation is made by restricting
[ and £ or &c as

[<lem and kE<kem or &c<ecm, (2-8)

where the limits kem or €cm and /m are taken to be such that they satisfy requirements
stated in § 2.3. Thus, the space of the eigen-states of %. with the bound states, @cn(&),
n=1~ N., and the continuous states, dc.(k, &), is truncated into a space spanned by

{{gcn(&), n=1~N; gal(k, SC), k<kem, lélc,m}- (2‘9)

Now, this set of infinite number of functions is replaced by a finife set of model “state”
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wave functions
{$Clvi(éc)) 2~=1’ 2.”3 Mla Zé lc,m}. (2‘ 10)

The first N. functions of the set simulate the bound states, and the rest represents the
continuous states of the original set, (2-9). The wave functions of the latter have the form

ber,iE)=[Peri(r2), [$1(&), P2(E)]s]reme. (2-11)

We assume that the ¢ are normalized as
L pen|bem>=0nmm, {Penlber:>=0 and <§1§cz,i|¢§cz,;‘>:5\zz', 0. (2-12)

One can construct such a discretized set of functions in various ways. We discuss
below two methods which are used in the subsequent chapters of the present review : (A)
the method of pseudo-states, and (B) the method of momentum bins. A merit of these
methods is that the set {¢c.:} diagonalizes the internal Hamiltonian, %., which greatly
facilitates the subsequent calculation. The use of an orthogonal set, however, is not
essential ; for example, a set of Strumian functions used by Johnson and Tandy® in their
pioneering work on the deuteron breakup process in (d, p) reactions.

(A) Method of pseudo-states®

In this method, the Hamiltonian /. is diagonalized on a basis of a finite number of
normalizable functions

{¢clm,i(r), Z':1'\"]\]01, [< lcm}.
Thus, ¢em,: is taken to be

5clm,i=;acl,ij¢lm,i, (2'13)

and the ac.i; are determined so that the es,: given by (2-11) with (2-13) satisfy
(Beril el feri>= Ecriby | (2-14)
and
(Beril ersy=0ubs (2-15)

Then, ¢ei: and Ecs,; are taken to be the wave function and the energy, respectively, of the
i-th discretized “state” of channel ¢/ which is actually a superposition of eigen-states of
he. The basis set of diagonalization is chosen in such a way that the set

{‘gcl,i(&), 1=1~Ney, 1< lem}

represents the original truncated space of (2-9) well, simulates the bound states well in
energy and wave function, and represents the continuum states well, with the &..,: for them
properly distributed within the range [0, &c;m].

A set of Gaussian functions
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§0clm,i(r):€_hirzl‘lyrlm(77), (2'16)

is a convenient choice for such a basis and is used in the calculation described in Chapter
V.49 Other types of functions such as Strumian functions*®® and Laguerre polynomials
times an exponential*® have also been used.

(B) Method of momentum bins®

This method is based on the assumption that the eigen-functions ¢.(%, &) of k. are
known for all & in [0, kcm], an assumption strictly valid for a deuteron, and approximately
so for ¢ for which two-cluster model is good. The interval [0, %.m| is divided into a finite
number of sub-intervals [0, Ail, [k, k:l, =, [kn-1, kn=FKem] Wwhere n=N.;. Then, the
continuous states within the sub-interval [£:-1, k:] are represented by a single function
beri(E) with a dewm,:(r) derived from the @em(k, r) of the continuous states. A definition,
which is often used in actual calculations, is

—~ ki —_—
Bemir)= [ wes k) Fem(k, 1)dE, (2:17)
where w.:(£) is a weight function normalized by

If we:(k) is taken to be a constant within the interval [£:-1, &:], (2:18) gives

1

wei(k)= ik (2-19)
In either case the ¢ are normalized as

{eril Ber>= 0. (2-20)
It should be noted that the set {¢.:.;} diagonalizes %. in the sense that

{besil hel fer>= Ect,iduds, (2-21)
where &..; is the energy of the discretized state ée.,:;, which i§ given by

Ecr,i=(2/2pm2){(ks+ ki-r)? /4 +(dk:)?/12}, (2-22)

for (2+17) with (2-19). Hence, this method can also be regarded as a kind of pseudo-state
method with the pseudo-states defined by (2-17).
Sometimes, one uses the ¢cm,: defined by

&:m,i(r): gclm(k(i), r)/x/zc_z‘_, . (2 '23)

where £(7) is a certain representative point in the interval [%:-1, £:]. In this case, the
energy eigen-value for ¢cm,: is

écz,ithk(i)2/2/J12 (2‘24)
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and the normalization is
<¢clm,z|¢clmJ>:8116mm6(k(l>_k(])) (2'25)

In addition to the discretized continuum wave functions, the bound state eigen-
functions of %. themselves are taken for the model wave functions, ¢en= Gen for n=1~ ~ Ne,
to form a set of discretized model wave functions

{5‘31;1'(50)7 Z.:1NNCZ’ Zglcm},

which replaces the continuous set, (2+9).

