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  On  the basis of  an  electronic  structure  caleu!at.ion,  spin  density wave  states  of  fcc Fe and

Cr are  discussed with  part,icu]ar attention  to the difference between  them.  The wave  vector

at  which  the unenhanced  spin  susceptibility  ef  nonmagnetic  fcc Fe or  Cr becomes maximum
is shown  to correspond  well  te the  observed  wavc  vector  of  spin  density wave.  It is found
that a nesting  of the Fermi  surface  harclly contribtttes  te determining the  wave  vecl/or of the

susceptibility  maxirnum  for fcc Fe, which  exhibits  a rdmarkable  contrast  to Cr. Another
reasoning  of  the  susceptibility  inaximum  is extended  frorn a  real  space  vie",point.  Difference

in characteristics  of  the  spin  density wave  state  bet,ween fcc Fe  and  Cr  is further i]lustrated

by the  electronic  structure  calculation  of  spin  density wave  states  with  finite magnetic

moments.

ga. InSroductEon

   In transition metals  electronic  structure  and  electron  correlation  play decisive

roles  in determining their magnetism.  Aithough  these two  
'factors

 are  both impor-

tant, ･in some  problems  electron  correlatiori  can  be treated less rigorously  than

electronic  structure  or  vice  versa.  Magne'tism at  ground  state  presumably  corre-

sponds  to the former  case:  electron  correlati.c)n is treated within  a mean-field  approx-

imation like a local density functional (LDF) one.  The stabl･e magnetic  structure  in

3d  transition rnetals  has been discussed in this way  and  it has been  shown  that the

observed  magnetic  structure  of  3d  transition metais  can  be well  explained  through

investigations of  their electronic  structures.  Energy  difference between magnetic

structures  has been realized  te arise  mainly  from  kinetic energy  of  3d  electrons.  The

present  paper  follows the same  way  to discuss the spin  density wave  (SDW) states  of

fcc Fe  and  (bcc) Cr.

   The SDW  state  of  fcc 
'Fe

 has recently  been reported  by Tsunoda in his series  of

X-ray and  neutron  diffraction experiments  for rFe  precipitates in a  Cu  matrix,i)"3)

Most of  the 7Fe  precipitates have been found to have distorted iattices and  complex

rnagnetic  structures  similar  to an  antiierromagnetic  one  of  the first kind of  the fcc

lattice;i) the first kind antiferromagnetic  structure  was  foranerly considered  to be  the

magnetic  structure  of  7Fe  precipitates.`) In some  of  the rFe  precipitates such  as  7
FeCo  alloy  precipitates, however, it has been found that  the lattice distortion is

suppressed  and  the magnetic  structure  is net  the complex  one  but SDW.2)'3) The
eomplex  magnetic  strueture  is considered  to be stabilized  by the lattice distortion,S)
and  hence the  magnetic  structure  of  fcc Fe precipitates can  be concluded  to be SDW
as  leng as  the lattice remains  cubic.
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   The  SDW  statc  of  Cr, which  was  regarded  as  the only  example  of  SDW  states  in

t.ransition n'ietRis,  has been extensively  in･vestigated in both experirnental  and  theor-

etical  aspects.6)  Theoretically, the  electronic  structure  c)f nonmagnetic  Cr has been

studied  in detail to explain  the mechanism  bv which  the SDW  state  is stabilized.  It

is generally  admitted  that a  special  feature of  the Fermi  surface  ef  Cr, namely,  the

nesting  of  the F/- erini  surface  plays  a  deci,sive role  in determining the ordering  wave

vector  of  SDVLr,7) which  was  quantitatively  supported  by  the calculation  of  uncnhanced

spin  susceptibili'L'y of  no,/imagnetic  Cr.S)
   The  purpese  of  t.his paper  ;･s to elucidatc  characteristics  of  the Sl)W state  of  t'cc

Fc  in comparison  with  those  of  Cr. The  foctis of  interest is whether  the SDW  of' fcc

Fe can  be ascribed  to the nesting  mechanism  or  not.  The  present' aut'hor  previously

pretlic'L'ecl, a  possibjlity of  the SD'NKi grouncl state  of  fcc Fe  in the discussion aboLit

systcmatic  change  of  the stable  xllagnetic  structure  in transition metals.9)  IE]he SDX]tJ
ground  state  was  ttirned out  t･ c) appear  when  the  valence  ttalls ifi an  interrnediate

region  between  ferromagnetic ancl  antiferron:agnetic  regien's;  the ferromagn ¢ tic

region  spreads  frorn an  area  of  a  ncarly-filled  band  while  the antiferromagnetic  one

sDreads  around  ti at  of  a  half-fi11ed bancl. There  is thus  no  direct relation  between the -prediction

 of  the SI)"r grotmd  state  ohf f/cc Fe  and  the nesting  of  the Fermi surface.

