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On the basis of an electronic structure calculation, spin density wave states of fcc Fe and
Cr are discussed with particular attention to the difference between them. The wave vector
at which the unenhanced spin susceptibility of nonmagnetic fcc Fe or Cr becomes maximum
is shown to correspond well to the observed wave vector of spin density wave. It is found
that a nesting of the Fermi surface hardly contributes to determining the wave vector of the
susceptibility maximum for fcc Fe, which exhibits a remarkable contrast to Cr. Another
reasoning of the susceptibility maximum is extended from a real space viewpoint. Difference
in characteristics of the spin density wave state between fcc Fe and Cr is further illustrated
by the electronic structure calculation of spin density wave states with finite magnetic
moments.

§ 1. Introduction

In transition metals electronic structure and electron correlation play decisive
roles in determining their magnetism. Although these two factors are both impor-
tant, in some problems electron correlation can be treated less rigorously than
electronic structure or wvice versa. Magnetism at ground state presumably corre-
sponds to the former case: electron correlation is treated within a mean-field approx-
imation like a local density functional (LDF) one. The stable magnetic structure in
3d transition metals has been discussed in this way and it has been shown that the
observed magnetic structure of 3d transition metals can be well explained through
investigations of their electronic structures. Energy difference between magnetic
structures has been realized to arise mainly from kinetic energy of 3d electrons. The
present paper follows the same way to discuss the spin density wave (SDW) states of
fcc Fe and (bce) Cr.

The SDW state of fcc Fe has recently been reported by Tsunoda in his series of
X-ray and neutron diffraction experiments for yFe precipitates in a Cu matrix.?~¥
Most of the yFe precipitates have been found to have distorted lattices and complex
magnetic structures similar to an antiferromagnetic one of the first kind of the fcc
lattice;” the first kind antiferromagnetic structure was formerly considered to be the
magnetic structure of yFe precipitates.” In some of the yFe precipitates such as y
FeCo alloy precipitates, however, it has been found that the lattice distortion is
suppressed and the magnetic structure is not the complex one but SDW.2® The
complex magnetic structure is considered to be stabilized by the lattice distortion,”
and hence the magnetic structure of fcc Fe precipitates can be concluded to be SDW
as long as the lattice remains cubic.

NI | -El ectronic Library Service



Publication O fice, Progress of Theoretical Physics

120 K. Hirai

The SDW state of Cr, which was regarded as the only example of SDW states in
transition metals, has been extensively investigated in both experimental and theor-
etical aspects.”’ Theoretically, the electronic structure of nonmagnetic Cr has been
studied in detail to explain the mechanism by which the SDW state is stabilized. It
is generally admitted that a special feature of the Fermi surface of Cr, namely, the
nesting of the Fermi surface plays a decisive role in determining the ordering wave
vector of SDW,” which was quantitatively supported by the calculation of unenhanced
spin susceptibility of nonmagnetic Cr.”

The purpose of this paper is to elucidate characteristics of the SDW state of fcc
Fe in comparison with those of Cr. The focus of interest is whether the SDW of fcc
Fe can be ascribed to the nesting mechanism or not. The present author previously
predicted a possibility of the SDW ground state of fcc Fe in the discussion about
systematic change of the stable magnetic structure in transition metals.”? The SDW
ground state was turned out to appear when the valence falls in an intermediate
region between ferromagnetic and antiferromagnetic regions; the ferromagnetic
region spreads from an area of a nearly-filled band while the antiferromagnetic one
spreads around that of a half-filled band. There is thus no direct relation between the
prediction of the SDW ground state of fcc Fe and the nesting of the Fermi surface.
The discussion was based on unenhanced spin susceptibility calculation of non-
magnetic state and energy calculation of SDW states with finite magnetic moments by
means of a real space method for calculating electronic structure of SDW states.
These calculations, however, were intended for qualitative discussion and we took
account of wave vectors only along the line a*(g, 0, 0) but not those along the line
a*(1, g, 0), on which the observed wave vector of SDW of fcc Fe lies; where ¢*=27/a
and « denotes the lattice constant. We therefore reexamine these calculations to
have a quantitatively reliable discussion about the SDW of fcc Fe.