The truncation and discretization of the breakup states of cluster ¢ described above
leads to a corresponding replacement of the continuous-channel internal wave functions
by those of discretized channels :

{¢(&)) — {$:(&), i=1~Ny}, | (2+26)
where

$r(&)=[deri&), Sy . (2-27)
is the internal wave function of the 7-th discretized state of channel y. They diagonalize
hy=het+ he

(Brlhict heldr>= 104, - (2-28)
where

Ern= Ect,it Ec : (2-29)
and

(Bl Br>=54. | | (2+30)

The model internal wave functions thus introduced span a functional space, M, which
is the model space of the CDCC calculation. All the subsequent calculations are done in
this space. A model wave function ¥u is a projection of qr onto M, ¥y=P¥, which has
a form :

Un=PU =330, R Znl(Ry), (2-31)

which replaces (2-4), where
0,(&, R)=[8,(&), 1" Y1.(R)] (2+32)

and the X are the corresponding radial functions.

2.3. “Convergence” of truncation and discretization

A test of adequacy of the model space M as a substitute for the original space I is
to see whether the calculation is a convergent one in the sense that the quantities {Q}
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calculated with M with a specific model Hamiltonian, Hy, and by a specific procedure of
calculation does not change when the limits of the truncation, the /cm, £c,m and &cm, Or the
density of the discretization is increased.® If the convergence is achieved, M is deemed
adequate. It should be noted that the “convergence” is only in the limited sense as stated
above and does not necessarily mean a convergence in the wave function, for example. It
is, however, enough for the purpose of the CDCC calculation as stated in § 1.

§3. Model Hamiltonian

The effective Hamiltonian, Hes, for the original functional space of the model, F,
given by (1-10) is an extremely complicated many-body operator because of the projection
operator p and the effective interaction potential Ve with the complicated second term on
the r.hs. of (1:11). In CDCC, it is replaced by a proper phenomenological model
Hamiltonian, Hx, which is physically reasonable and yet simple enough for numerical
works. In the present section, a general prescription for the replacement is described and
its application to some special examples are discussed.

3.1. General prescription for constructing model Hawmiltonians

The prescription is basically to replace the p and Vex in Hees by some reasonable,
simple, phenomenological operators, while keeping the total kinetic energy operator K
unchanged. It has already been discussed how 'the projector p for the original functional
space of the model, F', spanned by exact internal wave functions, {¢,}, is replaced by » for
the space F spanned by the phenomenological model internal wave functions, {#,}, and
eventually by P for the truncated and discretized model space, M, spanned by the
discretized internal wave functions, {é:).

Correspondingly, we first replace Hess by a phenomenological effective Hamiltonian
ﬁeff given by

ﬁeffZE(K+ Veff)p_, (3'1)

where Verr is a2 phenomenological effective potential which replaces Ver. We then define
the model Hamiltonian Hx by

Hy=P(K+ Vo) P, ' (3:2)

simply replacing p in Hex by P. This is reasonable because the same model internal
Hamiltonians are used in F and M as discussed in § 2.

The replacement of Ve must satisfy two obvious conditions. One condition is that
Vet be phenomenologically reasonable and at the same time simple enough to be used in
actual CDCC calculations. The other condition is that the replacement be consistent with
that of the projection operator described above since the latter involves the replacement
of internal Hamiltonians which include some parts of the interaction potential.

