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   Solutions for the equations  of the Kadomtsev-Petviashvili hierarchy are  given  in terms  of

Wronskian,  The  two-dimensional  Toda  lattice equution  and  the two-dimensional  Toda
molecule  equation  are  investigated and  their sol"tions  are  expressed  in the form of  two-
directional Wronskian  and  double Wronskian. These  solutions  have  common  structure  so

that we  can  construct  systems  of these equations  and  their Wronskian  solutions.

                            gl. IntrodmaetiQn

    In recent  twenty  years many  investigations have  been done in the  field of  soliton

theory  and  various  nonlinear  partial differential equations  with  soliton  solutions  have
been found, including the  Korteweg-de  Vries (KdV) equation,  the Kadomtsev-
Petviashvili (KP) equation,  the Boussinesq equation,  the nonlinear  SchrOdinger (NLS)
equation  and  so  on,  It has also  been shown  that there is a class  of  soliton  equations

with  singular  integral terms  such  as  the Benjamin-Ono (BO) equation,  the inter-
mediate  long wave  (ILW) equation  and  so  on, Besides such  continuous  systems,

there also  exist  nonlinear  discrete systems  with  soliton  solutiens  such  as  the Toda
lattice.

   There  are  several  ways  to get soliton  solutions  for these equations.  For example
in the  method  of  the inverse scattering  transformation, soliton  solutions  are  associat-

ed  with  the discrete spectra  of  the scatterirrg  operator  and  may  be written  in deter-
minant  form. In the direct method,  they are  obtained  by a  simple  perturbational
technique  and  represented  as  poiynornials in exponentials.  The  Bticklund transfor-
mation  (BT) gives a  way  of  constructing  IV+1-soliton solution  from N-soliton solu-
tion,

   A  simple  and  useful  expression  of  these solutions  may  be the one  in terms  of

Wronskian.  The Wronskian representation  of  the solutions  was  first given for the
KdV  and  modified  KdV  equations.')  This  technique  has been developed by Freeman
and  Nimmo2)rvS} for other  soliton  equations  such  as the KP,  Boussinesq, NLS  and

Davey-Stewartson (DS) equations.  In this expression  of the solutions,  these non-

linear equations  are  derived from  the Laplace expansion  of  the determinants which
are  equal  to zero.

   The  general  theory of  T function has been developed by Sato6) and  it has been
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shown  that a  hierarchy of  equations  (KP hierarchy), all of  which  have  cornmon

solutions,  can  be obtained  by introducing infinitely many  independent variables.  In

the Sato theory, the equations  of  the KP  hierarchy are  nothing  but the Plttcker

relations  (PRs) and  their solutions  are  expressed  with  T  functions, The  simplest

example  of  the equation  of  the KP  hierarehy is the  KP  equation  itseiE The  two-

dimensional Toda  lattice (2DTL) equation  also  belongs to the extension  of  the KP

hierarchy.7),8)

   In this paper  the Wronskian technique for the KP  hierarchy is explained  in the

case  of  the KP  equation  as  an  example  and  the N-soliton･ solution  is given in terms  of

the Wronskian.  We  also  present  solutions  of  the 2DTL  equation  and  the two-

dimensiona] Teda  molecule  (2DTM) equation  in the form of  two-directional  Wrons-

kians which  are  determinants having Wronskian  properties  into two  directions.9) We

shall  see  that  the structures  of  the solutions  for these two  types of  the Toda  equations

are  quite different. It is shown  that the solution  of the 2DTM  equation  can  also  be

represented  in terms of  the double Wronskian.  Then  we  discuss about  the

correspondence  between  the two-directional  Wronskian  and  double Wronskian  solu-

tions of  the 2DTM  equation,

    It is possible to construct  coupled  systems  of these equations  satisfied  by the same

Wronskian  using  the fact that the solutions  of  the KP  equation  (or other  equations  of

the KP  hierarchy) and  those of  the Toda  equations  have  common  Wrenskian struc-

ture. Various nonlinear  evolution  equations  can  be derived from these systems  of  the

KP  and  Toda  equations  by suitable  variable  transformations. As  such  examples  the

DS  and  NLS  equations  are  briefly discussed.

