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Solutions for the equations of the Kadomtsev-Petviashvili hierarchy are given in terms of
Wronskian. The two-dimensional Toda lattice equation and the two-dimensional Toda -
molecule equation are investigated and their solutions are expressed in the form of two-
directional Wronskian and double Wronskian. These solutions have common structure so
that we can construct systems of these equations and their Wronskian solutions.

§ 1. Introduction

In recent twenty years many investigations have been done in the field of soliton
theory and various nonlinear partial differential equations with soliton solutions have
been found, including the Korteweg-de Vries (KdV) equation, the Kadomtsev-
Petviashvili (KP) equation, the Boussinesq equation, the nonlinear Schrodinger (NLS)
equation and so on. It has also been shown that there is a class of soliton equations
with singular integral terms such as the Benjamin-Ono (BO) equation, the inter-
mediate long wave (ILW) equation and so on. Besides such continuous systems,
there also exist nonlinear discrete systems with soliton solutions such as the Toda
lattice.

There are several ways to get soliton solutions for these equations. For example
in the method of the inverse scattering transformation, soliton solutions are associat-
ed with the discrete spectra of the scattering operator and may be written in deter-
minant form. In the direct method, they are obtained by a simple perturbational
technique and represented as polynomials in exponentials. The Bicklund transfor-
mation (BT) gives a way of constructing N+ 1-soliton solution from N-soliton solu-
tion.

A simple and useful expression of these solutions may be the one in terms of
Wronskian. The Wronskian representation of the solutions was first given for the
KdV and modified KdV equations.” This technique has been developed by Freeman
and Nimmo?™® for other soliton equations such as the KP, Boussinesq, NLS and
Davey-Stewartson (DS) equations. In this expression of the solutions, these non-
linear equations are derived from the Laplace expansion of the determinants which
are equal to zero.

The general theory of ¢ function has been developed by Sato® and it has been
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shown that a hierarchy of equations (KP hierarchy), all of which have common
solutions, can be obtained by introducing infinitely many independent variables. In
the Sato theory, the equations of the KP hierarchy are nothing but the Pliicker
relations (PRs) and their solutions are expressed with r functions. The simplest
example of the equation of the KP hierarchy is the KP equation itself. The two-
dimensional Toda lattice (2DTL) equation also belongs to the extension of the KP
hierarchy.”" ;

In this paper the Wronskian technique for the KP hierarchy is explained in the
case of the KP equation as an example and the N-soliton solution is given in terms of
the Wronskian. We also present solutions of the 2DTL equation and the two-
dimensional Toda molecule (2DTM) equation in the form of two-directional Wrons-
kians which are determinants having Wronskian properties into two directions.” We
shall see that the structures of the solutions for these two types of the Toda equations
are quite different. It is shown that the solution of the 2DTM equation can also be
represented in terms of the double Wronskian. Then we discuss about the
correspondence between the two-directional Wronskian and double Wronskian solu-
tions of the 2DTM equation.

It is possible to construct coupled systems of these equations satisfied by the same
Wronskian using the fact that the solutions of the KP equation (or other equations of
the KP hierarchy) and those of the Toda equations have common Wronskian struc-
ture. Various nonlinear evolution equations can be derived from these systems of the
KP and Toda equations by suitable variable transformations. As such examples the
DS and NLS equations are briefly discussed.

§ 2. Equations of the KP hierarchy and their Wronskian solutions
As an example of equation of the KP hierarchy, we consider the KP equation,
<ut _%uux_%‘uxxx>x—%uyy:0 5 (2'1)

where the subscripts indicate the partial differentiations with respect to the indicated
variables. Equation (2-1) may be written in a bilinear form,