In the previous letter'” we showed a part of the results of unenhanced spin
susceptibility calculation and reported that the wave vector @o at which the unenhan-
ced spin susceptibility (@) becomes maximum corresponds well to the observed
wave vector of SDW. Calculated x(@) has a maximum at @v=a*(1, qo, 0) with qo
~7/48 for fcc Fe and at Qo=a™ (qo, 0,0) with go~46/48 for Cr, while the observed
wave vector is @*(1, 0.123, 0) for fcc FeyCos precipitates” and «*(0.95, 0, 0) for Cr.?
Although @, is nothing but the ordering wave vector of SDW when the magnetic
moments are infinitesimal,’” it is fairly probable that the ordering wave vector of
SDW with finite magnetic moments is not far from .

We discuss in this paper the difference in unenhanced spin susceptibility between
fcc Fe and Cr in more detail. As mentioned above, an effect of the nesting of the
Fermi surface is the point at issue. We compare steepness of x(@) around @, and
Fermi energy dependence of (@) of fcc IFe with those of Cr. We estimate a contribu-
tion in (@) from energy bands near the Fermi surface to draw a definite conclusion
as to the effect of the nesting of the Fermi surface. In addition, we investigate
another mechanism of SDW than the nesting one by introducing non-local spin
susceptibilities. We then discuss which mechanism is adequate to the SDW of fcc Fe
or that of Cr.

In the latter part of this paper we have discussions based on electronic structure
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of SDW states with finite magnetic moments, whereas we have discussions based on
that of nonmagnetic state in the former part. We calculate the electronic structure
of helical SDW states of fcc Fe and Cr in a self-consistent manner by using a
tight-binding method and investigate the stable SDW state by comparing energies of
these states. On the basis of the investigation of the stable SDW state and the
magnitude of local magnetic moments, characteristics of the SDW are discussed with
particular reference to the difference between fcc Fe and Cr.

The outline of this paper is as follows. In § 2 we show calculated unenhanced
spin susceptibilities of fcc Fe and Cr. The difference between them is discussed. In
§ 3 we discuss an origin of the SDW of fcc Fe in terms of non-local spin suscep-
tibilities. We show in § 4 results of electronic structure calculation for helical SDW
states with finite magnetic moments. The stable SDW states of fcc Fe and Cr are
investigated. Finally we summarize our discussion and conclusions in § 5.

§ 2. Unenhanced spin susceptibility

The unenhanced spin susceptibility is defined as susceptibility of nonmagnetic
state with no account of the enhancement due to electron correlation and therefore
can be obtained directly from the electronic structure of nonmagnetic state. We
calculate the electronic structure of nonmagnetic state by the first-principle tight-
binding method'® with a minimal basis set, that is, one s, three p, and five d orbitals
per atom; the potential parameters are those obtained self-consistently for the ex-
perimental lattice constant by the linear muffin-tin orbital (LMTO) method with the
LDF formalism. With eigenvalues €, , and eigenvectors |k, 12> of nonmagnetic state
thus obtained in the tight-binding method, unenhanced spin susceptibility against
staggered magnetic field with a wave vector @, x(®) is calculated as

H@Q)=2u" LIk +Q, vIE, PNEAC PR iCET D (1)

1787 Ep+Qy €k

where f(e) is the Fermi distribution function. We take the temperature to be zero
and then 7(e) is reduced to the step function @(Er—¢), where Er is the Fermi energy.
The summation is accordingly restricted to the case &, ,=Er<e&p1q, Or &,,>Er
;;£k+Qy~

Wave vectors we consider are those along the symmetry lines in the Brillouin
zone including those on the symmetry points. Considering the symmetry of x(@®) in
@ space, we suppose that most states are covered by taking account of these wave
vectors, though we do not reject the possibility that (@) may become maximum at
other wave vectors having lower symmetry.

For the sake of accuracy, we perform the %2 summation of Eq. (1) by dividing the
Brillouin zone into cubes of volume (a*/48)* the number of & points in the irreducible
1/48 Brillouin zone is 10569 for fcc and 5525 for bee.  The summation of such large
number of % points ensures that the numerical error of x(@®) is less than 19%.

Now we show results for fcc Fe and Cr. In Fig. 1(a), we show the calculated
2(@) of fcc Fe in the vicinity of X point of the fcc Brillouin zone, that is, for @ along
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Fig. 1. Calculated x(®) of (a) fcc Fe and (b) Cr. Solid lines are x(@) for their Fermi energies
determined by #.=8 for Fe and n.=6 for Cr; broken lines are those for slightly lower Er (or less
ne: (@) 7.=7.92, (b) 7.=5.94) and dotted lines are those for slightly higher Ex (or more #e: (a) #e
=8.08, (b) #.=6.07). The position of the maximum of x(®) is indicated by an arrow.