The  discussion was  based on  unen,hanccd  spin  susceptibiiity  calcuiatien  of  non-

r/nngne`Lic  s'tate  and  energy  calculation  of  SDW  states  with  finite magnetic  moments  b>t

means  of  a real  space  me"L'hod  for ･."alculating electronic  structure  of  SI)'W states.
These  calculations,  however, vLrerc  intended 'for qualit.atiKife cliscussion  and･i we  took

aecount  of  mJave' v･ectors  only  along  the line a'(q,  O, O) but not  those along  the line
a*(1,  G, O), on  which  the  obserxied  wnve  vec'/tor of  SDXV  oi" fcc Fe ]ies; where  a*=27i!a

and  a  denotes the lattice constant.  Wpv theret'ore reexamine  these  calculations  to

have a quantitat'ively rel//able  discussioi'i about  the SD"i  of  fcc Fe.

   In the prcviotis letteriO) we  showcd  a. part of  the results  of  unenhanced  spin

susceptibility  cal,culation  aRd  reported  that the wnve  vector･ Qo at  which  the unenhan-

ced  spin  suscept{bility  x(Q)  becomes  maximum  correspends  well  to the observed

w･ave  vector  of  Sli)11i. Calculated ;if(ell) has  a  maxiinum  at  apo::a*(1, qo, O) svith  qo
fi･-7/48

 for fcc Fc and  at  ¢}or=a" (qo,e,O) with  qo--46!48  for Cr, while  the observed

Enyrave vector  is a"(1,  O.123, 0) for fcc .F. eg7Co3  precipitates2) and  a*(O.95,  O, O) for Cr."}

A]though eso is nothing  but the orderin.q  wnve  vector  of  SDVt･' when  thc magnetic

moments  are  infinitesimal,ii) it is feir}y probable  that the ordering  wave  vector  of

SDIV with  flnite rnagnetic  moments  is not  
'far

 from  ope.
   We' discuss in tl'iis. paper  the difference in unenhanc ¢ d spin  susceptibili)L'y between
fcc Fe and  Cr in more  detail. As  mentioi'ied  above,  an  effect  of  the  nesting  of' the

Fermi  surface  is the point at  issue. Eas'e compare  steepness  o'iC x(Q)  arourid  Qo and

Fermi  energy  dependeiice of  x<  ee) of  fcc Fe  with  these  oi" Cr. IVe estimate  a  contribu-

tion in x(Q)  from  energy  bands near  the Fermi  surface  to draw  a  definite conclusion

as  to the effect  of' the ncst'in.u  of  thc rtermi surface.  In addition,  we  investi.uate

nnother  mechanisrn  of  SD"i than  the  nesting  one  by introducing non-locai  spin

susceptibilities,  "ie thell discuss Ni･,hich mechanism  {s adequate  t.o the SII)W of  fcc Fe

or  that of  Cr,

   In the latter pnrt of  
LLhis

 paper  we  have  discussions based on  electronic  structure
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of  SDW  states  with  finite magnetic  mornenl/,s, whereas  we  have discussions based on
that of  nonmagnetic  state  in the former part. We  calculate  the electronic  structure

of  helical SDW  states  of  fcc Fe  and  Cr in a  self-consistent  manner  by  using  a

tight-binding methed  and  investigate the stable  SDW  state  by comparing  energies  of

these states,  On  the basis of  the investigation c)f the  stabie  SDVKI state  and  the

magnitude  of  local magnetic  moments,  charael:eristics  o'f the SDW  are  discussed with

particular reference  to the di£ference between  fcc Fe  and  Cr.

