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   Basic ideas and  assumptions  of CDCC  as  a  phenomenological  theory of  multi-step  direct
reactions  are  reviewed  in such  a  way  as  to clarify  the formal  structure  of the method.  In particular,
truncation and  discretization of  the  continuum  of  breakup channels,  choice  of  the model

Hamiltonian, boundary condition  for the model  wave  function, and  procedure  of  calculation  of

transition matrix  elements  are  discussed in detail.
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gl. Introduction

   The  Method  of  Coupied Discretized Continuum Channels, abbreviated  as  CDCC,  is a

phenomenolegical  method  of  analyzing  direct nuclear  reactions  which  involve breakup  of

loosely bound particles, such  as  deuteron, 6'7Li, i2C,
 etc. It is an  extension  of  the conven-

tional Method  of  Coupled Channels (CC) for bound clusters.i) As  such,  its aim  and  basic

assumptions  are  much  the same  as  thQse  of  conventional  CC. Its primary  purpose  is to
analyze  the mechanism  of  a  specific  multi-step  direct nuclear  reaction  through calculation

of  some  specific  experimentally  observable  quantities, e.g., cross  sections,  analyzing

powers, etc., and  comparison  with  experimental  data. It is not  designed to be a  method
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of  approximately  solving  the Schroedinger equation

HUJ'-EIU (1･1)

with  a given total Hamiltonian of  the system,  H,  for a wave  function T  in the entire
configuration  space  under  a  given set  of  boundary conditions.  In fact, knowledge of  the

wave  function over  the entire  configuration  space  is not  even  needed  sometimes,  depending
on  the particular quantities to be calculated  and  the  procedure  of  the calculation,  as

discussed in g5.

   A  CDCC  calculation  starts  with  adopting  a  model  of  the multi-step  direct process,
specifying  a  set  of  internal states  of  the system,  or  channels,  through  which  the reaction

is assumed  to proceed, and  the way  the channels  are  coupled  to each  other.  In the present

paper, we  assume  that the model  inclttdes only  two-cluster  channels  consisting  of  two
independent  clusters,  each  in either  a  bound  or  an  unbound  state.  We  assume  that only  one

of  the clusters  may  be in an  unbound  state  which  can  be well  approximated  by a  state  of

interacting two nucleons  or  two fragments each  in a definite bound state.

   We  use  greek  letters, cr, B, 7, etc., to denote such  channels,  and  roman  letters, a  and

A, b and  B, c and  C, etc,, to denote corresponding  constituent  clusters.  We  use  the

notations  rather  loosely for specifying  sometimes  only  the kind of  the clusters,  and

sometimes  also  various  quantum  numbers.  We  work  in a representation  in which  the total

angular  momentum,  J, and  its z-component,  ", are  diagonal.

   Suppose 7 is a channel  in the model  with  clusters  c and  C which  are  in eigen-states,

ipc and  dic, of  respective  internal Hamiltonians, hc and  hc, with  eigen-energies  Ee and  Ec

heipe=eeipc and  hcipc=ecipc. (1･2)

The  internal wave  function of  the channel,  ipr(er), is given  by

¢ r(er)=[dic(8c),  ipc(4c)]riry"

where  the e are  the internal coordinates,  and  the square  bracket in
mornentum  coupling  to form a  channel  spin  Ar, with  a  z-component,

hr¢ 7=e7 ¢ r,

(1･3)

dicates the angular
ptr. It satisfies

(1･4)

where  hr=hc+hc  and  Er==Ec+Ec  are  the internal Hamiltenian  and  the internal energy  of

channel  7, respectively.  The  clusters  are  either  in a  bound  or  in an  unbound  state  as

already  mentioned.  Bound  states  are  discrete and  are  labeled by a set  of  discrete quantum
numbers.  Unbound states  are  continuous  and  labeled by a  set  of  continuous  quantum
numbers,  in addition  to discrete ones.  We  normalize  the internal wave  functions to a

Kronecker  delta for every  discrete quantum  number  and  a  delta function for every

continuous  quantum  number.

   The  model  of  a CDCC  ca]culation  is defined by a  set of  discrete and  continuous

channels  with  a  corresponding  set  of  internal wave  functions {ipr} defined above  which

span  a  functional space,  F, for the wave  function of  the model.  Setting up  the model  must

be done on  a  sound  physica] basis supported  by experimental  evidences,  theoretical

plausibility, etc. Its validity  is eventually  tested by comparison  of  the calculated  result

with  experimental  data. Another  condition  for the model,  which  is very  important for the
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feasibility of  actual  calculations,  is that space  F  be minimal,  including only  channels

which  are  important for the particular calculation'  at  hand. Hence, F  depends in general
on  the type of the reaction,  the quantities, {Q}, to be calculated,  the procedure  of  the

calculation  of  {Q}, the incident energy,  angle,  etc., of  observation,  and  also  the desired
accuracy  of  the calcu]ation.

   Let us  denote the projection  operator  onto  F  by  P, and  its complement,  1-P,  by  q :

     p2-p, 42-=q,  pq=op-O.  (1'5)

The  projection of  4r onto  F, P{P, can,  by definition, be expanded  as

     Pep=S ¢ 7(5,
 Rr)X7(Rr), (1'6)

          r

where  R7 and  Rr are  the magnitude  and  the direction of  the relative  coordinate,  Rr,
conjugate  to 4r, dir(&, Rr) is a  so-called  spin-angle  function of  channel  r defined by

     ipr(6b Rr)i[ipr(4r), iL'}'},,(Rr)]fpt, (1'7)

xr(RT)  is the radial  part of  the wave  function of  relative  motion,  and  S  stands  for
                                                                r

summation  over  discrete channels  and  integration over  continuous  channels,  Per satisfies

the Schroedinger equation  within  F

     Hb,,PW-D{P',  (1･8)

where  Mff is the Feshbach effective  Hamiltonian

     Hbff=P (U+U .q, H)P  (1'9)

with  eq=E-qH4-ie.  It has a general form

     Llb,,-p (K+ U,,)p, (1･10)

where  K  is the total kinetic energy  and  I()ff is the  effective  interaction potential given by

      %tf==:P(V+ll .q, H)P,  (1'11)

where  V  is the interaction potential in the original  Hamiitonian, H,  so  that

     H==tK+' V, (1･12)

    Now,  it is obvious  from  (1･6) and  (1'9) that  (1･8) is equivalent  to

     (¢ a  H6ff-EISOrxr>=O  (1'13)
                r

for all  the 6 in F, where  the  left parenthesis  signifies  the  integration over  the arguments

of  ¢ s. Equations (1'13) constitute  a  set  of  coupled  equations  for the unknown  wave

functions x  of  relative  motion,

    Now,  a  CDCC  calculation  with  an  F  as  described above  is unfeasible  in practice,

                                                          NII-Electronic  



Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOffice,  Progress  of  Theoretical  Physics

14 M.  Kawai

because it would  involve calculations  of  the exact  internal wave  functions of  F, {Or}, and

the exact  effective  Hamiltonian, llbff, and  solving  a coinpled  equations  of  the form of  (1 ･
 13)

for a  continuous  set  of  the x. It is a  basic assumption  of  CDCC  that one  can  substitute  F
and  ]eEff  by  a  finite dimensional model  space,  M,  and  a  corresponding  phenomenological

model  Hamiltonian, HM,  respectively  in such  a  way  that the desired quantities {Q} can  be

calculated  in good  approximation  with  M  and  llM by the procedure specified  by the model.