(Dy*—4D:D:+3D»)r-r=0, ' (2-2)

where ©=(2log )z and D is the bilinear differential operator defined by

D:'f =g:(—£t— ({; >4f (2)g(x)|

xX,t'=t

and so on.
Using the Wronskian technique developed by Freeman and Nimmo,” we can
show that solutions of Eq. (2-2) are written in a Wronskian form,
r=W(p1, @2, ", on), (2:3)
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where
a N-1
1 ”é_;r_'¢l (“a“‘x“) @1
a 8 N-1
W(qox, ©a, 0, §0N): P2 79..2*7—% (55) Pe , (2.4)

and ¢; satisfies
2
%qu':(%) @i, (2'521)

3
Go(E)e. @

It is convenient to write x=ux1, y=x2 and ft=xs. Suppressing the columns and the
reference to the function ¢, we shall write as

a N-~1
o ()

S : =0, -+, N—1]. (2-6)

a N—-1

o () o

Then we observe that
T:IO»....’N_lly (2'73.)
Erzloy'“;N—_Z: Nl; (2.7b)

2 .

%(aﬁ-l) + ag;z}f:m, o, N—2, N+1| (2-7¢)

and so on. These are expressed by using Sato’s Maya diagram as follows:

={OJO[~TOJOTOl T T T+ .
0 1 N—-3 N—2 N-1 N N+1 N+2

(2-8a)

Z=[OJO[~]O0JO] JO] | T-,
0 1 N—-3 N—-2 N-1 N N+1 N+2

(2-8b)

%Kaf:l)z‘*”aiz}’:[ oclol~-TolJol [ Tol T+,
0 1 N—-3 N—-2 N-1 N N+1 N-+2

(2-8¢)
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and are also expressed in terms of the Young diagram,

=1, (2-92)
a - °
oxt T (2-9b)
1(/ d\, 0 .,
7{< 8&71) *"a}};}f_fm’ (2+9¢c)

and so on. In these notations, Eq. (22) is rewritten as

2'¢Z'EB- IDTBH-F Z‘EDZ'B:O ) (2-10)
which is nothing but the PR. Especially Eq. (2-3) gives N-soliton solution by taking

Pi=€Xp 7: T exp &; (2-11)
with

0= pix1+ piixat pixst nio, (2-12a)

Ei=qiri+q Tt qlxst € (2-12b)

The other equations of the KP hierarchy are also reduced to the PRs and common
solutions of all the equations are written in the form of Wronskian,

r=W(e1, @2, ", ¢n) , (2-13)

where ¢. depends on infinitely many independent variables x, xz, xs, ***, and satisfies
the linear differential equations,

d [ 3\ _
m¢l_<‘8_x‘—:> 991‘- (k*1,29 39 “.) (2814>

For example, the bilinear equation,
(D2+Dy)rer'=0, (2-15)

which is often referred as a BT of the KP equation, is satisfied by the Wronskian,

r=W(p1, @2, =+, ox)=10,1, -, N—1], (2-16a)
i W<j_¢ O >:|1 2 .o N (2-16b)
8.701 b 81'1 % ’8.1?1 N > ’ :

In Eq. (2-15) and hereafter, D» means the bilinear differential operator with respect to
zx In addition to Egs. (2:16a) and (2-16b) there is another Wronskian solution of

Eq. (2-15), :
r= W(gol) P2, §0N> ’ (2"173.)
Z',: W(@l’ P2, *°*y, PN, gDN‘H) . (2017b)

The fact that there are these two types of solutions for Eq. (2:15) is important to
construct the so-called dark and bright soliton solutions for equations of the NLS
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class.

§3. The two-dimensional Toda lattice equation

The 2DTL equation,

2

53%;10g(1+ V)= Vs =2Vt Var | (3-1)

describes a nonlinear coupled oscillator with exponential type potential. By writing
82
Vn—mlog Tn, (3-2)

Eq. (3-1) reduces to the bilinear form,
DnyTn *Tn *2<Z'n+1 Tn-1— Z'nz):O . (3'3)

We show that solutions of Eq. (3:3) are given by

(Lo (2 e (2o -

where ¢, satisfies

82

dxdy T TP -

Equation (3-4) is a Wronskian on z, that is, each column is the derivative with respect
to x of the next left column. It is also a Wronskian on —y in the inverse direction,
that is, each column is the derivative with respect to —vy of the next right column.
Thus we may call it a two-directional Wronskian. It is natural to write z=2x and
—yV=X-1.