the symmetry lines @=a*(1, ¢, q) (0=¢=<1/4), @=0a%(q,0,0) (3/4<¢=1) and @=4*
(1,¢,0) (0=¢=1/4). In Fig. 1(b), we show the calculated x(@) of Cr in the vicinity
of H point of the bcc Brillouin zone, that

(a) fee Fe (b) Cr is, for @ along the symmetry lines @
S R B B P =a*(1—¢,q,9) (0=¢=1/4), @=0a*(q, 0,
o i 02/08 0) (3/4=¢=1) and @=a*(1—q, q,0) (0
& 44748 <¢=1/4). Each curve in these figures
jé“e 18 |- 0748 represents x(®) for various E¥’s near
;\[; i that for Fe or for Cr, in other words, for
& various valences, n¢’s, around eight for
=16 4t i FFe or around six for Cr. As mentioned
2 | above, (@) has a maximum at Qo
5 - =a*(1, qo, 0) with go~7/48 for fcc Fe and
=l |- 1 at @=a*(g, 0,0) with go~46/48 for Cr.
% We notice from Fig. 1(a) that the value
é - Bp(Fe) - Er(Cr) . of qo for fcc Fe increases slightly when
S P B P the Fermi energy Fr rises, or equivalent-
-.08 -.08 -.07 .08 -.02 .01 .04 .07 ly when the valence #. increases. Such
FERMI ENERGY  Ep (Ry) behavior of ¢o against ne agrees qualita-

tively with the observed concentration
as a function of Er. Each line represents x(@; dependence of goss in fcc FeCo alloy
Ex) for @ along (a) a*(1, ¢, 0) and (b) a*(g, 0, precipitates.” Similarly, we notice
0). from Fig. 1(b) that the value of g for Cr

Fig. 2. Calculated x(@; Ex) of (a) fcc Fe and (b) Cr
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increases when the valence 7. increases. This behavior of ¢o against #ne agrees well
with the observed concentration dependence of gons in Cr alloys.” The Er dependence
of go can be also found in Fig. 2, where x(@; Er) is plotted as a function of Er for
various @’s. We confirm from Fig. 2 the above-mentioned behavior of ¢o against Er
Or 7e.

Let us discuss the difference in x(@) between fcc Fe and Cr. We find in Fig. 1 a
sharp rise around Qo in x(@®) of Cr but not such a significant rise in x(@) of fcc Fe.
The difference between fcc Fe and Cr becomes clearer by comparing the Er dependen-
ce of x(@; Ex) shown in Fig. 2; x(@; Ex) of Cr exhibits one definite peak for @ =a*
(1,0, 0) and this peak splits into two when @ deviates from «*(1, 0, 0), while that of fcc
Fe does not exhibit such peaks. Both the rise around @, in x(@) and the shift of the
peak in x(@; Er) accompanied by the change of @ for Cr can be ascribed to the
nesting of the Fermi surface: for @ close to the nesting vector, the denominator in Eq.
(1), €p+q,— €n approaches zero in a wide area of k near the Fermi surface. Thus
we can barely find characteristics indicating the nesting of the Fermi surface in x(Q)
of fcc Fe, whereas we can easily find them for Cr.

In order to determine whether the
nesting of the Fermi surface has an
effect on the maximum of (@) of fcc Fe
8 T 8 T or not, we investigate a contribution in
2(@) from energy bands lying in the
vicinity of the Fermi surface, that is,

6 :‘//‘\_ 6 1 1 from energy eigenvalues ¢, and €. ¢,
in Eq. (1) such that |Er—¢,, | <4 and |Er

—eprg l=4. Here the parameter 4 is

(a) fcc Fe (b) Cr

x(Q)/2u% (Ry™)

varied so that the contribution from the
Fermi surface manifests itself. In prac-
tice we take 4=0.005, 0.01, 0.02 and 0.04
(Ry); it is to be noted that the d band
width is about 0.4 Ry for fcc Fe and 0.5
Ry for Cr. The result is shown in Fig. 3.
It is found that the contribution of Cr
corresponds roughly to the rise around
€)o discussed above even when 4 is
small. As for Cr, energy bands near the
Fermi surface are thus concluded to
WAVE VECTOR @ have an important effect on the determi-
Fig. 3. Contribution in x(@) from energy bands nation of @o. The contribution of fcc
lying in the vicinity of the Fermi surface for (a) Fe, in contrast to Cr, is found to be
fce Fe and (b) Cr. Short broken, dotted-broken, almost independent of @ when 4 is
long broken, and dotted lines correspond to the small. We therefore reach the conclu-
cases 4=0.005 0.01, 0.02 and 0.04(Ry), re- . . - L
spectively. The solid line is the 7(Q) itself, sion that the nesting of the Fermi surface
which is subtracted by ten so as to be placed in has only a minor effect on the maximum
the same figure. of X(Q) of fcc Fe.