The  quantities {Q} thus  calculated  are  compared  with  experimental  data. The  reality  of

the model  is judged by the quality of  agreement  between them.

   Thus, a CDCC  calculation  proceeds  in rather  distinct steps.  In the subsequent  sections,

we  sketch  the formalism  of  CDCC  following those steps.  In S 2, the transition from  F  to

M  is discussed, including truncation  and  discretization of  the continuous  breakup  chan-

nels. In g3, a general prescription  of  constructing  phenomenological Hamiltonians is

given, and  its application  to some  special  cases  of  practical interest are  discussed. Ing4,

the model  Schroedinger equation  and  the boundary condition  for model  wave  functions

are  discussed in detail. In g 5, procedures  of  calculation  of  transition matrix  elements  are

discussed. In S6, a summary  and  the conclusion  of  the paper  are  given.

g2. Model space

   Let us  assume  that a  reasonable  model  of  the reaction  mechanism  has been set,  and

the space  F  with  the effective  Hamiltonian  H6ft have been defined as  discussed in the

previous  section.  As already  mentioned,  F  and  H6ff are  virtually  irnpossible to be
calculated  numerically  in most  cases,  and  have  to be replaced  by  some  phenomenological

substitutes. In the present section  we  deal with  the replacement  of  F  by  a  model  space,

M.

2.1. Mbdel internal wave  fanctions 
,

   The first step  of  the replacement  concerns  with  the internal wave  functions in F. They
are  themselves  so]utions  of  many-body  problems  : (1･2). In practice, they  can  be calculat-

ed  only  approximately  with  some  models,  except  in the case  of  the deuteron for which

exact  calculations  are  feasible. One, therefore, replaces  them  with  eigen-functions  of

certain  model  internal Hamiltonians. We  denote quantities in the  model  with  a  bar, Thus,
for channel  7 with  clusters  c and  C, ipc and  ipc are  replaced  by  ipc and  ipc, respectively,

which  satisfy

h-c¢
"c=E-c

¢
-c,

 h-c¢
-c

± e-c ¢
Mc,

(2･1)

and  ¢ r is replaced  by ipr given  by

a-5r(8r)=[g-5e(&), g-Sc(&)]Arpr, (2･2)

which  satisfies

h-rip-r ==  erip-r, (2･3)

where  the  h are  the model  Hamiltonians which  are  assumed  to be so  chosen  that the E- and

the ip well  approximate  the corresponding  E  and  ip in F. In particuiar, discrete channels
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in F  should  be replaced  by discrete channels,  and

channels.  We  assume  that the ip are  normalized  in

replaced  by a space  F  spanned  by {diMr}.
   Now,  Pep of  (1･6) is replaced  by

     P tP' =  SOr(bfc7, Rr) X-r(Rr),
          r

where  P is the projector onto  F, and  di7 is given  by

     ¢
-7(4r,

 )i?r)i[dir(&),  iLr]YLr(iRi7)]Jp.

continuous  channels  by continuQus

the same  way  as  the ip. Thus, F  is

(2"4)

(2･5)

2.2. Discretiaation of three-body continuum  channels

   The  next  step  of  the replacement  deals with  continuous  channels  in F, Each of  those

channels  consist  of  a  bound  cluster  and  an  unbound  pair of  fragments as  mentioned  in g 1.
In CDCC,  a  continuum  of  such  states  is trun¢ ated  and  discretized into a  finite number  of
"states".

 The reason  for this is, again,  the feasibility of  calculation:  coupled-channel

calculations  can  be carried  through  numerically  only  with  finite number  of  coupled

channels.  Another  point is that if one  assumes  a  three-body  model  Hamiltonian, discussed

later, for such  a channel,  the Lippmann-Schwinger  equation  has a  Hilbert-Schmidt kernel

and  has a  unique  solution  after  the truncation in the angular  momentum  of  relative  motion

of  the fragments.2) We  describe in the following the procedure of  truncation  and  discret-
ization used  in the actual  calculations  in later chapters  of  the present review.

   Suppose cluster  c of  channel  7 breaks up  into two  fragments 1 and  2, each  in a definite
bound  state,  The  model  internal wave  function of  such  a state  has the form

     ¢
'.i(k,

 e.)=[ip-,i(k, riz),[ip-i(&), ip-2(&)].],,,.,, (2･6)

where  the ip- are  model  internal wave  functions of  1 and  2, and  ¢
-cim(fe,

 r'i2) is the wave

function of  relative  motion  between  the fragments with  wave  number  k and  angular

momentum  l and  its z-cornponent  m  where  ri2 is the relative  coordinate.  The  spin,  k, and
its z-component,  ME, of  cluster  c is composed  from l and  the spins  of  the fragments as
shown  in (2･6). The  internal energy  of  cluster  c is given  by

            h2fe2

     EMc(fe)=  2th,, (2'7)

where  "i2 is the reduced  mass  between 1 and  2.

Iand  le or  Ec as

IKI6,m and  leghc,rn or  e-csEc,m,

Now,  the truncatiori is made  by restricting

(2･8)

where  the limits kc,rn or  ec,m  and  lc,rn are  taken  to be such  that they  satisfy  requirements

stated  in g 2.3. Thus, the space  of  the  eigen-states  of  hc with  the bound  states,  ipcn({;b),
n=1--M,  and  the continuous  states,  ipci(fe, &), is truncated  into a  space  spanned  by

     {di-cn(ec), n==1'"-IVE;  ¢
-ci(le,

 4c), kSfec,m, l<-h,m}. (2-9)

Now,  this set  of  infinite number  of  functions is replaced  by a  finite set  of  model  
"state"
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wavefunctions

{ip,i,i(&), i=1, 2'", Mi, lglc,m}i (2･10)

The  first M  functions of  the set  simulate  the  bound states,  and  the rest  represents  the

continuous  states of  the original  set, (2･9). The  wave  functions of  the latter have  the form

     ¢ cl,i(4c)==[ipct,i(r12),[ ¢ 1(61),  ip2(e2)],]l.M,. (2.11)

We  assume  that  the di are  normalized  as

     <g6cnlg6cm>=6nm, <q5cnlg5ci,i>=O and  <q5,i.ilg5ct,j>=6u･, aij. (2.12)

   One can  construct  such  a discretized set  of  functions in various  ways.  We  discuss

below  two  methods  which  are  used  in the subsequent  chapters  of  the present  review  : (A)
the method  of  pseudo-states, and  (B) the method  of  momentum  bins. A  merit  of these

methods  is that the set  {¢ ei.i}  diagonalizes the internal 
'Hamiltonian,

 lee, which  greatly
facilitates the subsequent  calculation.  The  use  of  an  orthogonal  set, however, is not
essential  ; for example,  a set  of  Strumian functions used  by Johnson and  Tandy3} in their

pioneering work  en  the deuteron breakup  process  in (d, p) reactions.