S 2. EquatEoens of  tlae KPlaierarciny and  tkeir Wromskiam  sogutions

   As an  example  of  equation  of  the KP  hierarchy, we  consider  the KP  equation,

     (utm"32-uux-'llruxxx).-ittrv=--o, (2"o

where  the subscripts  indicate the partial differentiations with  respect  to the indicated

variables.  Equation (2･1) inay  be written  in a  bilinear form,

     (Dx`-4DxDt-+3Dy2)r･r=･=-:O, (2`2)

where  u=(2  log T)xx  and  D  is the bilinear differential operator  defined by

     D.4fog;(  £ --D-2-i)`f(x)g(xf) 
.,=.

 ,

     D.D,fhg=-(-oa. -  bll,)( oOt 
--
 oet)f(x, 

t)g(xl t') 
.,..,,,=,

and  so  on.

   Using  the Wronskian
show  that solutions  of  Eq.

     T=  VIZ(ql, P2, ob･, qN)  ,

technique

(2･2) are

 developed by Freeman  and  Nimme,2)  we  can

written  in a Wronskian  form,

(2-3)
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where

                    opi 
'bC.?-opi

 "-･ (-o-O.rm)"'iep,
     w(qi, g,2, ..., qN)=  ep2 

meO'ip2
 
'''
 (-o6x)"7iq2, (2.4)

                    - - -                             .                    o --  -

                    g,
"

., -o-o2si-q. ･･e  (-o-o.)
'N-re,.

and  qi satisfies

     51J e,im-('sl})2q)i, (2-sa)

     oOt 
'pi

 
--
 ( oum0D )3 qi - (2･sb)

It is convenient  to write  x==xi,y=x2  and  t==x3. Suppressing the columns  and  the
reference  to the function q, we  shall  write  as

     ql 
.
 
e
 
.
 
.
 (2t )N 

UI

 ql

      i't. I =iO,""`',N-II.  (2'6)

     opN .... (£)N-lgN
Then  we  observe  that                  '

     T=IO,'"'',N-II,                                                          (2･7a)
      0
     a,,, T=le,  

"`,
 A[-2, Ail, (2'7b)

    t(( a2I, )2+ og, 1r =to,  ･-･, N-2,  N+il  
'
 (2-7c)

and  so  on.  These are  expressed  by using  Sato's Maya  diagram  as  follows:
                                  '

                 o  o  oE                                               I-
                  O ] N-3  N-2  N-1  

muN-'-
 N+1  N+2

   T==

 O
  

--r==
Zff,

o2,)r=

(2･8a)

p m i+bo

S((£ ,)2.

o 1
]-N-3N-2

 N-1NN+1  N+2(248b)

[- -aTQ-=
o 1 N-3N-2  N-1N--'I"]N･+･1  N+2

      (2-8c)
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and  are  also  expressed  in terms  of  the Young  diagram,

     r=  rdi, (2e9a)

     s2, '=  TD,  (2ogb)

      }'(( S, )2+ o!l,)r= 
r[,  (2egc)

and  so  on.  In these notations,  Eq. (2"2) is rewritten  as

     rer[s  
u-
 TzTH'l･+  gnl  rEl=O,  (2e1o)

which  is nothing  but the PR. Especially Eq, (243) gives N-soliton solution  by taking

     pi -- exp  vt +  exp  &  (2e11)

with

     rpi--Pixi+Pi2,x2+Pi3;u3+vio, (2b12a)

     gi ==:  qt vi +Gi2  :2+qi3ar3+  &.e. (2m12b)

   The  other  equations  of  the KP  hierarchy are  also  reduced  to the PRs  and  comrnon

solutions  of  alE the equations  are  written  in the form of  Wronskian,

     r=  W(qi, p2, 'p･,  qN), (2"13)

where  epi depends on  infinitely many  independent variables  xi, x2,  x3,  
`-`,

 and  satisfies

the linear differential equations,

      o{l, pi--( 611, )kg'i･ (k :=: 1, 2, 3, "'') (2e14)

For example,  the bilinear equation,

     (Di2+D2)r･r'==O, (2e15)

which  is often  referred  as  a  BT  of  the KP  equation,  is satisfied  by  the Wronskian,

     r=  W(pi, @,  ''", fffi･)=r- IO, 1, ･co, N-11,  (2"16a)

     r'=  Vii( o£,
 qi, -allig2, '!-, o2, qN)  