SUSCEPTIBILITY
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In the next section we discuss another origin of the maximum of (@) of fcc Fe
and hence a mechanism of stabilizing the SDW of fcc Fe. Contrary to the case of the
nesting of the Fermi surface, the origin of the maximum of x(®) is discussed in a real
space picture with the help of non-local spin susceptibilities.

§3. Non-local spin susceptibility

Local and non-local spin susceptibilities are defined as the susceptibility for the
induced magnetic moment M; at the zth site when the magnetic field #; is applied
locally at the sth site; that is,

xi5=Mi/ls)nso0 . (2)
In terms of yi;, the unenhanced spin susceptibility x(®) is expressed in principle as

X(@):Exﬁexp(i@(ﬁj*Ri)):g)(ogexp(l‘@ﬁs) ) (3)

where R: is the position vector of the 7th site and J represents the displacement
between the jth and 7th sites. In the tight-binding method x.; is calculated by

Xz‘j:(ZﬂBZ/ﬁ)ImeFdw;}ZGz‘m,m(w)Gm,m(w) , (4)

where Gin,n(w) is the site off-diagonal element of the Green function of nonmagnetic
state, which is given by

(a) fcc Fe (b) Cr
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Fig. 4. Calculated xs(@) of (a) fcc Fe and (b) Cr. Solid lines show the correct x(®) calculated by
Eq. (1). Broken, dotted-broken and dotted lines correspond to the cases §=(440), (400) and
(2 20), respectively.
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Ginan(0) =2 Cllet) Co (b1 exp<j<f§ ~R))) 6
B

with Cu(k, 1) denoting the mth (m=s, ps, -+, du, --) orbital component of the
eigenvector |k, 1>. Here we confine ourselves to the case of zero temperature.

We calculate yos with ¢ up to the neighbor (4 4 0) (in units of @/2) for both fcc and
bec lattices; the neighbor (4 4 0) is the 17th neighbor in an fcc lattice and the 12th one
in a bee lattice. In the calculation we perform the k2 summation of Eq. (5) with the
same number of & points as the calculation of x(@). Replacing the summation over
the whole lattice sites in Eq. (3) by the summation up to the shell of the neighbor &,
we can obtain an approximate estimate of x(®), xs(Q); that is,

25(Q)= > Ko exp(iQRy) , (6)

S (Ry=
where Rs=|Rs|. In Fig. 4 we show the obtained x»(@) of various &’s for fcc Fe and
Cr, together with a correct x(@) calculated by Eq. (1). It is found that ys(Q) can
reproduce a general feature of (@) well even by a summation of a relatively small
number of neighboring shells, which is consistent with a similar discussion for 2(Q

=0), or equivalently for the density of state p(£y).®
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Fig. 5. The & dependence of xos (Iower figure) and
%5(Q) (upper figure) for (a) fcc Fe and (b) Cr.
In the lower figures, we omit (a) yes for 8 of the
first neighbor in an fcc lattice and (b) that of
the first and second ones in a bee lattice. In
the upper figures, small marks represent zs(Q)
and a large mark represents the correct value
of 2(@) for @ along (a) a*(1, ¢, 0) and (b) a*(g,
0,0). Each figure of a different ¢ is specified
by the kind of mark and is shifted by one for
every change of g¢.

Let us discuss the maximum of
25(®) in comparison with that of x(Q).
For fcc Fe, xuwon(®) has a maximum
around @=a*(1, 8/48, 0), while both
2c20(®Q) and xu0( Q) have a maximum
at @=a*(1, 0, 0). Although the maxi-
mum of Yu0)( @) is not so clear as that of
the correct x(@), as is seen in Fig. 4,
their positions of maximum are rather
close to each other; the correct y(Q) has
a maximum around Q=qg*(1, 7/48, 0).
For Cr, xs(®) has a maximum at @
=a*(1, 0, 0) even for §=(4 4 0) and there
seems no indication that ys(@) comes to
have a maximum around Q=qa*(46/48,
0, 0) at which the correct (@) has a
maximum. To make this clear, we
investigate the convergence of xs(Q)
with respect to 8. Figure 5 shows xos
and xs(@) as a function of 6. It is found
for Cr that xos nearly converges to zero
and xs(@) settles to a certain value for &
within the 9th and 12th neighbor shells.
The disagreement between this value
and the correct x(®) is particularly
large for the case ¢=46/48, which is the
position of the maximum of x(@). It
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(a) fec Fe (b) Cx may therefore be concluded that x:(@Q)
20 r— |f T 18— 'f r '0 ol cannot reproduce the maximum of (@)
7ol *(1,4,0) I A(;I”a )] even for ¢ of a fairly distant neighboring
44748 shell. The maximum of x(@) of Cr