(A) Method  of  pseudo-states`'

   In this method,  the Hamiltonian  hc is diagonalized on  a  basis of  a  finite number  of

normalizable  functions

Thus,

{qcim,i(r), i=1--Mi, ISk.},

g5ctm.i is taken to be

a5cim,i--2aci,tiqim,i,
      j

and  the aei,ii are  determined so  that the

     < diei,ilhcl ipci,J'>= E-ci,iaab'

ipci,i given  by (2'11) with  (2･13) satisfy

(2･13)

(2･14)

and

     <e5ct,ilipc'i;j>=8u'(E)i,u (2'15)

Then, ip"ci,i and  e-ct,i are  taken  to be thh wave  function and  the energy,  respectively,  of the

i-th discretized "state"
 of  channel  cl  which  is actually  a superposition  of  eigen-states  of

hc. The  basis set  of  diagonalization is chosen  in such  a way  that the set

     {ipci,i(4c), i--1"L'Mt, ISkm}

represents  the original  truncated space  of  (2'9) well,  simulates  the bound states  well  in
energy  and  wave  function, and  represents  the  continuum  states  well,  with  the EAci,i for them

properly  distributed within  the range  IO, ec,m].

   A  set of  Gaussian functions
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     qeim,i(r)=e-"Cir2iiKm(fi), (2'16)

is a  convenient  choice  for such  a basis and  is used  in the calculation  described in Chapter
V.`d} Other types of  functions such  as  Strumian  functions`a)'C} and  Laguerre polynomials

times an  exponentia14b>  have  alsio been used.

(B) Method  of  momentum  bins5'

   This method  is based on  the assumption  that the eigen-functions  dici(fe, Er) of  hc are

known  for all k in [O, kc,m], an  assumption  strictiy  valid  for a  deuteron, and  approximately

so  for c  for which  two-cluster mode]  is good.  The  interval [O, kc,m] is divided into a  finite

number  of  sub-intervals  [e, kiJ, [fei, k2], ･･', [len-i, len=kc,m] where  n=Mi.  Then,  the

continuous  states  within  the sub-interval  [kirri, ki] are  represented  by a  single  function
¢ ci,i(ec)  with  a  ipctm,i(r) derived from the ipcim(le, r) of  the continuous  states.  A  definition,

which  is often  used  in actual  calculations,  is

     g-5cim,!(r) =  
.LIf-l

 wc,(k)  eMScim(k, r)dk,  (2･17)

where  evei(le) is a  weight  function normalized  by

     .L[f-i,wgi(k)dle-i,
 (2･is)

If wci(k)  is taken  to be a  constant  within  the interval [ki-i, lei], (2･18) gives

              1

     wci(k)=  vZE;''

In either  case  the e5ci,i are  normalized  as

     < e5ct,il g6.i･"-> =:  6u･8iJ'･

It should  be noted  that the set  {ipci,i} diagonalizes lac in'the sense  that

     < ¢ ,i,ii  h.i g5ci･,j>= e-ct,i6tv6i,･,

where  EAci,i is the energy  of  the discretized state  dici,i, which  is given by

      EAti,i=(h2/2gerz){(lei+fei-i)2/4+(Aki)Z/12},

for (2'17) with  (2'19).
method  with  the  pseudo-states defined by (2･17).
   Sometimes, one  uses  the ipcim,i defined by

     ip"cini,i(r)= ipMctm(k(i), r)/sxtZEI',

where  le(i) is a  certain  representative  point  in the interval [leipi, fei]. In this

energy  eigen-value  for g5ctm,i is

      e-.i.i:=:h2le(i)2/21ii2

(2･19)

(2･20)

(2･21)

(2･22)

Hence, this method  can  also  be regarded  as  a  kind of  pseudo-state

(2･23)

case,  the

(2･24)
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and  the  normalization  is

     <gSctm,ilg6cvm'"'>=:=Ott'6mm'8(k(i)-k(i)), (2'25)

   In addition  to the discretized continuum  wave  functions, the bound state  eigen-

functions of  hc themselves are  taken for the  model  wave  functions, ipcn=: ¢cn  for n=1  
--

 N:,
to form  a  set  of  discretized model  wave  functions

     {di'h,t,i(ec), i--INNEi, IKIcm},

which  replaces  the continuous  set, (2･9),
   The  truncation and  discretization of  the breakup  states  of  cluster  c described above
leads to a  cerresponding  replacement  of  the continuous-channel  internal wave  functions

by those  of  discretized channels

     {dir(&)} -  {ipri(gr), iLTI'vNr}, (2'26)

where

     g6ri(er)=[g6ci.t((?c), 45c(ec)]A,", , (2'27)

is the internal wave  function of  the i-th discretized state  of  channel  r. They  diagonalize

hr=  hc+ hc

     <¢ Tilhc+  hc[ ip ">=  e- ri6ij', (2'28)

where

     erri 
--

 E"cta+  E-c ' (2'29)

and

     <ip- ri[ ip- n'>=  aiJ'J ･ (2 '30)

   The model  internal wave  functions thus introduced span  a functional sPace,  M,  which

is the model  space  of the CDCC  calculation.  All the subsequent  calculations  are  done in

this space.  A  model  wave  function <Pha is a projection  of  q  onto  M,  IPId==Pur, which  has
a  form-

     U'lf ='  PW=Z2  diri(gr, Rr) xnri(Rr),
               ri

which  replaces  (2･4), where

     ¢ ri('8r,
 Rr) ==  [ ipri(gr), iL' YZ,(Rr)]Jpt

and  the x" are  the corresponding  radial  functions.

2.3, 
`

℃onvergence"  of truncation and  discreti2ation

   A  tesit of  adequacy  of  the model  space  M  as  a

to see  whether  the calculation  is a convergent  ene

(2･31)

(2･32)

substitute  for the original  spqce F  is

 in the sense  that the quantities {Q}
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calculated  with  M  with  a specific model  Hamiltonian, HM,  and  by a  specific  procedure  of

calculation  does not  change  when  the limits of  the truncation, the lc,m, kc,m and  Ec,m, or  the

density of  the discretization is increased.6) If the convergence  is achieved,  M  is cleemed

adequate.  It should  be noted  that  the 
"convergence"

 is only  in the limited sense  as  stated

above  and  does not  necessarily  mean  a  convergence  in the wave  function, for example.  It
is, however, enough  for the purpose  of  the CDCC  calculation  as  stated  in g 1.

S3. ModelHamiltonian

   The effective  Hamiltonian,.HEff, for the original  fuRctional space  of  the  model,  F,

given by  (1･10) is an  extremely  complicated  rnany-body  operator  because of  the projection
operator  P and  the effective  interaction potential V5ff with  the complicated  second  term  on

the r.h.s. of  (1･11). In CDCC,  it is replaced  by  a  proper phenomenological  model

Hamiltonian, HM,  which  is physically  reasonable  and  yet simple  enough  for numerical
works.  In the present section,  a  general prescription for the replacement  is described and
its application  to some  special  examples  are  discussed.