'A'
 ll, 2, '"o, Nl. (2D16b)

In Eq. (2e15) and  hereafter, Dk  means  the bilinear differential operator  with  respect  to

xh,  gn addition  to Eqs. (2e16a) and  (2o16b) there is another  Wronskian  solution  of

Eq. (2'15), 
･

      f=:  W(qi, P2, d'', qN),  (2e17a)

      T'=T' W(gE, 9z, "c', gN, gN+i), (2o17b)

The  fact that there are  these two types of solutions  for Eq. (2'15) is important to

construct  the so-called  dark  and  bright soliton  solutions  for equations  of  the NLS
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              S 3. The  two-dirrtensional Teda  lattice equatiom

    The  2DTL  equation,

       02
     

'b.dy'log(1+
 Vh)-: va+i-2K+  Vh-, ,

describes a  nonlinear  coupled  oscillator  with  exponential  type potential,

      -='telp-logT.,

Eq. (3･1) reduces  to the bilinear form,

     DxDyT>t e e! -  2( lh+i bi-i ma zh2)  =  O .

   We  shovv  that solutions  of  Eq. (3t3) are  given  by

     Th ==:  pv((7t )"gl, ( oOx )"ep2, .n., ( oOx )"q,v) ,

where  api satisfies

       02

     Itc-c`IJ"qirmrmNepi.

Equation  (3o4) is a  Wronskian  on  x,  that is,
to x  of  the next  left columil.  It is also  a  Wronskian  on  -

that  is, each  column  is the derivative with  respect  to -y

Thus  we  may  call  it a two-directional Wr6nskian.
-Y!=X-L

   We  observe  that  zvz, its derivatives and  Th± ] are  given by

     Th ==In,  
････,

 n+N-11  
,

     iilg-=ln, "', n+N-2,  n+Nl  ,

      OZh
     dr-, 

-z

 ln-1, n+1,  
･･･,

 n+N-II  ,

     oxO,2oixh-fi, ==lnrm  1, n+1,  '-, n-FN-2,  n+Nl  +  ln, ･"-･,  n+N-･11  ,

     lh-fi=ln+1,  ･  ̀･･, n+Nl  
,

     ui-d=In-1,  
b･･･,

 n+N-21  
,

which  are  denoted in the Maya  diagram as

63

   (3･1)

By  writing

   (3･2)

(3-3)

(3'4)

(3･5)

each  column  is the derivative with  respect

            y in the inverse direction,

            of  the next  right  colurnn.

       It is natural  to write  x=xi  and

(3t6a)

(3"6b)

(3･6c)

(3･6d)

(3o6e)

(3o6f)
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o2 T>,
n+1 n n-1

E)x,Ox-,=-lfOrmmgntnr･I･7"l"Iltrrm[=ILIll

n+1n･fiV--1Ir.Il[ID[

-･

nn+IVn-lve+IV+l

+- t]=[ I"-'[r--7".tttt"tlww.,

 (3･8d)

n+1n+N-1nn-l-Nn-1n+N+1

Tn+1==(nv)N'1- L T -,
 (3 di 8e)

n-+1n+N-1nn+Nn'].n+Ai+1

thml=(-)Atoo o [ ,

                            n+N-1  ntN  iz+N+1

where  the sign  is changed  by  the rearrangement.  In Eqs.

tities are  normalized  by multiplying  them  by
Tn is +. We  can  also  express  them  in terms  of  the  Young  diagram  as  f

     Z)2=To  ,

     0Th
     bx-i 

=i

 

;
 
TE'

      OTbe
     

-o'x-T=r-,,

     oisstai?il":l' ='=  Tm+  Te ,

     T>l+1=(-)IV-lT[],

     e:-i=(T)NTHi･

in this notation  Eq. (3e3) is written  as

     
TipTEI]'-

 
rcrEp+

 
r[/mrE=O

 ,

which  is again  the PR.  Therefore it is proved  that the Wronskian (3･4)
satisfies  the 2DTL  equation  (3o3), If gi is chGsen  such  that

     qi--exp  rpi+exp  &

with

     z?i= 2bi'i c-i -F Piaci+ ?7 ie ,

     gi=qi-ix .i -- qit:i -- gio ,

then Eq. (3e4) gives an  N-soliton solution  oi' the 2DTL  equation.