Bearing these conditions in mind, we take Ves: to be such an operator that it takes a
form

Veffz Ve(fyf)E Vc+ Vc"’ Vr, (3’3)
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in every two-cluster channel y in the model, where V. and V¢ are phenomenological
potentials of interaction within clusters c and C, respectively, and V5 is that between c and
C. Note that the original interaction potential, V/, has this property, i.e., it takes a form

V=V=Vet Vet V3, (3-4)

in every two-cluster channel y. However, Ve does not have this property.
As is well known, the total kinetic energy K can also be written in the form

K=K.+Kc+K, (3-5)

in channel y where K. and K¢ are the kinetic energy of internal motion of ¢ and C,
respectively, and K, is that of relative motion between c and C. The center-of-mass kinetic
energy of the total system, Ko, is set to zero in (3+5). Equations (3-3) and (3-5) lead to the
form of the total Hamiltonian, H =K+ V, in channel ¥y

H=H"=K+V"=K+ Ve+ Kc+ Ve + K, + 1, (3+6)
which can also be written as

H”=he+ het Ky+ Vs, (3:7)
where

he=K.+ V. and he=Kc+ Ve (3-8)

are the internal Hamiltonians of ¢ and C, respectively. B
Upon inserting (3+3) and (3:5) into (3:1), one gets a form, H¥, which Hex takes in
channel y which is completely parallel to (3:7)

ﬁeffzﬁéfyf)zg(}jc_F Ec‘l“Kr"f' 177)5, (3°9)
where
he=K.+ V. and he=Kc+ Ve (3-10)

are the phenomenological internal Hamiltonians for ¢ and C, respectively.

Now, one can satisfy the two conditions for the replacement of Ver by Vers stated
earlier. We take V., Vc and V, to be reasonable phenomenological substitutes of the
corresponding parts of the original potential, V., Vc and V,, respectively, which include
the effect of the excluded channels, and yet simple enough for numerical works in the
CDCC calculation. The consistency of Ve with the projection operator p can be satisfied
by taking V. and V¢ such that the model internal Hamiltonians % are the same as those
which define F, and hence ». The model Hamiltonian, Hu, is given by Hes with 2
replaced by P, (3:2). Its form in channel y is given, from (3-9), by

HM:HZE})EP(EC_*' EC+K7+ Vy)P. (3‘11)
3.2. Application to special cases

Actual choice of Verr, and consequently of Hes and Hy, is done basically case by case,
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depending much on the reaction mechanism assumed, i.e., /. We give some examples of
practical interest in the following. '

(A) One channel model

If one calculates elastic scattering in a channel @ with particles a and A, and assumes
that no direct process through other channels is important, /' includes only channel «.
Then, it is clear that Ve given by (1+11) is just the Feshbach generalized optical potential
for channel @. Then, it is reasonable to replace it by a phenomenological optical potential,
U, at the energy E.=FE —¢&.. Hence,

Vesr=U"". (3-12)
Then,

Hew=p(ha+t ha+ Ko+ UL p. (3-13)
Since p =P in this case, because there is only one channel,

Hu=P(Rrat fint Kat U™ P=Hegs. (3:14)

(B) Three-body model Hamiltonian

Let us consider a reaction induced by a loosely bound projectile a impinging upon a
nucleus A. We consider the case in which (a) no rearrangement process is important, (b)
A remains in the ground state, and (c) a can break up into two fragments, 1 and 2, each
remaining in the ground state. Then, only elastic scattering and elastic breakup of a are
the important processes. Generalization to include excited bound states of A is straight-
forward.

An obviously appropriate model of reaction mechanism in this case would be multi-
step processes within the channels of three bound particles, 1, 2 and A, interacting with
each other. This is called a three-body model. The internal wave functions of the
channels define the functional space of the model F.

Following the general prescription, we take the phenomenological -effective
Hamiltonian to be of a form

ﬁeffzg(}?a—i_ EA+KQ+ Va)p_, (3.15)

where ? is the projector onto the space F spanned by the eigen-functions of %a and 7a,
of which /%a. has a form

EazKlz“‘}” 1712+ El“i“ ﬁz, (3’16)

where Kz and Vi, are the kinetic and model potential energy operators of relative motion
between 1 and 2, respectively, and %: and % are the model internal Hamiltonians of 1 and
2, respectively.

Now, we choose V.. One possible choice®® is Va=iE§eA Vi; where V; is an effective

two-nucleon potential given by, say, the G-matrix theory. Another reasonable choice is

Vaz I—7IA+ VZA, (3‘17)
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where Via and Vaa are potentials of interaction of 1 and 2 with A, respectively. It is not
altogether clear in our approach what to take for Via and Vea. A reasonable choice would
be the optical potentials for the pairs (1, A) and (2, A). Optical potentials, however, depend
on energy, and the energies of 1 and 2 relative to A are not well defined because the two
fragments exchange energies through mutual interaction, Viz. Furthermore, if the V, and
hence Hes:, depended on the energy of the individual fragments, one would have to deal
with a very difficult problem of solving a Schroedinger equation with a Hamiltonian which
depends on the energy of subsystems. A theoretical discussion of the nature of the ¥ has
been given elsewhere,” and we do not discuss it any further here.