3.1. General PrescriPtion for constracting  model  Hizmiltonians

   The  prescription  is basically to replace  the P and  likff in H6ff by some  reasonable,

simple,  phenomenological  operators,  while  keeping the total kinetic energy  operator  K
unchanged.  It has already  been discussed how'the projector P for the original  functional
space  of  the model,  F, spanned  by exact  internal wave  functions, {tor}, is replaced  by Pnt for
the space  F  spanned  by  the phenomenological model  internal wave  functions, {ipr}, and

eventually  by P  for the truncated and  discretized model  space,  M, spanned  by the

discretized internal wave  functions, {ipri}.
   Correspondingly, we  first replace  H6ff by a  phenomenological  effective  Hamiltonian
Mff given  by

Re,,= p-(K+ SJI,,,) i (3･1)

where  lx2]ff is a phenomenological  effective  potential which  replaces  l(,if. We  then define
the model  Hamiltonian  HM  by

U.-P(K+  ltl},,)P, (3･2)

simply  replacing  p in Heff by  P. This is reasonable  because the same  model  internal
Hamiltonians are  used  in F  and  M  as  discussed in g 2.

   The  replacement  of  %ff must  satisfy  two  obvious  conditions.  One condition  is that

Vbft be phenomenologically reasonable  and  at  the  sarne  time  simple  enough  to be used  in

actual  CDCC  calculations.  The･other condition  is that the replacement  be consistent  with

that  of  the projection  operator  described above  since  the latter involves the replacement

of  internal Hamiltonians which  include some  parts of  the interaction potential. ･

   Bearing these conditions  in mind,  we  take' ltl,fi to be such  an  operator  that it takes a
form

I12,ff= vefrf) iiii Ill,+ Z/1:+ lf, (3･3)
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in every  two-cluster channel  7 in the model,  where  lil and  l/Z are  phenomenological

potentials of  interaction within  clusters  c and  C, respectively,  and  V  is that between c and

C. Note that the original  interaction potentia], V, has this property, i.e., it takes  a  form

     V=-r V(r)iii l!1+ Vl]+ X, (3d4)

in every  two-cluster  channel  r. However,  Itkff does not  have  this property.

   As is well  known, the total kinetic energy  K' can  also  be written  in the form
                                                                  '

     K==  Kl+Kb+Kr  (3'5)

in channel  7 where  KE  and  KL  are  the kinetic energy  of  internal motion  of  c  and  C,
respectively,  and  Kr  is that of  relative  motion  between c and  C, The center-of-mass  kinetic

energy  of  the  total system,  Kb, is set  to zero  in (3'5). Equations (3･3) and  (3･5) lead to the

form  of  the total Hamiltonian, H=K+  V, in channel  r

     U-H{r)!K+  V(r)=K6+  Vb+Kl,+  Vt+K}+  U, (3･6)

which  can  also  be written  as

     H(r) -:  h.+h,+K}+  V}, (3･7)

where

     h.-K}+l!1 and  hc=KL+lfo (3･8)

are  the internal Hamiltonians of  c and  C, respectively.

   Upon  inserting (3'3) and  (3･5) into (3･1), one  gets a form,  HLIn, which  HEfi takes  in

channel  r which  is completely  parallel to (3･7) ･

     REff- R15R !i  5( h-,t h-c+K}+  X) p-, (3･9)

where

     hMe==Kb+M  and  h-c=K6+Vl] (3'10)

are  the  phenomenological  internal Hamiltonians for c and  C, respectively.

   Now,  one  can  satisfy  the two  conditions  for the replacement  of  %ff by %ff stated
earlier.  We  take ixZ, li?] and  U  to be reasonable  phenomenological  substitutes  of  the

corresponding  parts of  the original  potential, 1'2, lil] and  U, respectively,  which  include

the effect  of  the excluded  channels,  and  yet simple  enough  for numerical  works  in the

CDCC  calculation.  The consistency  of  lxkff with  the projection operator  P can  be satisfied

by taking  l,2 and  VZ such  that the model  internal Hamiltonians  h are  the same  as  those

which  define F, and  hence P, The  model  Hamiltonian, llM, is given by ]LIEff  with  P
replaced  by P, (3･2). Its form in channel  r is given, from (3･9), by

     HM=HV'iP(  hc+  hc+  K)+  V})P, (3'11)

3.2. Apt)lic' ation  to special cczses

   Actual choice  of  l/kff, and  consequently  of  rafi and  ffha, is done basically case  by case,

                                                         NII-Electronic  Mbrary  
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depending much  on  the  reaction  mechanism  assumed,  i.e., F. We  give  some  examples  of

practical interest in the following.

(A) One channel  model

   If one  calculates  elastic  scattering  in a  channel  ev with  particles a and  A, and  assumes

that no  direct process through  other  channels.  is important,  F  includes only  channel  a.

Then, it is clear  that Vkff given  by  (1'11) is just the Feshbach  generalized  optical  potential
for channel  ev. Then,  it is reasonable  to replace  it by  a  phenomenalogical  optical  potential,
UltOP' at  the energy  Ea=E-Ea.  Hence,

      %ff== UaOP'. (3'12)

Then,

     Hbff=P(ha+JzA+Klr+UaOPT)P.  (3'13)

Since P=P  in this case,  because there  is only  one  channel,

     llM=P(ha+hA+Kh+UaOPT)P==:Hbff.  (3'14)

(B) Three-body  model  Hamiltonian

   Let us  consider  a  reaction  induced by a  loosely bound  projectile a  impinging upon  a

nucleus  A. We  consider  the case  in which  (a) no  rearrangement  process is important, (b)
A  remains  in the ground  state,  and  (c) a  can  break up  into two  fragments, 1 and  2, each

remaining  in the ground  state.  Then,  only  elastic  scattering  and  elastic  breakup of  a  are

the important processes. Generalization to include excited  bound  states  of  A  is straight-

forward.

   An  obviously  appropriate  model  of  reaction  mechanism  in this case  would  be multi-
step  processes within  the channels  of  three bound particles, 1, 2 and  A, interacting with

each  other.  This is called  a  three-body rnodel.  The  internal wave  functions of  the

channels  define the functional space  of  the model  F.

    Following the general  prescription, we  take  the phenomenological  effective

Hamiltonian  to be of  a  form

     Ueff= P-( h-a+ h-A+Klr+  Vlt) P-, (3'15)

where  P is the projector onto  the space  F  spanned  by  the eigen-functions  of  ha and  hA,

of  which  ha has a  form

      ha== K12+ va2+ hi+h2,  (3'16)

where  Ki2 and  M2 are  the kinetic and  model  potential energy  operators  of relative  motion

between  1 and  2, respectively,  and  hi and  h2 are  the model  internal Hamiltonians  of1  and

2, respectively.