   The outline  of  this paper is as  follows, In g 2 we  show  calculated  unenhanced

spin  susceptibilities  of  fcc Fe  and  Cr. The  difference between  them  is discussed. In

g 3 we  discuss an  origin  of  the SDW  of  fcc Fe  in terms  of  non-local  spin  suscep-

tibilities, ""e show  in g 4 results  of  electronic  structure  calculation  for helica] SDW
states  with  finite magnetic  moments,  The  stab]e  SDW  states  of  fce Fe and  Cr are

investigated. Finally we  summariz'e  our  discussion and  conclusions  in S 5.

g 2. Unemkamced  spgfft suseeptihiglty

   The unenhanced  spin  susceptibility  is defined as  susceptibiiity  of  nonmagnetic

state  with  no  account  of  the enhancernent  due to electron  cor, relation  and  therefore
can  be obtained  directly from  the electronic  structure  of  nonmagnetic  state, "re
calculate  the electronic  structure  of  nonrnagnetic  state  by  the first-pri'nciple tight-

binding methodi2)  with  a  ininimal  basis set,  that is, one  s, three b, and  five d  orbitals

per  atom;  the potential parameters  are  those obtained  sel'f-consistently  for the ex-

perirnental  lattice constant  by the linear mu'can-tin  orbital  (Ll/iv{TO) me'thod  with  the

LDF  formalism. With  eigenvalues  Ek,,, and  eigenvectors  de, l.t> of  nonmagnetic  state

thus  obtained  in the tight-binding method,  unenhanced  spin  su$ceptibility  against

staggered  magnetic  field with  a  wave  vector  Q, x(Q)  is calcu]at'ed  as

                               ,f(eh,,･)'''f(eh--e,,)
     x(Q)-21t.Z::E]<de+Q,ylk,1.t>-----  

-----
 

,
 (1)

               lt ri,v' eb+Q,y"  Ele."

where  f(e) is the Fermi  distribution function. We  take  the temperat/ure to be zero

and  then  f(E) is reduced  to the step  function e(EF-E),  where  EF js the Fermi  energy.

The  summation  is accordingly  restricted  to the case  Eh,,,fl;.E)i,''<Eh!Q,y or  Ele,t,>Eir

leh+Q,y-

   Wave  vectors  w･e  eonsider  are  those along  the symmetry  lines in the Brillouin
zone  inciuding those on  the symmetry  points. Considering the symmetry  of  x(Q)  in

Q space,  we  suppose  that most  states  are  covered  by  taking  account  of  these wave

vectors,  though  we  do not  reject  the possibility that x(Q)  m;iy  become  maximum  at

other  wave  vectors  having lower symmetry,

   For  the sake  of  accuracy,  we  perform  the k surnmation  of  Eq. (1) by dividing the
Brillouin zone  into cubes  of  volume  (a*!48)'1 the number  of  k  points in the irreducible

1/48 Brillouin zone  is 10569 for fcc and  5525 fer bcc, The  s", tmmation  of  such  large

number  of  h  points ensures  that the numer'ical  error  of  x(Q>  is l.ess thaii 1%.

   Now  we  show  results  for fce Fe  and  Cr. In Fig. 1(a), we  show  the calculated

x(Q)  of  fcc Fe  in the vicinitN' of  >< point of  the fcc: Brillouin zone,  that is, for Q  along
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  Fig. I. Calculated x(Q)  of  (a) fcc Fe  ancl  (b) 'L';r,
 Solicl Iines are  x(Q)  ior their Fermi energi'es

    determined b}, n,, ==8  for Fe and  ne=6  for Cr; brolcen lines are  those for slightly  Iowcr EF (or ]ess
    ne:  (a) ne-7.9Lt,  (b) ne=.-5.94)  and  dotted Ikies are  Lhose  for slightly  higher EF (or niore  ne:  (a) ne

    =8.08,  (b) vee-6.e7).  The  positio]i or  the max{rnum  or  x( ap) is indicated by  an  arrow.

the symrnetry  l/ines ap-a*(1, q, q) (e4.q41/4), Q==a"(q, O, O) (3!4!- ql-..1) and  @:=a"
(1, q, O) (OS-qS- 114). In Fi.fi. I(b), we  show  

"L'he

 calculated  x(Q)  c)f Cr in the vicinity

                                   of  I{ point of  the bcc Brillouin zene,  that
 (a) fcc R]
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           Each  line represents  x(Q;