16748 cannot be explained in a real space pic-

ture referring to neighbors, but in a
reciprocal k& space picture, that is, by the
nesting of the Fermi surface, which is
consistent with the discussion in § 2.

Returning to fcc Fe, we find from
Fig. 5 that s of fcc Fe roughly con-
verges to zero, though the convergence is
L p(Fe) L Ep(Cr) - slow compared with that of Cr. Accord-

ingly xs(@) of fcc Fe is gradually ap-
1;2"09‘_"08'_0107'“006 Tfhog‘ HIM l jMI o7  Dbroaching a certain value for ¢ up to the
FERMI ENERGY  Er (Ry) 17th neighbor shell. We expect that the
disagreement between xs(@) and the
correct (@) is due mainly to this slow
convergence of xos and that xs(@) can
correctly reproduce the maximum of x(@) when the convergence is attained for a
more distant 8. In fact, xs(@) for ¢ of the 17th neighbor (4 4 0) reproduces at least the
position of the maximum of ¥(®), as is mentioned above. We thus reach the conclu-
sion that the maximum of x(®) of fcc Fe can be explained in a real space picture.

In Fig. 6 we show figures similar to Fig. 2 discussed in § 2; we show xuwio(@; Ex)
in place of x(@; Er). It is found that for fcc Fe the Er dependence of x(@; Er) can
be generally reproduced by xwo(@; Er), though the change with respect to @ is not
fully reproduced. We again expect that an improvement will be brought about by
x25(@Q) of a more distant 8. As for Cr, it is found that the peak of x(@; Er) due to the
nesting of the Fermi surface cannot be reproduced by yuw(@; Er), as is naturally
expected.

We thus confirm that the maximum of x(@) can be ascribed to the nesting of the
Fermi surface for the case of Cr but to a mechanism describable in a real space picture
for the case of fcc Fe. Here we discuss this mechanism in brief, recalling that the
maximum of (&) can be reproduced by yuwn(@) for fcc Fe. We can write Yo (@)
for @=a*(1, q,0) as

SUSCEPTIBILITY  x(ss0y(@; Br)/20% (Ry™)

Fig. 6. Figure similar to Fig. 2, except that x(@;
Er) is replaced by xus(@; Ex).

210 Q)= Ko+ Kocos(2mq) + Kucos(dnq) (7)

where  Ko= xowon) —4xo0100 1+, Ko=2x0000— 801+ and Ks=2xowo0)— 8 Xourn)+ -+
We note that xos for & of the nearest neighbor, xoai0) gives a constant term in xs( @)
of @=a*(1, ¢,0). This is a peculiarity of the symmetry line & =a*(1, ¢, 0); the state
specified by a wave vector on this line is described as a stacking of antiferromagnetic
planes with a magnetic coupling between adjacent planes modified by ¢, and the
contribution of xou10) between adjacent planes always cancels out. The maximum of
25(®) can be easily solved from Eq. (7) and is turned out to be determined by
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competition between K, and K, or by total balance among xos's. When xs(@) has a
maximum around @ =a*(1, ¢, 0) of ¢#0, there must be a large negative K (correctly
speaking, | K| < —4K,); in other words,the contribution from s for & of a relatively
distant neighbor such as Yo must exceed that from yos for 6 of a near neighbor such
as xoeon. In the present case, xouzz) has a large negative value (see Fig. 5) and plays
an important role in determining the maximum of xs(@). The mechanism discussed
here is thus analogous to that operating in insulator helical magnets like MnQ,,'**®
and is essentially the same as we presented previously in the discussion about the
possibility of the SDW ground state in fcc Fe.

§4. Helical SDW

We have so far discussed the SDW states in transition metals on the basis of
electronic structure of nonmagnetic state. Although an ordering wave vector of
SDW has been expected to be not far from @, we have to calculate electronic -
structure of SDW states with finite magnetic moments to obtain the ordering wave
vector correctly. Up to the present, an electronic structure calculation of SDW states
has never been carried out except for the calculation by means of a real space
method.” This is because the size of matrices to be solved is fairly large for SDW
states of a long period in orthodox band calculation methods. We can now manage
to calculate the electronic structure of SDW states in a simplified model explained
below. On the basis of calculated electronic structure of SDW states, we discuss in
this section the stable SDW state and the magnitude of local magnetic moments of fcc
Fe and Cr.