    Now,  we  choose  Vh. One  possible choice5e)  is K=  Z  Vh･ where  Z･j is an  effective
                                              iEia,J'EiA

two-nucleon  potential given by, say,  the G-matrix theory. Another reasonable  choice  is

      X=  Z.+  n., 
'
 (3･17)
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where  VIA and  nA  are  potentials of  interaction of  1 and  2 with  A, respectively,  It is not

altogether  clear  in our  approach  what  to take  for VIA and  I'}A. A  reasonable  choice  would

be the optical  potentials for the pairs (1, A) and  (2, A). Optical potentials, however, depend
on  energy,  and  the energies  of  1 and  2 relative  to A  are  not  well  defined because the two
fragments exchange  energies  through  mutual  interaction, T712. Furthermore, if the Y, and
hence Heff, depended on  the energy  of  the individual fragments, one  would  have to deal
with  a  very  dirncult problem  of  solving  a Schroedinger equation  with  a Hamiltonian which
depends on  the energy  of  subsystems.  A  theoretical discussion of  the nature  of  the V  has

been given elsewhere,')  and  we  do not  discuss it any  further here.

   In the subsequent  chapters  except  Chapter VI, the V  are  taken to be the optical

potentials URffT and  tuAPT at  the most  probable energies  of  relative  motion  between 1 and
A, and  2 and  A, EiA and  E2A, respectively.  Thus,

m,,=p(h.+h.+Kh+UiO.PT(E,.) +  USXPT(E,.))P･ (3･18)

This  is the  phenomenological  effective  Hamiltonian  of  the three-body  model  which  is used

in actual  calculations.  If all the breakup states  are  included in F, P commutes  with  the

operators  inside the parentheses, and  so  may  be omitted  with  the understanding  that H6ff
operates  onto  wave  functions within  F.

   The three-body character  of  Hhff becomes  even  rnore  apparent  if one  writes  it in the

form

,IZ,,,=P-(  h-. +  hnt, +  hM, +  K,,+  Kh  +  U,O.PT+ UEIT+ K,)p. (3･19)

If Ais  much  heavier than  1

lgz+KbxKi.+Kh.,

and  2,

(3･20)

where  KiA and  KhA

Hhff as

are  the kinetic energies  of  1

175rf e  i5'( h-A +  h-i +  h-2 -- KlA+  KliA+ UPAPT

and  2 relative  to A, one  can

+  ew,P'r+ K,)P.

approxlmate

(3･21)

This  form of  H"ff is sometimes  convenient  for theoretical discussions.')

   Finally, the model  Hamiltonian  HM  is obtairied  from  "UEff  by the replacement  of  the P
by  the P,

H.=P(ha+h.+Kh+U?iT(EIA)+  ew.PT(E,.))P (3･22)'

or

H.  ==  P( h.+  h,+  h,+1",+  Kh+  UPVT+  useT+  U,)P. (3･23)

   An  important example  of  three-body Hamiltonian  is that for deuteron induced reac-

tions in which  on]y  elastic  scattering  and  elastic  breakup process are  important. In that
case,  the phenomenological effective  Hamiltonian  discussed above  is given by

A6,,=P(h,+ h.t  Kh.+  CISk'T+ ewK'r)p-, (3･24)
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where

     hrmd=Kbn+ tJl}n, ' (3'25)

and  the nucleon  optical  potentials, USft' and  URXT, are  those  at  half the in'cident deuteron

energy,  Ed, EpA=EnA=Ecl/2, Again, (3･24) can  be rewritten  as

     ,Eleff-  iM)(hrmA H- Kl,.+KhA+ U51eT+ U9ftT+ tJl,.) prm, (3･26)

which  may  be approximated  for A  much  heavier than  the nucleons  as

     HEff :: P( JzA+KbA+KhA+  CISffT+ URST+ l,},n)p. (3･27)

Finally, the model  Hamiltonian  is given by Heff with  P replaced  by P,

     HM  ==  P( hd+  hA+KhA+  (LISET+ (IE)ftT)P (3'28)

or

     HM  ==  P( hA+Kbn+KhA+  Ui?ffT- URffT+ I'l]n)P, (3'29)

which  for A  much  heavier than  the nucleons  can  be approximated  as

     ffMx,P(hA+KbA+KA+USA'T+U2ffT+  V3.)P. '
 (3･30)

The  optical  potentials are  those  at  EpA==EnA=Ed12.

   The Uleff given by (3･18) and  (3･24) and  the corresponding  HM  are  used  in the

calculations  described in Chapters III5C) and  IV.5d}

(C) Rearrangement  process

   If rearrangement  processes  are  important in a  reaction,  due to strong  coupling  of  the

rearranged  channels  with  the incident channei,  F  must  include such  channels.  One,
therefore, has to deal with  more  than  one  partitions of  the system.  Let us  take  an  example

of  just two  partitions (a, A)  and  (b, B) with  various  internal states.  We  denote the
channels  with  (a, A)  by ev and  these with  (b, B) by B. We  assume  that F  includes breakup
states  of  cluster  a, while,  all the other  clusters  are  in bound  states.

   According  to our  general  prescription, the phenomenological  effective  Hamiltonian,

Mff, in this case  takes two  different forms, ntfaf) and  ]ErEff  in channels  tr and  B, respectively.
For  channels  cr with  breakup states  of  a, 

'it
 is appropriate  to take  a  three-body  model

Hamiltonian  ArUff(a} of  the form  (3･18) or  
'<3･19).

 For  channels  B with  only  bburid states,

     Mft)-P-(hL,+Kb,+Vl,,)PL, 
･
 , - 

'
 (3･31)

is appropriate.  The  set  {HSSf), nte?} defines Ilhff, and  hence HM.

   An  example  of  this situation  is a  (d, p) reaction,

     A+d(p+n)->B(A+n)+p

with  a  strong  coupling  of  the proton channel  with  the deuteron channels  including breakup
states.  We  take  Hleff in this case  to be the three-body  model  Hamiltonian  ef  (3･24) in the
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 deuteron channels

      H2!9 :-  i5'( h-,+ h-. +  KU.+  CIS]ff'(EpA -=  Ed/2)+  Ul98'( E..=  Ed/2)) p- (3･32)

with

      h-d=ISn+ nn, (3'33)

 and  in the proton  channel

      ntR- P-( h-,+Kb,+ n,) P-. (3･34)

 Since B  consists  of  A  and  n, the model  internal Hamiltonian  hB can  be written  in the form

      h-,- h-.+Kh.+ Vl,., (3･3s)

 where  l/ZA is a model  interaction potential between  n  and  A. Likewise  it is reasonable  to

 assume  that ixl,B is of  the form

      %B= %At %n, (3'36)

 and  take  X,n to be the same  as  the one  in h`d of  (3'33). Putting (3･35) and  (3･36) into (3･34)
 one  has

      M?? -- p-( hrrA+Kl,B+KhA+ Vl,A+ Vl,A+ tJl,.) p-, (3･37)

 In the extreme  single  particle mode],  VtliA is a  single  particle potential,t

      VliA= ClhA(rnA). (3'38)

 One could  also  take likA to be an  optical  potential

      Vl,.=== Ul?RT, (3･39)

 at the outgoing  proton  energy.  Then, (3'37) becomes

      ll71!R=p(h.+Ki,,+ Kh.+  U8KT+ UhA+ }i5.)p. (3･4O)

 Again, the model  Hamiltonian, HM,  is given  by Hdff of  (3'32) and  (3･37) or  (3･40) with  the

 P replaced  by  the  P.