In the subsequent chapters except Chapter VI, the V are taken to be the optical
potentials Utx® and Usi" at the most probable energies of relative motion between 1 and

A, and 2 and A, Eia and E:a, respectively. Thus,
Heotr= p(Fiat Foat Ko+ UE(Era) + USF(E2n)) . (3-18)

This is the phenomenological effective Hamiltonian of the three-body model which is used
in actual calculations. If all the breakup states are included in £, » commutes with the
operators inside the parentheses, and so may be omitted with the understanding that Hest
operates onto wave functions within F.

The three-body character of Hes becomes even more apparent if one writes it in the
form

Hot=0(ha+ i+ hot Ko+ Ko+ UX™+ USK™+ Vi) b (3-19)

If A is much heavier than 1 and 2,

K12+KazK1A+K2A, ) (3'20)
where Kia and K:za are the kinetic energies of 1 and 2 relative to A, one can approximate
ﬁeff as .

Henrx :5( hat b+ ho+ Kia+ Koa+ UK+ Usi ™+ 1712)5 (3‘21)

This form of Hes is sometimes convenient for theoretical discussions.”
Finally, the model Hamiltonian Hy is obtained from Hes by the replacement of the p

by the P,

Hu=PUiut Tt Kat UX(EW) + U (Ba) P (322
or

Hu=P(la+ I+ hot Ko+ Ko+ UE™+ USE™+ Vio) P (3-23)

An important example of three-body Hamiltonian is that for deuteron induced reac-
tions in which only elastic scattering and elastic breakup process are important. In that
case, the phenomenological effective Hamiltonian discussed above is given by

Hees= p(ha+ ha+ Kaa+ UR+ UXY) p, (3-24)
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where

Ed:Kpn‘*_ Vpn, : (3.25)

and the nucleon optical potentials, Ugi® and Ugi', are those at half the incident deuteron

energy, Ea, Epa=FEna=FE4/2. Again, (3:24) can be rewritten as

Hete= p (hia+ Kon+ Kan+ UK"+ U™+ Von) D, (3-26)
which may be approximated for A much heavier than the nucleons as

Hour~ p(ha+t Kon+t Koa+ UK+ U™+ Von) D (3-27)
Finally, the model Hamiltonian is given by Hest with p replaced by P,

Hy=P(ha+ ha+ Kaa+ UR"+ UX") P (3-28)
or |

Hyu=P(ha+ Kon+ Kaa+ UR"+ UK+ Von) P, (3-29)
which for A much heavier than the nucleons can be approximated as

Hyu=P(ha+ Koa+ Koa+ USk' + Usk "+ Vin) P. - (3-30)

The optical potentials are those at Epa= Ena=Ed/2. |
The Het: given by (3-18) and (3-24) and the corresponding Hy are used in the
calculations described in Chapters III*® and IV .3¥

(C) Rearrangement process

If rearrangement processes are important in a reaction, due to strong coupling of the
rearranged channels with the incident channel, F' must include such channels. One,
therefore, has to deal with more than one partitions of the system. Let us take an example
of just two partitions (a, A) and (b, B) with various internal states. We denote the
channels with (a, A) by @ and those with (b, B) by 8. We assume that F includes breakup
states of cluster a, while all the other clusters are in bound states.

According to our general prescription, the phenomenological effective Hamlltoman
Hes, in this case takes two different forms, S and HS? in channels @ and 3, respectively.
For channels a with breakup states of a, it is appropriate to take a three-body model
Hamiltonian Het'® of the form (3-18) or (3-19). For channels 8 with only bound states,

HE=p(he+ Ko+ Vip) D, ' . (3-31)

is appropriate. The set {H$®, H)} defines Hes, and hence Hu.
An example of this situation is a (d, p) reaction,

A+d(p+n)->B(A+n)+p

with a strong coupling of the proton channel with the deuteron channels including breakup
states. We take Hesr in this case to be the three-body model Hamiltonian of (3:24) in the
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deuteron channels