We observe that z, its derivatives and .+ are given by

on=|n, -, n+N—1|, » (3-6a)
gr”zln,~--,n+N—2,n+N|, (3-6b)
X1
0wy, _ .
33:_1_’% 1, n+1, -, n+N—1], (3-6¢)
] _
9 2 =|n—1, n+1, -, n+N—2, n+N| + |n, -, n+ N—1], (3-6d)
8.1'18274
ri=|n+1, -+, n+N|, (3-6e)
1=|n—1, -, n+ N—2|, (3-6f)

which are denoted in the Maya diagram as
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we o] [ JOlO[=]0l0] [ I-
n—2 n—1 ”n n+1 n+N—2n+N-1 n+N n+N+1
(3:7a)
dtn
du. T [ [O[O[=]0[ O] -
n—2 n—1 7 n+1 n+N—2n+N-1 n+N n+N+1
(3:7b)
Jtn
fu_ T TO] Jol[=]0JO] [ =
n—2 n—1 n n+1 n+N—2n+N-1 n+N n+tN+1
(3:-7¢)
3 n
axla;ﬂ: { IQi ’0‘101 ’01 ‘
n—2 n—1 n n+1 n+N—-2n+N—-1 n+N nt+N+1
¢ o [ [olo[=1olo] [ T=
n—2 n—1 n n+1 n+N—2n+N—1 n+N nt+tN+1
(3-7d)
wam 7] [ [ TO[=]0T0JO] I- .
n—2 n—1 n n+1 n+N—2n+N—1 n+N ntN+1
(3-7e)
w= ] JOJOJO[=]0] T T T~
n—2 n—1 7 n+1 n+N—-2n+N—1 n+N nt+N+1
(3-79)

If we rearrange the columns of the determinants in the alternate order such as -,
n+1, n+N—1,n n+N, n—1, n+N+1, -, then the Maya diagram for Egs. (3-7a)~
(3-7f) may be written as follows:

n+1 n n—1
n+N—1 n+N n+N+1
p n+1 n n—1 .
- [OJO[~TO[ JOJO[ T T+ G
n+N—1 n+N n+N+1
9 n+1 n n—1
WZZIQ}O‘WIQ‘Ol | | O | |, (3:80)
n+N—1 n+N n+N+1

NI | -El ectronic Library Service



Publication O fice, Progress of Theoretical Physics

Wronskian Structures of Solutions for Soliton Equations 65
PO n+1 n n—1
= O[O [~ TOT [ JTOJOJ ]
n+N-1 n+N n+N-+1
n+1 n n—1
+HO|lO | ~]1O]O]O] | | |, (3-8d)
n+N—1 n+N n+N+1
n+1 n n—1
=10 ]O |- 10O0JO] 1O | |-, (38
n+N—1 n+ N n+N+1
n+1 n n—1
== OO0 ~-]J]O] [O]l JToOol[ [, Gsb
nt+tN—1 n+N n+N-+1

where the sign is changed by the rearrangement. In Eqgs. (3-8a)~(3-8f), the quan-
tities are normalized by multiplying them by +1 or —1 in a manner that the sign of
7= is +. We can also express them in terms of the Young diagram as follows:

=1, (3:9a)
=g, | (3-9b)
86;: ang (3-9¢)
axajg"f Tt (3-9d)
tra=(— "1z, (3-9)
Z'n«lz(_)NZ'B:]. (3-9f)

In this notation Eq. (3:3) is written as

erB_ rDrEPJr Z‘EDZ‘B:O, (3-10)

which is again the PR. Therefore it is proved that the Wronskian (3-4) actually
satisfies the 2DTL equation (3-3). If ¢, is chosen such that