    Now,  it is noticed  that the forms  of  H21R given by  (3･37) and  (3･40) are  quite similar

 to that  of  REpt in the approximation  (3'-27)

      i71SXI uII'(  hM.'+Kh.+KbA+ Ul?RT+ Ul9R'+ l21,.)p. (3-41)

 In fact, the right-hand  side  of  (3･40) is the same  as  that of  (3･41) for a  heavy  A  for which

 KbB \KiiA  if ClhA is changed  to URXT. This is the reason  why  sometimes  ntff and  ntR are
 regarded  as  a  same  three-body  Hamiltonian  with  a  neutron-nucleus  potential which

 depends on  the neutron  energy,  an  optical  potential for a neutron  in the continuum  and  a

 real  binding potential for a  neutron  in a  bound  state.

    The  form  of  (3･41), however, is only  an  approximate  one,  correct  only  for heavy  A.

NII-Electronic  
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Furthermore, a  three-body  Hamiltonian  which  depends on  the energy  of  a  subsystem,  the

neutron,  seems  likely to lead to the same  kind of  diraculty as  mentioned  in the case  of  the

nucleon  optical  potentials in the deuteron breakup channels,  There is no  such  dithculty
with  the  general  prescription  ef  the present paper for constructing  Hbff.

   The  Mff given  by (3･32) and  (3･34) is the one  used  in the calculations  described in
Chapter V.4d)

S4. Model  Schroedinger  equation  and  boundary condition

   We  are  now  in the position to determine the model  wave  function given by

     gPlfEPIP'=Z2 ¢ ri(6r,  Rr)xnri(Rr), (4'1)
               ri

by solving  the model  Schroedinger equation

     H.gPl,-Egeil,, (4･2)

which  is equivalent  to

     (Ori(4, Rr)IHM-EIZ ¢ re<8pt,  Rp)xAyi(Rr)>:=O, (4'3)
                      re-

for all the ri in M,  where  the left parenthesis  signifies  the integration over  the coordinates

in ¢ ri  only.  If one  uses  (3･11), (2･27) and  (2-30), one  can  rewrite  (4･3) as

     (K}+ U7i-Eri) x-ri=-  Z(diri1H-E ¢
"'ve'

 x"'"j>, (4'4)
                        Pijtri

where

     Uri --<diril M1 diri> (4'5)

and

     Eri --E-  E-ri, (4'6)

where  eLri is the internal energy  associated  with  diri, given by (2'29). Equations (4`3) and

(4'4) are  general  forms of  the coupled  equations  of  CDCC  for the unknown  radial  functions
of  relative  motion,  xAri(Rr). The  quantity

     F(7i, rw-)i(dirilHmE  ¢ ve')
 (4'7)

is called  the form  factor of  coupling  between  channels  7i and  pij'. The  finiteness of  the

dimension of  M  guarantees  a  unique  solution  of  (4･2) through (4･4).
   In the case  of  the three-body model  with  HM  given  by (3･22) discussed in S 3, (4･4)
takes  the forrn

     (Kd+ Uhi-Eai) xnai 
T-

 
rm

 Z(Oaii UPAPT(EiA)+ US8T(E2A)1¢ aj),  (4'8)
                        jti

because of  (2･28) and  (2･3e).

NII-Electronic  
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   In the case  of  coupled  rearranged  channels,  discussed in g 3, situation  is somewhat

complicated  because of  the non-orthogonality  of  rearranged  channels.  The form  factor of

coupling  between rearranged  channels,  a  and  3

     F(a, B)=(dialHM-El diB), (4'9)

is now  an  integral operator  acting  on  xfia because Ra is a function of  4fi. There is an
ambiguity  as  to which  of the forrns of  HM  to take, Hff) or  Hff). In principle, HM  ought  to

be so  chosen  that either  form  gives the  same  result.  In practice, however, this may  not

necessarily  be the case.  If we  take Uff' of  the form (3･29), then,

     F( ev, B)::::(diaiKis+ Vl2 rr Epr¢ p), (4'10)

            -FhB+AJhfi,  (4･11)

where

ErB=( dia1 tJl? 
-

 Uhl ¢ p) (4･12)

and

     Mfi=(OalK)?+Uh-EplOfi), 

'
 (4'13)

where  Uh  is an  auxiliary  potential which  is a function of  Rp, introduced to reduce  Vb to
the 

"residual
 interaction", Iia,- Uh. ErB is called  the interaction term, and  Ms  the non-

orthogonality  term  of  the coupling  form  factor. AJhB would  be zero  if channels  a  and  B
were  orthogonal  to each  other,  As  the operator  in (4･12) shows,  it has a long range  which

makes  the calculation  rather  complicated.  We  do  not  go into any  furthef discussion of  the

subject,  and  refer  the reader  to the papers  of  Ref. 8).

   The  boundary condition  for the model  wave  function is assumed  to be that xA7i(Rr)

have the same  asymptotic  form  as  that of  xrmr(Rr) in P W  which  corresponds  to the energy

of  relative  motion  Eri. For  a  reaction  initiated in channel  a, the asymptotic  form  of  the

x-r is given by

     Rx-7(R)'vu;E4(Pri, R)6ar-S-ra(Pri)uSX(Ai, R), (R"OO) (4'14)

if channel  7 is open  at  Eri, and

     RK-r(R)-v VZ,r(Xri, R), (R'oo) (4'15)

if channel  r is closed  at  Eri, where  Pri=(2"rEn/h2)'i2 for Eri >-O  and  xn--(-2p,E,i/h2)it2

for Eri<-O where  ptr is the reduced  mass  in channel  r. SMra(Ai) is the model  S-matrix
element  of  process, a-7  at  wave  number  Pri, and  the u(

± )
 are  the usual  outgoing  and

incoming Coulomb wave  functions with  the asymptotic  forms

uS;(Ai,  R) be exp[ ± i(PriR m  rpriln 2P}･iR 
-L7n/2)]/VIJ;r;, (4･16)

where  vri=hLi!ptr,  and  rpri=ZdZde2/hv7i is the Sommerfeld parameter.
   Correspondingly, the asymptotic  form of  zA7i(R) is set to
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Rx-ri(R)'vu;E3(Pri, R)aar-Sri,au;R(Pri, I?), (R"OO) (4･17)

for Eri ->e, and

RX"ri(R)"' VK,ri(Xi, R), (R'oo) (4･18)

for Eri -< O.