HE= b ot Toat Kan+ US (Eos=Ea/2) + UE(Ean=FEa/2) (3-32)
with

fra=Kont Vim, | (3+33)
and in the proton channel

T8 = 5(Jes+ Kou+ Vor) B (3-34)
Since B consists of A and n, the model internal Hamiltonian %z can be written in the form

he= ha+ Ka+ Vaa, (3-35)

where Vua is a model interaction potential between n and A. Likewise it is reasonable to
assume that Vg is of the form

VpB: VpA+ Vpn, (3 * 36)
and take Vpn to be the same as the one in %4 of (3-33). Putting (3:35) and (3-36) into (3-34)
one has

1= p(hat Kon+ Kna+ Voat Vaat Von) . (3-37)

, In the extreme single particle model, Vaa is a single particle potential,
Vaa= Una(rna). (3-38)
One could also take Vpa to be an optical potential
Voa= UK, (3-39)
at the outgoing proton energy. Then, (3:37) becomes
HR= p(ha+ Kon+ Koat+ UK+ Una+ Vo) . (3-40)

Again, the model Hamiltonian, Hy, is given by Hes of (3-32) and (3:37) or (3-40) with the
p replaced by the P.

Now, it is noticed that the forms of A given by (3-37) and (3-40) are quite similar
to that of A in the approximation (3-27)

ﬁég‘?z 5( }—I/-A+KnA+KpA+ U[g)APT+ Ur?}‘?‘r—l_ Vpn) 5 (3'41)

In fact, the right-hand side of (3-40) is the same as that of (3-41) for a heavy A for which
Ko~ K if Una is changed to U%*. This is the reason why sometimes H&? and H¥ are
regarded as a same three-body Hamiltonian with a neutron-nucleus potential which
depends on the neutron energy, an optical potential for a neutron in the continuum and a
real binding potential for a neutron in a bound state. "

The form of (3-41), however, is only an approximate one, correct only for heavy A.
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Furthermore, a three-body Hamiltonian which depends on the energy of a subsystem, the
neutron, seems likely to lead to the same kind of difficulty as mentioned in the case of the
nucleon optical potentials in the deuteron breakup channels. There is no such difficulty
with the general prescription of the present paper for constructing Hes:. ’

The He:r given by (3-32) and (3:34) is the one used in the calculations described in
Chapter V.4

§4. Model Schroedinger equation and boundary condition
We are now in the position to determine the model wave function given by

WMEP¥’=2§ZI@Z-($7, jér)??ri(R», (4'1)

by solving the model Schroedinger equation
HyUyu=FE¥y, (4-2)
which is equivalent to

(@ﬁ(éh fer)lHM‘ElﬂZj @#j(éﬂa Z’é#) f#z‘(Rr»:O, (4'3)

for all the 7z in M, where the left parenthesis signifies the integration over the coordinates
in @,: only. If one uses (3-11), (2-27) and (2-30), one can rewrite (4:3) as

(K3 +Uyi—Ey) 7y=— gﬁ( @71‘|H__E| i T, (4-4)
where

Uyi=< Dy V| D> (4-5)
and

En=FE— &y, ' (4+6)

where &, is the internal energy associated with @,;, given by (2-29). Equations (4+3) and
(4-4) are general forms of the coupled equations of CDCC for the unknown radial functions
of relative motion, 7,(R,). The quantity

F(vi, ﬂj)E(@7i|H"”E|@#j) (4-7)

is called the form factor of coupling between channels yz and /. The finiteness of the
dimension of M guarantees a unique solution of (4-2) through (4-4).

In the case of the three-body model with Huy given by (3:22) discussed in § 3, (4-4)
takes the form

(Ka+ Uaz'_Eaz')faz': “‘Jgi( @ail Ulosz(ElA)‘i” Uzosz(EZA)‘ @aj), (4‘8)

because of (2-28) and (2-30).
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In the case of coupled rearranged channels, discussed in § 3, situation is somewhat
complicated because of the non-orthogonality of rearranged channels. The form factor of
coupling between rearranged channels, ¢ and 8

F(a, B)=(®dHu—E|Ds), (4-9)

is now an integral operator acting on Y. because K. is a function of &. There is an
ambiguity as to which of the forms of Hu to take, Hi’ or Hif’. In principle, Hx ought to
be so chosen that either form gives the same result. In practice, however, this may not
necessarily be the case. If we take Hif’ of the form (3-29), then,

F(a, B)=(Od Kot Vs Eil D), | (410)

=Fas+ Nas, (4-11)
where
Fop=(@a| Vs— Us| @s) | | (4-12)
and
Nep=(Do| Ks+ Us— E4| @p), - (4-13)

where Uy is an auxiliary potential which is a function of Rj, introduced to reduce V; to
the “residual interaction”, Vs— Us. Fe is called the interaction term, and Nes the non-
orthogonality term of the coupling form factor. N would be zero if channels ¢ and /8
were orthogonal to each other. As the operator in (4-12) shows, it has a long range which
makes the calculation rather complicated. We do not go into any further discussion of the
subject, and refer the reader to the papers of Ref. 8).