   If we  introduce  in

(3'8f)

          (3[8a)-"(3e8f), the quan-
H-1 or  

-1
 in a  rnanfier  that  the sign  of

                    ollows:

                       (3e9a)

(3･9b)

(3･9c)

(3e9d)

(3d9e)

(3"9f)

(3o10)

actually

(3･11)

(3･12a)

(3"12b)

                 dependent variables  x2, xs, 
`･･,

 x-2,  x-3,  
･"",

 the 2DTL  equation

can  be coupled  with  any  equation  of  the KP  hierarchy and  its solution  is also  given
in two-directional Wronskian. For example  a  coupled  system  of  the 2DTL  equation

and  the BT  of  the KP  equation,
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       DiD-tz'n"rn+2( rvz+i Tn-i  
'=

 zvi2)=e,  (3･13a)

     I[St･2,tDs',",z;.?I,]J

-

:26 [izlg23
is satisfied  by the solution  (3o4) with

      Z£il, ap'=(t7i)kopt' (k= '` 2, ''lp
 lp 2) (3"14)

ffere the solution  of  the type of  Eqs. (2-16a) and  (2'16b) is used  for the  BTs  (3･13b)
and  (3 ab 13c).

              S4. Tke  twe-dfimaensiomali Toda  inolecuae  equatEon

   We  have  the 2DTM  equation,

     'b.a' tt'log "t- Ii;,.+ i-2  Vh+  V)t-i, (4el)

which  is rewritten  in the bilinear form,

     DxDy avi"Tn 'T2T}z+i zvt-t ='=='TO,  (4'2)

through  the variable  transforrnation (3e2), We  impose  boundary  conditions,

      V6=  V]f =O,  (4'3)

which  are  satisfied  with

     a)- ¢ i(x)ZPI(y),  (4e4a)

     zha :=-'  02(x) ua(y), (4e4b)
where  dii(x) and  eeJl(y) (l ==1,  2) are  arbitrary  functions of  x  and  y, respectively.  The

main  difference between  the  TL  and  TM  equations  is that  the former describes an

infinite or  periodic  lattice system  and  the latter a  finite or  semi-infinite  lattice system,

respectively.

  
'
 Leznov and  Saveliev'e} have  obtained  solutions  of  Eq. (4"2) with  the boundary

conditions  (4d4a) and  (4 di4b).
 7"he solutien$  are  expressed  as

             ep ,6.p 
･..  (,0i,)"-i,

      ,,=  o6yp 
-oO.

 aeyp 
snc
 (-oOhi)n-iEIJqi (4.s)

             i /             - - Z M
             o o et t /

         i( 31J )"-'q) .oOc(£)n-iq ... ( oa:c. )"-i( 
aoy
 )n-ige, I,

with

         M

      q-:ipj(x)ipj(y),  (4'6)
        J'-...t
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where  ipj(x) and  ipj(y) are  arbitrary  functions of  x  and  y,  respectively.  The  solution

(4 ･5)  is a Wronskian  with  respect  to x  in the horizontal direction and  with  respect  to

y in the  vertical  direction, respectively.  This type of  two-directional Wronskian
satisfies  the 2DTM  equation  (4 ･ 2) with  the boundary condition  (4 e4a),  which  is proved
by using  the Laplace expansion  of  a  determinant.

   Consider the  following identity fer (2n+2)× (2n+2) determinant:

v

( ttv )"'zp .,,,

('SIJ)"'iq ..,,

(i,)ng ..

'' ' ( aOx )" 
iq

   (zllJ)n 
i(-z.f}-,

 )"'!p
   ( £. )n-i(.,g )n-i,
    (.ES. }.)" 

t(

 s, )np  tttttttttttttttttttttt

o

/ /

l (7,)"ep I/ // /
/ /

/ /

l (s)"(-,{,g--)"'v :/
i (,O.)'`(til)"''v l'
x-,g.,)"(-.e)", ii-1----------------.....F--.'.'. .'....../ t

l (8.)"pt l/ t/ t/ t/ t t/ : t/ tt t

i (ea.)"(te-)n 
2p

 l･ (
t t

l (S)n(tt-)n'L, I (
/ t

l (,9.)"(-,g,)"if I

-p

fisy )"' 
ie

 "

S,)"'i, ,..