   The  relation  between  Sri,a and  Sra is rather  involved. It is not  always  reasonable  to

associate  S7i,a direct]y to SMra(Pn) because ¢ w･ with  ili may  contain  a  component  of

ipr(k, &) with  k in [ki-i, ki], in general. In the case  of  discretization by the momentum-bin

method  with  constant  weight  functions, (2･19), however, the relation  is direct

Srra(Pri) ==  Sirt,a/VZ;rl-. (4･19)

   In actual  numerical  calculations,  the  boundary  condition  (4･16) or  (4･17) is set  at  a

large but finite R7, say  R7.m. In order  for a  xAri(Rr) be close  to the xrr(R,) which  it is

supposed  to represent,  it is necessary  that R7.rn be so  large that the asymptotic  form of
(4･14) and  (4･15) are  at  least approximately  valid  for the x-r(Rr). However,  it must  not  be

so  large as  to jeopardize the l truncation, because the coupling  between  breakup  channels

of  high l become  increasingly important as  Rr  becomes  large. It is an  assumption  of

CDCC  that a  set  of  the Rr,m can  be found in such  a way  as  to satisfy  the both requirements.

   The  boundary  condition  described above  seems  to be the most  reasonab]e  one  under

this assumption.  It should  be borne in mind,  however, that the model  wave  function, {Pha,
thus obtained  has three-body breakup parts with  wrong  asymptotic  forms. In fact, it has

been  shown9)  that in the asYmptotic  region  of  three-body  breakup  channels  7, UJha decreases
as  R-3  rather  than  Rrm5t2, as  in the correct  asymptotic  form, where  R  is the hyperradius,

Rt(R,2+ri22)i'2. Hence, <Vlf cannot  be equal  to Pur or  Per in the entire  configuration

space.  This would  be catastrophic  from  the point of  view  of  approximating  the  wave

function. This  is, however, not  the case  for CDCC  because its aim  is to calculate  some

specific  physical quantities rather  than  wave  function : The  asymptotic  forrp of  the wave

funbtion is often  irrelevant, depending on  the quantities to be calculated.  This point is

discussed in the next  section.

g 5. Calculation of  physical  quantities

   The model  wave  function, IP)f, found in ghe way  described in the preceding  sections  is

used  for the calculation  of  the desired physical quantities {Q}, with  the aid  of  model

operators  {Q} corresponding  to {Q} in general. However,  the pr,ocedure of  calculation  is
by no  means  unique.  We  explain  this below  for the case  of'calculation  of  transition matrix

elements.

   Suppose, for example,  we  wish  to calculate  7)ea(Re) of  a reaction  with  the initial and

final channels  a  and  B, respectively  for the final momentum  of  relative  motion  IZe. One  can

calculate  it from  the S-matrix elements  defined in the previous  section,  through  calcula-

tion of  SMfia(IZe). The  procedure  of  calculating  Spa(lle) from  the S･, however, depends on  the
method  of  discretization of  the continuum.  For  example,  if it is done by the momentum-

bin method  with  constant  weight  functions, (2'19), Sfia(Ilg) may  be obtained  by an  inter-



Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOffice,Progressof  TheoreticalPhysics

28 M,  Kawai

polation  of  the S-fii,a/VZpE;, which  can  be identified with  S-fiev(Rei) as  (4･19) shows,  for a  A
between  the jPlei.  This is actually  the procedure  that is used  in Chapters III,5e) IV5d) and

VI.se)

   One can,  however, calculate  7)ga also  from the well-known  integral f6rmula in the post
form

7}i.=<ei'Ze'R" ･ ipBI II,1 {Vll')>, (5･1)

substituting  the wave  functions and  the potential

z.-<eitte'Rs.dip1 nl ULel)>

with  corresponding  modelones

(5･2)

or  from  the

[Z}a=

formula corresponding  to

< gP)£tE'1Vh eiPa'Ra.  g5a>)

the priorform  of  7'}ia

(5-3)

where  U])£fts) has the same  s ¢ attering  state  boundary condition  as  {V15"), and  ZP}Etg) as  4]}5-}.
Note  that the model  operators,  i.e., the barred potentials are  used  in (5･2) and  (5･3), hence

the bar in 7lea.

   Still another  procedure  is to calculate  SBa by a  variational  method  such  as  the

Coupled-Channel Variational Method (CCVM) discussed in Chapter V,`d) using  IPIe2> and

ni) as  trial functions. These and  other  possible procedures give 7)?a which  differ from
each  other  in general, in the value  and  in the expected  accuracy.  ,It is important that the

procedure  rnatches  well  with  the model  space  and  the model  Hamiltonian  to give  optimal

results.  In fact, the model  space,  the model  Hamiltonian, and  the calculational  procedure

should  be taken  as  a  set, as  is done in the previous sections.

   Let us  compare  in more  detail the two  ca]culational  procedures  given above,  one  from

the  S, and  the  other  from  the integral formulae. In order  to fix the ideas, let us  consider

the T-matrix elements  of  deuteron induced reactions,  (d,d), (d,p) and  (d,pn). The  nucleons

are  assumed  to be spinless.

   The  calculation  from  the S relies  on  the model  wave  function at  the boundary  of  the

region  in which  actual  CDCC  calculations  are  made.  Errors in the calculated  T-matrix

elements  are  directly proportional to the error  in IP)f there. In order  to obtain  Tbn,d for

continuous  momenta  of  the outgoing  p and  n, one  calculates  the Sd*d(1b*) for the continu-

ous  ]Ph*  from  the discrete S, although  this procedure  js not  unique  as  already  mentioned.

   The moclel  T-matrix  elements  in the integral forms  are,  for example,

lil,,--

7i,,==

<eiled'RdgSd(rpn) diA(6A)l USIeT

<x-p<-)(RpB)¢ B(rnA,  41A

(RpA) +  UXIffT(RnA)

)1%n(rpn)+(nA-U;?8T

gp}eo>,

(RpB))gplEth)>,

(5･4)

(5･5)

     171}n,d=<eikp''peikn'rn ¢
-A(eA)

 US)"+ UPfiT+ Vl]n1 IVI£tt])>, (5'6)

where  did, eA, and  diB are  the bound state  wave  functions of  deuteron, nucleus  A, and

nucleus  B, respectively,  p-cpC-) is the distortecl wave  in the auxiliary  potential CJI?ST which  is

taken  to be the  proton-B  optical  potential at  the  outgoing  proton energy.  The term  ( I{)A
-

 Ul9ff') on  the r.h,s.  of  (5･5) is eventually  neglected,  as  in usual  DWBA  calculations.

   It is noted  that the  integrands of  (5'4) and  (5-5) are  significant  only  within  a  limited
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region  of  the configuration  space,  say  ri,nK iim and  RclgRm, because of  the finite range  of

the potentials and  the bound  state  wave  functions. Hence, 7}dd and  7'},d are  affected  only

by the value  of IV)£tl) within  this region.  This has a  great  advantage  because it allows  a

truncation  of  l with  a  relatively  small  la since  in the limited region,  RdgRm,  coupling  of  ,

d" states  with  high l turns out  to be small,  so  that multi-step  processes through them  are

negligible  in the reaction  starting  from  the deuteron ground  state  channel.