@:=exp 7: T exp &; (3-11)
with
n:=p: '\x 1+ pixit nio, (3-12a)
Ei=q 'xat gt o, (3-12b)
then Eq. (3-4) gives an N-soliton solution of the 2DTL equation.
If we introduce independent variables xs, xs, ***, -2, -3, =*-, the 2DTL equation

can be coupled with any equation of the KP hierarchy and its solution is also given
in two-directional Wronskian. For example a coupled system of the 2DTL equation
and the BT of the KP equation,
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DiD_y71y° fn+2(fn+l Tn—1— Z'nz):O , (3’13&)
(D12+D2)Tn°fn+1:0 , (3°13b)
(Dzl""D—z)Z'n“ Tn+1:0 (3°13C)

is satisfied by the solution (3°4) with

0 p=(-2Y h=—2 —1.1,2) (3-14)
Egpi— (95131 P ( - ’ 19 19 °

Here the solution of the type of Egs. (2-16a) and (2-16b) is used for the BTs (3-13b)
and (3-13c).

§4. The two-dimensional Toda molecule equation

We have the 2DTM equation,
2

0
0x0y

log Vo= Var1—2Va+ Ve , (4'1)

which is rewritten in the bilinear form, |
DzDytn* tn—2Tn172-1=0, (4-2)
through the variable transformation (3:2). We impose boundary conditions,
Vo=Vu=0, (4-3)
which are satisfied with
n=0:(z) %(y), (4-4a)
= 0oz) Uy) , (4-4b)

where @,(x) and ¥(y) (=1, 2) are arbitrary functions of x and v, respectively. The
main difference between the TL and TM equations is that the former describes an
infinite or periodic lattice system and the latter a finite or semi-infinite lattice system,
respectively.

Leznov and Saveliev'” have obtained solutions of Eq. (4-2) with the boundary
conditions (4-4a) and (4-4b). The solutions are expressed as

a' 9 \»!
v P (55) ¢
9., 9.9 .. (i)”‘li
| dx dy ¢ ox) ay? (4-5)
<_€L>”*‘¢ 5[ o\ 9\ 9y
0y %(7@) e (??E‘c“) <W> 2l
with
M
§0:J§ qﬁj(x)gbj(y) , (4‘6)
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where ¢;(x) and ¢,(v) are arbitrary functions of x and v, respectively. The solution
(4-5) is a Wronskian with respect to x in the horizontal direction and with respect to
v in the vertical direction, respectively. This type of two-directional Wronskian
satisfies the 2DTM equation (4-2) with the boundary condition (4-4a), which is proved
by using the Laplace expansion of a determinant.

Consider the following identity for (2z+2) X (2%+2) determinant:

¢ <"985> v (73?)?" 0 0
G e e G GG 0 0o
G (@)L GG o
B e @ @6 |,
(%)n(p ’ (gi) o 0 0 '
0 o 1C o IR R € CO NP N
(@) G) e L)E) e
(4-7)

Applying a Laplace expansion in (z+1)X(%+1) minors to the left-hand side of Eq.
(4:7), we get

0tn 0T . azfn - .
Tn+lfn—1+ ay ax Tn axay _O, (4 8)

where 7, is given by Eq. (4-5). Equation (4:8) coincides with Eq. (4:2). Therefore
we have proved that the Wronskian (4-5) satisfies Eq. (4-2). It is also possible to
prove this by using the Jacobi formula for the determinant.'” The boundary condi-
tion (4-4b) is obeyed by the solution (4-5) if ¢ is taken to be the form of Eq. (4:6).

If we introduce extra structure with an infinite number of independent variables
Z2, X3, ***, V2, V3, *+, such that

0 J \*
e ¢:<'(§51~) ®, , (4-9a)

o ?=(0) e | (490

where x1=x and y1=y, then it is possible to make z, satisfy the 2DTM equation and
all equations of the KP hierarchy simultaneously. For example we consider a
coupled system of the 2DTM equation and the BT of the KP equation,
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DDy tne tn—2Tns172-1 =0, (4-10a)
<D12+D2)Tn° Tn+1=0 y (4°10b)
(D2 4+ D) tne 11 =0, (4-10c)

where D, means the bilinear differential operator with respect to v.. The Wrons-
kian solution of Eqgs. (4-10a)~ (4-10c) is given by Eq. (4:5) with the conditions (4:9a)
and (4:9b) for £#=2. In this case the solution for the BTs (4:-10b) and (4-10c) is the
one in the form of Eqgs. (2:17a) and (2:17b).