As is well known, there are a few types of SDW, for example, helical one,
sinusoidal one and so on. Experimentally, the SDW of Cr is a sinusoidal one® and
that of fcc Fe is conjectured to be a helical one.”’ Nevertheless we take helical SDW
states only into consideration. The calculation for sinusoidal SDW states is more
difficult than that for helical SDW states, because in sinusoidal SDW states the
magnitude of a magnetic moment at each atomic site is modulated and hence the
number of electrons at each atomic site is modulated.’® As for helical SDW states,
the direction of a magnetic moment at each atomic site is modulated but the magni-
tude of a magnetic moment, as well as the number of electrons, is the same for every
atomic site.

We calculate electronic structure of helical SDW states with a simple model
Hamiltonian based on the first-principle tight-binding method. Although tight-
binding parameters in spin-polarized system are in principle to be obtained by
potential parameters determined self-consistently in the local spin density functional
formalism, we make the following simplification to reduce difficulties of computation.
We first assume that most of the tight-binding parameters are the same as those of the
nonmagnetic state except for the energy levels of d orbitals. This assumption is
naturally justifiable when the magnitude of local magnetic moments is small, as is
seen in the calculation of antiferromagnetic Cr.!””  We next introduce parameters U
and J which reflect electron correlation effect; U represents the intra-atomic Coulomb
integral between d orbitals and J represents the exchange one. We then adopt a
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Hartree-Fock approximation to determine the spin-dependent shift of the energy
levels of d orbitals in a self-consistent manner. It is to be noted that for helical SDW
states the parameter which we vary is a single one Ur=(U+4])/5, since there is no
charge modulation in helical SDW states. Details of the derivation of the model
Hamiltonian is referred to Ref. 9).

The Hamiltonian for helical SDW states which we take is accordingly written as
the sum of the tight-binding one of nonmagnetic state, Hnon and the parametrized one
for the electron correlation in & orbitals; that is,

HSDW:Hnon"{"};:mEéd (;,J;(Di)dd'ag}mdimo" (8)
with
1 cos 6; sinf.exp(—i¢p;)
Bizi U M 7o . . 5 9
FEE2 | sinGexp(ig,) —cos; ®)

where @imo (alns) is the annihilation (creation) operator for an electron of spin ¢ in the
mth orbital on the ¢th site. The direction of the magnetic moment at the zth site is
described by the polar angle &; and the azimuthal one ¢;, and we can choose the
conditions #;= QR; and ¢.=0 without loss of generality for a helical SDW with a
single wave vector §. The d-component of the magnitude of the magnetic moment
at the tth site, M., which is common for every atomic site in the case of helical SDW
states (that is, Ms= M, irrespective of 7), is determined self-consistently by the
following equations:

Mdi:mgd[COS@i(<Cljm 1 Qim > =L ain ) Gim |, >)

+Sin5i(exp(*i¢z‘)<d§m 1 im | >+exp(z’¢z)<a;fm | Qim 0 >)] (10)

and
- JEF .
(s @ime> =(—1/7)Im j’ dwimo|(w— Hew)  lima’> | (11)

The Hamiltonian Hspw can be readily solved in the basis set consisting of |kmo),
|E+ Qmo>, -+, where the number of these basis vectors depends on the period of SDW.

In practice we calculate the electronic structure of commensurate helical SDW
states of @=a*(1, ¢, 0) with ¢=0, 1/8, 1/4 in an fcc lattice and @=a*(q, 0, 0) with
g=1,15/16, 7/8 in a bec lattice. The size of the matrix to be solved is 36 Lspw for the
fce SDW and 18Lspw for the bece SDW, where Leopw denotes the number of layers of
which one period of SDW consists; for example, the matrix is 576 X576 for the fcc
SDW with @ =a*(1,1/8, 0) and also 576 X576 for the bcc SDW with @ =4*(15/16, 0, 0).
We note that the electronic structure calculation of helical SDW states with a large
Lspw requires much computation time even by this simplified model and that it is still
difficult to perform the calculation by the LMTO method or another.