   Now,  it is easy  to see  that 71icl and  7},d calculated  by  the two  procedures  are  actually

the.same if the same  model  wave  function is used.  There is, however, an  advantage  of

great  practical importance of  the  integral formula for Tbd over  the calculation  from the

S when  the coupling  of  the proton  channel  with  the deuteron channels  is weak.  In that

case,  one  can  neglect  the p channel  in the CDCC  calculation  of gP)£tk), and  use  that gV}eO in

(5･5) to calculate  7},d. In the  S procedure, the same  model  space  would  obviously  give a

null  7'bd sinCe  the model  wave  function is zero  in the proton  channel.

   The calculation  of  7-bn,d is subtle,  because there is no  bound state  wave  function which

limits the range  of  the final state  interaction. As  mentioned  in S4, <Vld has a  wrong

asymptotic  form  in the space  of  breakup  channels.  This implies that  a  CDCC  calculation

in a  finite region  beunded by RdKJ?d,m contains  an  error  in the calculated  7})n,d which

depends on  Rd,rn. This is true both in the calculation  from the S- and  that from the integral
formula. As  long as  the  l truncation  is valid,  the  error  is a decreasing function of  Rd.m.
One, therefore, takes as  large Rd,m as  possible to minimize  the error.  However,  one  cannot

make  the error  arbitrarily  small  by taking Rd,m arbitrarily  large, because that would  make

the  l truncation  inconsistent since  the coupling  of  channels  with  high l becomes  increas-

ingly important as  Rci becomes  large. One, therefore, would  have  to contrive  other

methods,  in order  to correct  for the error,

    There  are  advantages  in the integral formula over  the S- procedure. The  interpolation

for continuous  momenta,  k and  A*, is automatically  done  through  the momenta  in the final

state  wave  functions in the integral. Also, it contains  components  of  Tbn,d with  the l not

included in the model  space,  i.e., l>  ld,m, because the integral yields such  components  even

if LPil}k} does not  c'ontain  them.  A  great  disadvantage of  the integral formula, however, is

the extra  integral that has to be carried  out  after  getting W}£tk) which  is, of  course,

unnecessary  in the S procedure. For  this reason,  the S  procedure  has been used  in

practice  as  reviewed  in Chapter  III.5C)

    Finally, the calculated  results  are  compared  with  experimental  data. The  quality  of

agreement  between them  is interpreted as  the measure  of  how  real  the model  of  reaction

mechanism,  etc,, are,  If it is insuficient, improvement  of  the model  has to be looked for.
If the agreement  is satisfactory,  the model  is deemed  realistic  and  the  model  wave  function

<Pha is assumed  to contain  all  the rnain  important information on  the wave  function <P'

relevant  to the calculated  quantities {Q}, especially  detailed information on  the reaction

mechanism  relevant  to {Q}, The  best hope  is that  IPha is a  good  approximation  to P{if, at

least within  the limited region  of  the configuration  space  relevant  to the calculation  of  {Q},
although  this cannot  be true for the  entire  configuration  space  as  already  mentioned.  This
is, however, prebably too  optimistic  a  hope in general because of  the phenomenological
steps  involved in the calculation.  

'
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g6. Summary

    Basic ideas and  assumptions  of  CDCC  are  reviewed.  The  method  is characterized  as

a phenomenological  method  of  calculating  some  specific  physical  quantities in a  reaction,

rather  than  a  method  of  approximately  solving  a Schroedinger equation  with  a given

(model) Hamiltonian. The  steps  Qf actual  CDCC  calculations  are  described which  are

summarized  as  follows.

   There  are  some  specific  physical quantities {Q} in a  specific  reaction  to be calculated.

A  model  reaction  mechanism  of  some  multi-step  direct processes  is assumed  with  a

procedure of  the calculation  of  {Q} fixed, 
'The

 model  is specified  by a  set of  channels,

including some  continuous  channels  of  broken up  particles, among  which  the  muiti-step

processes  take  place, The  channel  wave  functions define a  functiona] space  of  the model,

F, For the sake  of  feasibility of  actual  calculations,  the internal wave  functions of  the

channels  in F  are  substituted  by phenomeno]ogical  model  wave  functions, which  define a

phenomenological  substitute,  F, for F. Then, the continuum  channels  in F  are  truncated

and  discretized into a  finite number  of  
"channels",

 which  define the model  space  of  the

CDCC  calculation,  M.  Two  methods  of  discretization are  described : the method  of

pseudo-states  and  the  method  of  momentum-bins,  Adequacy  of  the truncation  and

discretization is tested by the  
"convergence"

 of  the calculated  quantities.

   A  general prescription for constructing  the model  Hamiltonian  of  a  CDCC  calculation

is given. One  starts  from  the Feshbach  effective  Hamiltonian  Hbff for the space  F. One

rep]aces  the effective  interaction potential, It'eff, in Haff by  a  phenomenological  one,  Veff, to

define a  phenomenological effective  Hami]tonian Hl}ff which  is consistent  with  the space  F.

One  then  defines the model  Hamiltonian HM  by simply  replacing  P, the projection  operator

onto  F, in lllbff by P, that onto  M.  Application to a one-channel  mode]  for elastic

scattering,  a  three-body model  for processes  involving breakup of  a  projectile into two
fragments, and  that with  a  coupling  of  rearrangement  channels  are  discussed, with

examples  of  (d, d), (d, pn) and  (d, p) as  special  cases.

   The  model  Schroedinger equation  with  HM  is solved  for a model  wave  function gVha,

A  set  of  boundary conditions  is set at  the boundary of  a  finite region  of  the configuration

space  which  is discussed in some  detail. .

   Finally, the desired quantities {Q} are  calculated  with  the model  wave  function by
some  specific  procedures associated  with  the model.  The reality  of  the model  is judged by
the quality  of  agreement  of  the calculated  results  with  experimental  data. If it is good,  the

model  is deemed  realistic, and  then  the model  wave  function UJha is assumed  to contain  all

the main  important information on  the wave  function <if relevant  to the  quantities {Q}, in
particular the reaction  mechanism  involved.

   Justification of  CDCC  has so  far been empirical,  relying  almost  entirely  on  the
intuitive plausibility and  agreement  with  experimental  data. Theoretical investigation of

the validity  of  CDCC  is complicated  by the  fact that CDCC  is not  simply  a  mathematical

method  of  approximately  solving  a  Schroedinger equation  with  a  given  Hamiltonian, as
clarified  by  the  summary  given  above.  It must  eventually  include justification of  various

phenomenological  steps  as  well.  However,  even  an  examination  of  the effect  of  the

truncatien and  discretization of  the continuum  channels  on  the wave  function of  a three-

body mode]  effective  Harniltonian, Heff, would  be very  instructive as  a first step  of  such

NII-Electronic  
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investigation. In view  of  the remarkable  success  of  CDCC  as  a  phenomenological  theory,

clarification  of  its theoretical foundation is highly desirabie in any  case.
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