('tt}')'Zo ,,.

            ie  e
            i
            i' :

            l' 
'

O iue
            i
            ilO
            i
            1
            

il
            i''"'(ilg'i5[i:I

 

""'i"h""a

            i
     / //:

            i

 (,Z)"':(E[l))"'Ege l o o

 C£.:.)n 
Z(.t.S.y.)n

 
iF

 ll I o

 (nO.)""(-b9v)"pt i･ o i

            l

.-.O.

(4･7)

Applying  a  Laplace

(4e7), we  get

expanslonin  (n+1)× (n+1)minors to theleft-hand  side  of  Eq.

thttTVz-
   6th1+

   by0Th
   

-Tn
Ox

62 rv!OxOy:-o,
(4b8)

vvhere  Tn is given by Eq, (4･5). Equation (4･8) coincides  with  Eq. (4･2). Therefore

we  have  proved  that the Wronskian  (4･5) satisfies  Eq. (4･2), It is also  possible to

prove  this by  using  the Jacobi formula for the determinant,ii) The  boundary condi-
tion (4･4b) is obeyed  by the solution  (4s5) if q is taken  to be the form  of  Eq. (4t6).
   If we  introduce extra  structure  with  an  lnfinite number  of  independent variables

x2, x3, ''',  y2, y3, .･.,  such  that

aEltkep--(...a...LOxl)kq,
(4o9a)

0aykep:-(odyl)hq,
(4･9b)

where  xi=x  and  yt=y,  then it is possible to make  zh satisfy  the 2DTM  equation  and

all equations  of  the KP  hierarchy simultaneously.  For exainple  we  consider  a

coupled  system  of  the 2DTM  equation  and  the BT  of  the KP  equation,
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t
DiDirTnezbu-2zbu+iTn-iiO,

(Di2+ D2) z}z " Tn+i iT'  0 ,

(D,rZ+D2t) Z}t 
-
 T>i+i=O  

,

(4e10a)
(4･leb)
(4o10c)

where  Dh' means  the  bilinear differential operator  with  respect  to yk, The  Wrons-

kian solution  of  Eqs. (4 e10a) "-  (4 u10c) is given  by  Eq. (4 e5) with  the conditions  (4 e9a)
and  (4e9b) for k=2.  In this case  the so]ution  for the BTs  (4･10b) and  (4olOc) is the

one  in the form  of  Eqs. (2o17a) and  (2"17b),
   We  here rernark  about  a  transformation  between  the 2DTL  and  2DTM  equations.

Let zh be a  solution  of  the  2DTL  equation  (3e3), then, for instance, Tn'==i eX"rn  satisfies

the 2DTM  equation  (4"2). However  if the boundary conditions  (4-4a) and  (4e4b) are

imposed  on  the 2DTM  equation,  their solutions  are  net  always  simply  transformed.

Actually the solutions  (3o4) and  (4o5) for the 2DTL  and  2DTM  equations  do not

cerrespond  each  other.  We  note  that the size  of  Wronskian relates  to the number  of

solitons  for Eq. (3rp3) and  to the ]attice site number  for Eq. (4e2). The  boundary
condition  on  the  Toda  equation  makes  a substantial  dfference in the structure  of  the

solutions.

g 5. Doub]e  Wreemskfinan ffepreseemtntgome  af  tlae solntgom

            for thkee 2DTtsE equation

   Solutions for the 2DTM  equation  (4･2) with  the boundary conditions  (4･4a)
(4e4b) are  also  expressed  in terms  of  double Wronskian,

rn 
=

11
 qil

i1l

    d
   du  9i 

･･

    dq2
 cth: 

q2 
e･

: :- -

    d9M
 

'zzi}
 qnf 

''

(k)"-i,,
( ddx )n 

iq,

i

("£." )nNl q.v

 gbi £ gbi 
A･(

 sb2 ziZl gb2 
-d
 (

ii  l

ldiM iige.･b

Eiill )Mrnml ip1

zlili)M-n-1ip2
l

( zX )MLn-igbM 
,

'

and

(5"1)

where  qi(x) and  ipi(y) are  arbitrary  functions of  x  and  y, respectively.