The boundary condition for the model wave function is assumed to be that 7,:(R;)
have the same asymptotic form as that of 7,(R,) in p ¥ which corresponds to the energy
of relative motion E,. For a reaction initiated in channel @, the asymptotic form of the
X» 1s given by

Rfr(R)Nu(iZ(Pri, R)aar— S—ra(Pri)u;zXP?i, R), (R'_’OO) (4'14)
if channel 7y is open at Ey:;, and
Ri(R)~ WL7<X7z’, R), (R_’OO) : (4'15)

if channel 7 is closed at E;;, where Py=Q2u,E/7*)"? for E»=>0 and xy;=(—2u,E/h*)"?
for E,;<0 where g, is the reducéd mass in channel 7. S,.(Py) is the model S-matrix
element of procéss a¢— y at wave number P,;, and the »® are the usual outgoing and
incoming Coulomb wave functions with the asymptotic forms '

uit)(Pyi, R)~expl+i(PyR—7yIn 2PyR— Lyn/2)]/Vvs, (4-16)

where vy =%Py:/ tty, and 9y=_Zc.Zce®/hvy is the Sommerfeld parameter.
Correspondingly, the asymptotic form of ¥»(R) is set to
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R7(R)~ usil(Pri, R)Sar— Sriatt$i)(Pyiy R), (R— o) (4-17)
for £,;=0, and
R%y(R)~ Wi, {x:;, R), (R—) (4-18)

for EﬁSO.

The relation between S, and S is rather involved. It is not always reasonable to
associate Sy« directly to S,«(Py:) because # with j%i may contain a component of
é,(k, &) with & in [k:-1, k], in general. In the case of discretization by the momentum-bin
method with constant weight functions, (2:19), however, the relation is direct

S_ra(Pyi): §7i,a/fd_;:. : (4'19)

In actual numerical calculations, the boundary condition (4:16) or (4:17) is set at a
large but finite R,, say R,m. In order for a %,:(R,) be close to the ¥,(R,) which it is
supposed to represent, it is necessary that K,m be so large that the asymptotic form of
(4-14) and (4-15) are at least approximately valid for the 7,(R,). However, it must not be
so large as to jeopardize the / truncation, because the coupling between breakup channels
of high / become increasingly important as R, becomes large. It is an assumption of
CDCC that a set of the R, n can be found in such a way as to satisfy the both requirements.

The boundary condition described above seems to be the most reasonable one under
this assumption. It should be borne in mind, however, that the model wave function, @y,
thus obtained has three-body breakup parts with wrong asymptotic forms. In fact, it has
been shown® that in the asymptotic region of three-body breakup channels 7, ¥ decreases
as R7® rather than R™*? as in the correct asymptotic form, where R is the hyperradius,
R=(R,*+ n:")"*. Hence, ¥u cannot be equal to p¥ or p¥ in the entire configuration
space. This would be catastrophic from the point of view of approximating the wave
function. This is, however, not the case for CDCC because its aim is to calculate some
specific physical quantities rather than wave function: The asymptotic form of the wave
function is often irrelevant, depending on the quantities to be calculated. This point is
discussed in the next section. :

§ 5. Calculation of physical quantities

The model wave function, ¥, found in the way described in the preceding sections is
used for the calculation of the desired physical quantities {®}, with the aid of model
operators {@} corresponding to {Q} in general. However, the procedure of calculation is
by no means unique. We explain this below for the case of calculation of transition matrix
elements. ,

Suppose, for example, we wish to calculate 7s.(Ps) of a reaction with the initial and
final channels @ and 8, respectively for the final momentum of relative motion Ps. One can
calculate it from the S-matrix elements defined in the previous section, through calcula-
tion of Sse(Ps). The procedure of calculating Sg(Ps) from the S, however, depends on the
method of discretization of the continuum. For example, if it is done by the momentum-
bin method with constant weight functions, (2:19), Ss(Ps) may be obtained by an inter-
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polation of the Sg:.«/v s, which can be identified with Ss(Ps:) as (4+19) shows, for a Ps
between the Ps:;. This is actually the procedure that is used in Chapters II1,°9 IV®® and
V1.5