We here remark about a transformation between the 2DTL and 2DTM equations.
Let r» be a solution of the 2DTL equation (3:3), then, for instance, 7’ =e™r, satisfies
the 2DTM equation (4:2). However if the boundary conditions (4:4a) and (4:4b) are
imposed on the 2DTM equation, their solutions are not always simply transformed.
Actually the solutions (3°4) and (4:5) for the 2DTL and 2DTM equations do not
correspond each other. We note that the size of Wronskian relates to the number of
solitons for Eq. (3°3) and to the lattice site number for Eq. (4°2). The boundary
condition on the Toda equation makes a substantial difference in the structure of the
solutions.

§5. Double Wronskian representation of the solution
for the 2DTM equation

Solutions for the 2DTM equation (4-2) with the boundary conditions (4-4a) and
(4-4b) are also expressed in terms of double Wronskian,

n-1 ; M~n-1
oodre () e e (F) e

. .. (_@) g Dy, (i)’”‘”‘lgﬁ
= | dr ¥ dz) 0 dy® dy ’ (5-1)

y

124 d_ci@w e <%>n—1¢M§ $u d—a;}ng " (%)M*”glﬁ/w

where ¢.x) and ¢.(y) are arbitrary functions of x and y, respectively. After
Freeman we shall use the notation for the above double Wronskian as

=10,1, -, n—1;0,1, -+, M—n—1]. (5:2)
We see that the derivatives of 7, and m+1 are given by

0Tr

ax:|0’ ."%——2) n;O)DHsM—nml'y (5.33-)
%;i—m,m,n—ko,--,M—n—z,M—nl, (5-3b)
Pt 0 o — .
axay——](), ,n—2, 10, M—n—2, M—mn|, (5-3c)
Tn1=10, -+, 1,0, -, M—n—2|, (5-3d)
’Tn_1=|0,",%—2;0,"“,M*%|. (5.36)
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These are also written by using the double Maya diagram as follows:

n—2 n—1 n n+1

o O | O
n
O ] O
M—~n—2M-n-1M—n M—nt+l
n—2 n—1 n n+1
Jtn _ O O
ox O O
M~n—2M-n-1 M—n M—nt+l
n—2 n—1 7 n+1
8Tn _ Q O
oy O O
M—n—2M-n-1 M—n M—nt+l
n—2 n—1 ”n n+1
P rn _ O O
0xdy O O
M-—n—2M-n-1M—n M—nt+1
n—2 n—1 n n+1
- OO | O
n+1=—
O
M—n—2M-n—1 M—n M—n+1
n—2 n—1 n n+1
- O
n-1—
O] O | O

M—-n—2M-n-1 M-—n M—nt+l

Wronskian Structures of Solutions for Soliton Equations

x
y
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(5-4a)

(5-4b)

(5-4c)

(5-4d)

(5-4e)

(5-41)

Rearranging the columns of the determinants in the alternate order of ¢(x) and ¢(v),

we can express them in terms of the single Maya diagram as

Tn=—

n—2 n—1

O[O0 ]O]
M—n—2 M—n—1 M~—mn

n—2 n—1

[OTO] TOTO]
M—n—2 M—n—1 M—mn

n—2 n—1

HelReR el | O |
M—n—2 M—n—1 M—mn

n—2 n—1

(Ol o] | [OlO]
M—n—2 M—n—1 M-—n

. (5-5a)

, (5-5b)

, (5+5¢)