Freeman  we  shall  use  the notation  for the above  double Wronskian as

After

Tn=  O,,1, 
"',n-1;

 O, 1,'", ff-n-1  . (5o2)

We  see  that thederivatives  ofibu  and  sc± i are  given by

ao.Tin. -  lo, ･-,n---2,n;ei  o.-p pa '7 n.r  1L (5e3a)

aTnOy

o2

IO, +･･,

-''-ij'"== lo, ..

n-l;  O,

oxay
 n-2'

ez+i =:=  10, [p･",

Z>Z-1=10,  t･,

nl O,

･･,ue-n--2,M-nl,

 n'O  ･･ M-･--n---2 M---nrJ   pf              7 T

･t, M-n-2  
,

n-2･e  `･`t

   J:         'M-n.

(5･3b)

(5･3c)

(5･3d)
(5･3e)

NII-Electronic  
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These  are  also  written  by using  the double Maya  diagram as  follows:

                n-2  n--1  n  n+1

Zh=

6thOx

-io' o
v-･.-i=O O

Oaidy

---Ho

o
--0 o

-e

02rnaJi]ay

Tbe+1T

Th-1==

e-O o
-ao o

HJo c=
--O OT

l-o 0 0
--o

-to--o

o O

                  I.
M--  n--2  M--n-1  M-n  M-n+1

  n-2  n-1  n  n+1

                  E
M-'n-2  neLn-1  .va-n M-n+1

  n-2  n-1  n  n+1.

                  I･-

M-n-2M-n-1  il4-n  MMn+1

  n-2  n-1  n  n+1

                  I                    ---

                    --e

M-  n---2  M--  n-1  M  -- n  M-nl-1

  n-2  n--1  n  n+1

                  l"
M-n--2M-n-1  M-n  M-n+1

  n-2  n-1  n  n+1

          !III
M･- n--  2 M-  -n--1 M-- n  M-n-･1

x

   'y

x

   py

x

   ,y

x

   ,y

x

   ,y

xy

(5'4a)

(5･4b)

(5-4c)

(5･4d)

(5o4e)

(5･4f)

69

Rearranging  the columns  of  the determinants in the alternate  order  of  q(,x) and  ¢ (y)
we  can  express  them  in terms of  the single  Maya  diagram  as

                n-2  n-1  n n+1  x

･･p t II- - LJIIII･-(5･5a)

(5 ny 5b)

(5t5c)

(5e5d)

'

  rn=

 Oevz
 Ox

 0Tft
 Oy

02 azaxay

'

n-2

M-n-2

n-].

M'Ln"1

n

M-n

n+l

ill[:allo.-g.I- -

yx

y

x

}t

x

y

'

n-2

M-n-2

-m
n-1

M-n--1

n

M-n

n+1

oE E. s

n-2

M-n-2

n-1

ma"'n-'1

n

M-n

n-l-1

p m IQ]or- ･･
'

M-n-2 M-n-l M"n
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zbe+i=(-)M-n-i  .n-2

R. }Iirota, Y, Ohta and  J. Satsurna

    n-1  n  n+1

op t e

       if-n-2 M-n-1  M-;2

   n-2  "--1  n  n+1

zh-i==(-)M-n-i  
."M .

                     A4--n-2 M-n--1 M-･n

where  the sign  oi" zbe is normalized  to be +  by multiplication  of  these quantities by
or  

-1.
 Using  the  Young  diagrarn we  rewrite  Eqs. (545a)-･-(5e5f)

     z}t=  re  ,

  xq

 
,
 (5"5e)

   y

  xb

 
,
 (5o5f)

   y

            +1

as  follows:

        (5e6a)

     0zvz

     ax 
=-rE-.],

     5rh

      ay 
=

 
rl]

 ,

      a2rh

     
'a;'vay

 
=7-

 
rff,

     rn+i=:=(--)M-n'iT[],

     T}t-1 
=-

 ( 
--
 )M-n-ITp 

.