One can, however, calculate T3, also from the well-known integral formula in the post
form

Toa=<ePe ke | V| TS, (5-1)
substituting the wave functions and the potential with corresponding model bnes
Toa=<e®Fse hp| V| Uii?> (5-2)
or from the formula cofresponding to the prior form of 7j.
- Toa=< U ValePeka o, (5-3)

where ¥y has the same scattering state boundary condition as ¥4", and @3 as &5
Note that the model operators, i.e., the barred potentials are used in (5-2) and (5:3), hence
the bar in 7.

Still another procedure is to calculate Sg. by a variational method such as the
Coupled-Channel Variational Method (CCVM) discussed in Chapter V,*® using %5 and
T% as trial functions. These and other possible procedures give T3. which differ from
each other in general, in the value and in the expected accuracy. It is important that the
procedure matches well with the model space and the model Hamiltonian to give optimal
results. In fact, the model space, the model Hamiltonian, and the calculational procedure
should be taken as a set, as is done in the previous sections.

Let us compare in more detail the two calculational procedures given above, one from
the S, and the other from the integral formulae. In order to fix the ideas, let us consider
the T -matrix elements of deuteron induced reactions, (d,d), (d,p) and (d,pn). The nucleons
are assumed to be spinless.

The calculation from the S relies on the model wave function at the boundary of the
region in which actual CDCC calculations are made. Errors in the calculated 7 -matrix
elements are directly proportional to the error in ¥ there. In order to obtain 7pnq« for
continuous momenta of the outgoing p and n, one calculates the Sasa( Pa+) for the continu-
ous Ps from the discrete S, although this procedure is not unique as already mentioned.

The model 7T -matrix elements in the integral forms are, for example,

_dd: {gtaFa $d(rpn) @A(éA)' UpO}\)T(RpA) + UI?ET(RHA)l %E’>, (5 y 4)
Tpdz < ??rg‘xRpB) @B( Tna, EA)| Vpn(rpn) + ( VpA - UggT(RpB))l w.A(dTi)% (5 . 5)
Tona=<e®*o et @a(E))| UK+ URT+ Vool Ui, (5-6)

where ¢q4, @, and @z are the bound state wave functions of deuteron, nucleus A, and
nucleus B, respectively, 75 is the distorted wave in the auxiliary potential Ut " which is
taken to be the proton-B optical potential at the outgoing proton energy. The term (Vpa
— U%") on the r.h.s. of (5+5) is eventually neglected, as in usual DWBA calculations.

It is noted that the integrands of (5-4) and (5-5) are significant only within a limited

NI | -El ectronic Library Service



Publication O fice, Progress of Theoretical Physics

Formalism of the Method of Coupled Discretized Continuum Channels 29

region of the configuration space, say 7m<7m and Ra< Rn, because of the finite range of
the potentials and the bound state wave functions. Hence, Tua and Tpq are affected only
by the value of ¥x% within this region. This has a great advantage because it allows a
truncation of / with a relatively small /u since in the limited region, Ra< Rm, coupling of
d* states with high / turns out to be small, so that multi-step processes through them are
negligible in the reaction starting from the deuteron ground state channel.

Now, it is easy to see that Tus and T4 calculated by the two procedures are actually
the same if the same model wave function is used. There is, however, an advantage of
great practical importance of the integral formula for 7u«¢ over the calculation from the
S when the coupling of the proton channel with the deuteron channels is weak. In that
case, one can neglect the p channel in the CDCC calculation of @Y, and use that @ in
(5+5) to calculate Tya. In the S procedure, the same model space would obviously give a
null 754 since the model wave function is zero in the proton channel.

The calculation of Ton,q is subtle, because there is no bound state wave function which
limits the range of the final state interaction. As mentioned in $4, ¥» has a wrong

- asymptotic form in the space of breakup channels. This implies that a CDCC calculation
in a finite region bounded by R+< R4m contains an error in the calculated 7pna Which
depends on Ram. This is true both in the calculation from the S and that from the integral
formula. As long as the / truncation is valid, the error is a decreasing function of Rqm.
One, therefore, takes as large Ram as possible to minimize the error. However, one cannot
make the error arbitrarily small by taking Ram arbitrarily large, because that would make
the / truncation inconsistent since the coupling of channels with high / becomes increas-
ingly important as Ka becomes large. One, therefore, would have to contrive other
methods, in order to correct for the error.