. (5-5d)
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n—72 n—1 7n n+1 x
ma=(=)" - |O OO [O] [ [+ (50
M—n—2 M—n—1 M-—n v
n—2 n—1 n n+1 x
o=yt .. 1O]lO] O] ol |- , 55
M~n—2 M~n—1 M—n y

where the sign of 7, is normalized to be + by multiplication of these quantities by +1
or —1. Using the Young diagram we rewrite Eqgs. (5°5a)~(5:5f) as follows:

=T, (5-6a)

%;”:~TB, (5-6b)

%;” =, (5-6¢)

1y

Bgrgy =7, (5-6d)

T =(—)"""r, (5-6e)
g =(— )M (5-6f)

H

Hence the 2DTM equation (4-2) is again reduced to the PR,

Z'¢Z'EE— TDZ-EP+ Z'D:‘Z'B:O , (5-7)
and we have proved that the double Wronskian (5-1) satisfies Eq. (4:2).
Comparing 7i/n in the forms of two-directional Wronskian and double Wrons-
kian, we can easily see the correspondence between these two representations.
Namely, ¢ in Eq. (4-5) can be expressed in terms of ¢: and ¢: in Eq. (5°1) as

2! $r érjj‘ﬁl e <Z%)M_2¢1

E M—2
oo byt () e

= w (5-8)
"o ()"
e o
S/’M aciiﬁbM (;;:>M—1¢M

where we use the arbitrariness of @, and ¥; in the boundary conditions (4-4a) and
(4-4D).
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It is possible to introduce variables x, xs, ***, 2, Vs, -+ so that the solutions of
various coupled systems of the 2DTM equation and the equations of the KP hierarchy
can be constructed.

§6. Conclusion

The equations of the KP hierarchy have common solutions in the form of
Wronskian (2-13) whose elements satisfy the linear differential equations (2-14) with
respect to infinitely many independent variables. These equations are reduced to the
bilinear identities of the Wronskian which are nothing but the PRs. The 2DTL
equation in the bilinear form (3-3) is also reduced to the PR (3-10) and has the
two-directional Wronskian solution which is the forward and backward directional
one. The solution of the 2DTM equation (4:2) is written in terms of the two-
directional Wronskian which is the horizontal and vertical directional one and also
written in terms of the double Wronskian. An important point is that the structures
of these Wronskian, multi-directional Wronskian and multiple Wronskian are quite
similar. Using this fact, we can construct coupled systems of the equations of the KP
hierarchy and the Toda equations and express their solutions in the form of Wrons-
kian with multi-structure.

From these coupled systems it is possible to derive various nonlinear evolution
equations. For example the DS equation can be obtained from Egs. (3:13a) ~(3-13c)
or from Eqs. (4-10a) ~(4-10c) and their soliton solutions can be expressed in the form
of Wronskian with multi-structure. In the case of Eqgs. (3-13a)~(3:13c), letting

Q= log )z, (6-1)

A=Ekgiiereen (6-2)
with

o :real, (6-3)

n=r*, ‘ | (6-4)

where * indicates complex conjugate, and changing independent variables suitably,
we get the DS equation with the dark soliton solution,”

ZAt—“Axx"f"Ayy:AlAlz“{“ZQA s (6'53)
Qrxt ny: ‘('Alz)xx . ‘ (6'5b)
On the other hand in the case of Egs. (4-10a)~(4-10c), choosing M even number,
taking
v : real, (6-6)
TN+1= — Th-1 , (6'7)

and writing
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Q=-—(log tv)z, (6-8)
A=t (6-9)
TN

where N=M/2, we obtain the DS equation with the bright soliton solution,

(A — At Ap=—(AlAPP+2QA), (6-10a)
Q11+ ny: *(lAlz)xx , (610b)

through a suitable independent variable transformation. The NLS equation,
Z‘Mt_’_uxxiZlu{zu:O, <6°11)

can be derived from Egs. (6-5a) and (6-5b) or from Eqgs. (6:10a) and (6-10b) by using
a suitable reduction. Many other equations such as the BO, ILW and Mel'nikov
equations can be obtained in the similar way.
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