Hence the 2DTM  equation  (4`2) is again  reduced  to the PR,

     
r¢ 
rEI]

 
`
 
r-r

 111H- 
fD]k=

 
:

 
O
 ,

and  we  have proved  that the double Wronskian (5･1) satisfies  Eq. (4e2).
   Comparing th1fo in the forms of  twe-directional Wronskian and

kian, we  can  easily  see  the correspondence  between these two
Namely, op in Eq. (4e5) can  be expressed  in terms  of  pi and  dii in

         
1

 rp1 I, ip1 2ili ip1 .. (Eiii)M-2ip]
         1:

         I q2 l ip2 zili gb2 c･ (}s())M-2di2
           .i.  . .           e/o  s b
           o/e  b -
             i

          gM  l/ ip?lf chdJ ¢ M  
"e

 (zi.il)"M2e.
     9==' ,

         Lipi Eiiigbi e-･  (2SI)M"i,b,
         

i
 di, Eiil ip, ･--  (£ )M 

`,b,

           e ts e

          "M 
'8-ipM

 `ee (tii))M-rip.
where  we  use  the arbitrariness  of  Oi and  ee? in the boundary  conditions

(4`4b).

   double

  representations.

Eq. (5 th 1)

(5"6b)

(5e6c)

(5'6d)

(5e6e)

 (5p6f)

 (5"7)

 Wrons-

as

(5e8)

(4･4a) and
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   tt is possible to introduce
various  coupled  systems  of  the
can  be constructed.

 variables  x2, x3, -'･,y2,y3,･･D so  that the solutions  of

2DTM  equation  and  the equations  of  the KP  hierarchy

g6. Coreckusiexx

   The  equations  of  the KP  hierarchy have common  solutions  in the form of

Wronskian <2"13) whose  elements  satisfy  the }inear differential equations  (2･14) with

respect  te infinitely many  independent variables.  These  equations  are  reduced  to the
bilinear identities of  the Wronskian  which  are  nothing  but the PRs. The  2DTL
equation  in the bilinear form  (3-3) is also  reduced  to the  PR  (3tlO) and  has the
two-directional  Wronskian solution  which  is the forward and  backward directional
one.  The  solution  of  the  2DTM  equation  (4'2) is written  in terrns of  the two-
directional Wronskian  which  is the horizontal and  vertical  directional one  and  also

written  in terms  of  the double Wronskian. An  important point is that the structures

of  these Wronskian, multi-directional  Wrenskian and  multiple  Wronskian  are  quite
simi]ar.  Using  this fact, we  can  construct  coupled  systems  of  the equations  of  the KP
hierarchy and  the Toda  equations  and  express  their solutions  in the form of  Wrons-
kian with  multi-structure.

   From  these  coupled  systems  it is possible to derive various  nonlinear  evolution

equations.  For .example  the DS  equatioH  can  be obtained  from  Eqs. (3`13a) 
--

 (3e13c)
or  from  Eqs. (4 e10a) r- (4 ･10c) and  their soliton  solutions  can  be expressed  in the form
of  Wronskian with  multi-structure.  In the case  of  Eqs. (3e13a)'-(3･13c), letting

     Q=(2 log k)xx, (6･1)

A==![1ei(ha+ly-tot)
    en (6"2)

with

     th:real,

     rt ::=  ge1*,  ,

where  
*
 indicates complex  conjugate,  and  changing  independent

we  get  the DS  equation  with  the dark soliton  solution,5)

{iAt-Axx+Arv  "=  AlAl2+2QA  
,

Qxx+ Qpy ==  
-(

 A  
Z)xx

 .

On the ether  hand  in the

taking

     T?v: real,

     T?v +i  =  
-

 di-1 }

case

(6`3)

(6"4)

variables  suitably,

(6"5a)(6･5b)

of  Eqs, (4elOa)--(4･10c), choosing  M  even  nurrlber,

(6t6)

(647)
and  writing
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Q=-(2  log riv)xx  
,

(6e8)

     A=.TN-i  (6e9)
         Tiv 

'

where  IV=M!2,  we  obtain  the DS  equation  with  the bright soliton  so]utien,

     lijl.gat:-t.lxtll,5.4i"i2'2Q"'･ [8:l:gj
through  a  suitable  independent variab2e  transformation.  The NLS  equation,

     iut+uxx ± 2u12u,"=0, (6'11)

can  be derived from  Eqs. (6e5a) and  (6-5b) or  frorn Eqs. (6･10a) and  (6o10b) by  using

a suitable  reduction.  Many  other  equations  such  as  the BO,  ILW  and  Mel'nikov

equations  can  be obtained  in the simllar  way.
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