There are advantages in the integral formula over the S procedure. The interpolation
for continuous momenta, £ and Pu-, is automatically done through the momenta in the final
state wave functions in the integral. Also, it contains components of 7Tona With the / not
included in the model space, i.e., [ = lym, because the integral yields such components even
if ¥%% does not contain them. A great disadvantage of the integral formula, however, is
the extra integral that has to be carried out after getting ¥¥% which is, of course,
unnecessary in the S procedure. For this reason, the S procedure has been used in
practice as reviewed in Chapter II1.59

Finally, the calculated results are compared with experimental data. The quality of
agreement between them is interpreted as the measure of how real the model of reaction
mechanism, etc., are. If it is insufficient, improvement of the model has to be looked for.
If the agreement is satisfactory, the model is deemed realistic and the model wave function
¥y is assumed to contain all the main important information on the wave function &
relevant to the calculated quantities {Q}, especially detailed information on the reaction
mechanism relevant to {€}. The best hope is that @ is a good approximation to p¥, at
least within the limited region of the configuration space relevant to the calculation of {Q},
although this cannot be true for the entire configuration space as already mentioned. This
is, however, probably too optimistic a hope in general because of the phenomenological
steps involved in the calculation.
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§ 6. Summary

Basic ideas and assumptions of CDCC are reviewed. The method is characterized as
a phenomenological method of calculating some specific physical quantities in a reaction,
rather than a method of approximately solving a Schroedinger equation with a given
(model) Hamiltonian. The steps of actual CDCC calculations are described which are
summarized as follows.

There are some specific physical quantities {€} in a specific reaction to be calculated.
A model reaction mechanism of some multi-step direct processes is assumed with a
procedure of the calculation of {Q} fixed. The model is specified by a set of channels,
including some continuous channels of broken up particles, among which the multi-step
processes take place. The channel wave functions define a functional space of the model,
F. For the sake of feasibility of actual calculations, the internal wave functions of the
channels in F are substituted by phenomenological model wave functions, which define a
phenomenological substitute, /7, for F. Then, the continuum channels in F are truncated
and discretized into a finite number of “channels”, which define the model space of the
CDCC calculation, M. Two methods of discretization are described: the method of
pseudo-states and the method of momentum-bins. Adequacy of the truncation and
discretization is tested by the “convergence” of the calculated quantities.

A general prescription for constructing the model Hamiltonian of a CDCC calculation
is given. One starts from the Feshbach effective Hamiltonian Hes for the space F. One
replaces the effective interaction potential, Vs, in Hest by a phenomenological one, Ver, to
define a phenomenological effective Hamiltonian Hes which is consistent with the space F.
One then defines the model Hamiltonian H» by simply replacing p, the projection operator
onto F, in Hes by P, that onto M. Application to a one-channel model for elastic
scattering, a three-body model for processes involving breakup of a projectile into two
fragments, and that with a coupling of rearrangement channels are discussed, with
examples of (d, d), (d, pn) and (d, p) as special cases.

The model Schroedinger equation with Hy is solved for a model wave function &y.
A set of boundary conditions is set at the boundary of a finite region of the configuration
space which is discussed in some detail. ‘

Finally, the desired quantities {@} are calculated with the model wave function by
some specific procedures associated with the model. The reality of the model is judged by
the quality of agreement of the calculated results with experimental data. If it is good, the
model is deemed realistic, and then the model wave function @y is assumed to contain all
the main important information on the wave function ¥ relevant to the quantities {Q}, in
particular the reaction mechanism involved.

Justification of CDCC has so far been empirical, relying almost entirely on the
intuitive plausibility and agreement with experimental data. Theoretical investigation of
the validity of CDCC is complicated by the fact that CDCC is not simply a mathematical
method of approximately solving a Schroedinger equation with a given Hamiltonian, as
clarified by the summary given above. It must eventually include justification of various
phenomenological steps as well. However, even an examination of the effect of the
truncation and discretization of the continuum channels on the wave function of a three-
body model effective Hamiltonian, Hes, would be very instructive as a first step of such
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investigation. In view of the remarkable success of CDCC as a phenomenological theory,
clarification of its theoretical foundation is highly desirable in any case.
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