As for an arbitrary parameter Uk, we can estimate a value of Ur from the
first-principle LMTO calculation for the antiferromagnetic states of fcc Fe or Cr.
For example, we can tentatively choose Uk such that the magnitude of local magnetic
moments of the antiferromagnetic state calculated by the present model coincides
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Fig. 7. Magnitude of local magnetic moments of (a) the states AF, H(1/8) and H(1/4) of fcc Fe and
(b) the states AF, H(15/16) and H(7/8) of Cr. The cases of #.="7.92, 8 and 8.08 are shown for fcc
Fe and those of 7.=5.92, 5.96 and 6 are shown for Cr. The value indicated in figures represents the
value of Ur{mRy).
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Fig. 8. Energy of the SDW states of (a) fcc Fe and (b) Cr. The energy is measured from that of the
corresponding nonmagnetic state. Others are the same as Fig. 7.

with that by the LMTO method, which was reported to be about 1.6 us for fcc Fe'® and
0.3 us for Cr'” in the case of the experimental lattice constant. Nevertheless we do
not determine a specific value of Uk but discuss changes of the magnitude of local
magnetic moments and the energy with respect to a change of Uk to illustrate the
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difference between fcc Fe and Cr. Discussion concerning the value of Uz and in
addition the validity of the present model will be published elsewhere together with
details of the calculation.

Now let us discuss results of the calculation. For the sake of simplicity,we
abbreviate the fcc SDW states of @ =a*(1, ¢, 0) with ¢=0, 1/8 and 1/4 as states AF,
H(1/8) and H(1/4), respectively and the bcc SDW states of @ =a*(g, 0, 0) with ¢=1,
15/16 and 7/8 as states AF, H(15/16) and H(7/8), respectively. We show in Fig. 7 the
magnitude of local magnetic moments, 4/ and in Fig. 8 the energy, E of these SDW
states, where £ is measured from the energy of the nonmagnetic state with the same
ne. For fcc Fe we present cases of the valence 7n.=7.92, 8 and 8.08. For Cr we
present cases of #7.=5.92, 5.96 and 6; for the case that #e is more than 6, we have an
almost only solution of the state AF for a small Uk.

In the first place, we look over the change of M with respect to the change of Uk
for every case of n.. The change of M is rather moderate for fcc Fe compared with
that for Cr; we note here that we choose values of Uk at intervals of 4 mRy for fcc Fe
and of 1 mRy for Cr. There is almost no essential difference between the cases 7.
=7.92, 8 and 8.08 for fcc Fe, whereas there is an obvious difference between the cases
7ne=>5.92 and 6 for Cr. As for the change of M between SDW states, it is found for
fcc Fe that M of the state AF is the largest of the three when Uk is small and that M/
of the state H(1/4) becomes the largest when Uk becomes large. On the other hand,
it is found for Cr that M of the state AF is always the largest except for the case of
Uz=0.075 Ry and #n.=5.92, where the state H(15/16) has the largest M. As e
increases, the difference of M between the states AF and H(15/16) becomes large and
finally the state H(15/16) cannot hold a finite M.

In the next place we discuss the state having the lowest energy. It is found first
that the state having the largest M does not always have the lowest energy. For fcc
Fe, the state H(1/8) has the lowest energy of the three for all cases of Uz and #e.
However, the energy difference between the states H(1/8) and H(1/4) becomes smal-
ler, regardless of Ug, when #e increases. We therefore expect that ¢ of the wave
vector @*(1, g, 0) of the lowest energy state increases continuously between 1/8 and
1/4. As for Cr, the state H(15/16) is found to be the lowest energy state of the three
for every case of #.=5.92, 5.96 or 6, when Uk is so small that M of the state AF is
around 0.3 us. Nevertheless, we expect that ¢ of the wave vector a*(q, 0, 0) of the
lowest energy state is between 7/8 and 15/16 for #.=5.92, around 15/16 for 7. =5.96,
and between 15/16 and 1 for n.=6, judging from the energy difference between the
three states. As Ur becomes large and accordingly M becomes large, ¢ approaches
1 and the state AF gets to have the lowest energy for every case of ne.. It is to be
emphasized that the wave vector of the lowest energy SDW state when A is small
agrees with the wave vector at which the unenhanced spin susceptibility becomes
maximum for both fcc Fe and Cr. We however need further calculations for a state
with an intermediate value of ¢ between 0, 1/8 and 1/4 for the fcc SDW and between
1, 15/16 and 7/8 for the bcc SDW to determine the wave vector of the lowest energy
state accurately.

We here refer to the difference in the SDW states between fcc Fe and Cr. Asis
seen above, the SDW of fcc Fe is rather stiff but the SDW of Cr is soft against the
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change of Uk or #e; the magnitude of magnetic moments or the wave vector of the
lowest energy SDW state does not change much for fcc Fe but it changes much for Cr.
Above all, the behavior against the change of Ur and hence against that of M is
different between fcc Fe and Cr: when M becomes large, the wave vector of the lowest
energy SDW state remains almost the same position for fcc Fe, while it approaches
rapidly to the wave vector of the antiferromagnetic state for Cr. This rapid change
of the wave vector for Cr may be due to the fact that the SDW of Cr is ascribed to the
nesting of the Fermi surface. We suppose that features which the Fermi surface of
nonmagnetic state possesses fade out and the nesting of the Fermi surface becomes
obscure when M becomes large. In this connection, we may add the following fact:
in the case that the SDW state H(15/16) or H (7/8) of Cr has the lowest energy, the
SDW state gain a certain amount of energy, for example, about 0.08 mRy for the state
H(15/16) of 7.=5.96 (see Fig. 8), once having a solution of a finite M. The explana-
tion of this fact in view of the nesting of the Fermi surface will be presented in a future
publication.

§ 5. Concluding remarks

We have discussed in the former half of this paper the SDW states of fcc Fe and
Cr on the basis of the unenhanced spin susceptibility x(@) and the non-local spin
susceptibilities xos’'s of nonmagnetic state. We have obtained for Cr substantial
evidences pointing that the nesting of the Fermi surface plays a decisive role in
determining the maximum of x(@) and hence the wave vector of SDW. Above all,
the typical shift of peaks observed in the ¢ dependence of x(@) and the estimate of
the contribution from energy bands lying in the vicinity of the Fermi surface are
conclusive evidences. In contrast to Cr, we have not obtained an evidence pointing
that the nesting of the Fermi surface plays such a decisive role for fcc Fe. We have
then tried to discuss the origin of the x( @) maximum of fcc Fe in terms of xos, in other
words, a real space expansion of yx(@). It has been found that the real space
expansion of x(®) up to the 17th neighbor (4 4 0) of an fcc lattice can reproduce the
maximum position of x(@) of fcc Fe. This fact enables us to conclude that the x(@)
maximum of fcc Fe is determined by balance among xos’s, or by competition between
x0s's for & of a near neighbor and those of a slightly distant neighbor. The origin of
the SDW of fcc Fe thus has been shown to be different from that of Cr.

Now we briefly recall the previous discussion in which we predicted the possibil-
ity of the SDW ground state of fcc Fe. As mentioned in § 1, the difference between
the previous discussion and the present one consists essentially in the kind of wave
vectors. In the previous discussion, we investigated SDW states with a wave vector
Q=a*(q,0,0) to show that the condition for the appearance of SDW is given by xos
for a near neighbor ¢ such as a1 and xoeen. Since behavior of these xos’s with
respect to the filling of d band is simple, we could connect the appearance of SDW
with the number of d electrons as follows: the most stable state changes continuously
from an antiferromagnetic state to a ferromagnetic state via an SDW one when the
number of d electrons changes from five to ten. In the present case of @ =4*(1, ¢, 0),
however, the condition for the appearance of SDW is given by xos for 6 of a distant
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neighbor, the behavior of which is rather complex. It is therefore not easy to express
the appearance of SDW adequately by connecting with a quantity with a physical
meaning, though the number of d electrons is really a decisive factor in the appear-
ance of SDW. At any rate, the mechanism of the appearance of SDW which we
presented previously has been proved to be valid.

In the latter half of this paper we have shown that helical SDW states with finite
magnetic moments have really lower energy than the antiferromagnetic state; that the
wave vector of the helical SDW state having the lowest energy nearly equals to that
obtained from the maximum of the unenhanced spin susceptibility when the magni-
tude of local magnetic moments is small. We have investigated characteristics of the
helical SDW states in view of the magnitude of local magnetic moments and the state
of the lowest energy. The change of the state of the lowest energy when the
magnitude of local magnetic moments becomes large has revealed the difference in the
helical SDW states between fcc Fe and Cr.  The difference is considered to arise from
the fact that the SDW of Cr is ascribed to the nesting of the Fermi surface but the
SDW of fcc Fe is not. Finally, we must add that we have discussed helical SDW
states instead of sinusoidal ones for Cr. We expect however that the energy
difference between helical and sinusoidal SDW states with the same wave vector is
small compared with the energy difference between helical SDW states with different
wave vectors. The conclusion for the stable SDW is therefore expected to be
unchanged.
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