             ., q,O)  anc]  (b) a'(q,O,

is, for Q along  the  syrnmetry  lines Q
-a*(l-q,  q, q) (O: ql-1/4),  ap-a"(q, O,
e) (314$qll) and  Q-a*(1-q,  q, 0) (e
f{q5;Y4).  Each  curve  in these figures

represents  x(es)  for various  Eip's near

that for Fe  or  for Cr, in other  words,  for
various  valences,  ?ie's, around  ei.crht for

Fe or  around  six  for Cr. As  mentioned

abev.e,  x(Q)  has  a maximum  at  eeo
=a"(1,  qo, 0) with  qo 

--
 7!48 for fcc Fe  ancl

at  eso-a"(ao, O, O) with  qu 
p--46148

 for Cr.

VVie notice  from  Fig. 1(a) th["tt the value

of  qo for fcc Fe increases slightly  when

the Fermi  energy  EF  rises,  or  equivalent-

ly when  the valence  ne  increases. Such

behavior of  qo against  ne  agrees  quali.ta-
tively with  the observed  concentration

dependence of  qobs in fcc FeCo  alloy

/precipitates.3) Similarry, we  notice

frem Fig. 1(b) that  the value  of  qo for Cr
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increases when  the valence  ne  increases. This behavior ef  qo against  ne  agrees  well

with  the observed  concentration  dependence  of  qobs in Cr alloys.6)  The  EF  dependence

of  qD can  be also  found in Fig. 2, where  2:(Q; EF) is plotted ns  a  function of  EF for

vqrious  Q's. We  confirm  from  Fig. 2 the above-mentioned  behavior of  qo against  EF

or  ne.

   Let us  discuss the difference in x(Q)  between  fcc Fe  and  Cr. We  find in Fig. ]. a
sharp  rise  around  Qo in x(Q)  of  Cr but not  such  a  significant  rise  in x(Q)  of  fcc Fe.
The  difference between  fcc Fe  and  Cr becomes clearer  by comparing  the EF  dependen-

ce  of  x(Q;  EF) shown  in Fig. 2; x(Q;  EF) of  Cr exhibits  one  definite peak  for Q=-=--a"
(1, 0, 0) and  this peak  splits  into tw() when  Q deviates from  a"(1  

,
 0, e), xarhile that oftCcc

Fe does not  exhibit  such  peaks. Both  the rise  around  Qo in x(Q)  and  the shift of  the

peak  in x(Q;  EF) accoinpanied  by the  change  of  Q  for Cr can  be ascribed  to the
nesting  of  the Fermi  surface:  for Q close  to the nesting  vector,  the  denominator in Eq.

(1), Eh+Q,,-ek,,,  approaches  zero  in a  wide  area  of  k near  the Fermi  surface,  Thus

we  can  barely find characteristics  indicating the nesting  of  the Fermi  surface  in x(Q)
of  fcc Fe, whereas  we  can  easil>/ find thern for Cr.

                                       gn order  to determine whether  the

                                   nesting  of  the Fermi  surface  has an

 (a) 
fcc
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  1ying in the vicinity  of  the Fermi surface  for (a)
  fec Fe  and  (b) Cr, Short broken, dotted-broken,
  long broken, and  dotted lines correspond  to the

  cases  di=-O.O05, O,Ol, O.02 and  O.e4(R}i re-

  spectively.  The  solid  line is the x(Q)  itse]f,

  which  is sublracted  by ten so  as  to be placecl in

  the same  figure.

or  not,  we  lnvestigate  a  contributioii  in

x(Q)  from  energy  bands  lying in the

vicinity  of  the I;ermi surface,  that is,

from energy  eigenvalues  ek,,, and  Eh-,Q,y

in Eq. (1) such  that  lfF-eh,,,l Szl and  EF
-Ek･,Q,.I;S-･･`ll.

 }'Iere the parameter  A  is

varied  so  that the contribution  from  the

Fermi  surface  manifests  itsel£  In prac-
tice we  take  A=-:- e.Oe5, O.el, O.02 and  O,04

(Ry); it is to be neted  that the d band

width  is about  O,4 Rv  for fcc Fe  and  O,5

Ry  for Cr. The  result  is shown  in Fig. 3.
It is found that the contri'bution  of  Cr

corresponds  roughly  to the rise around

age discussed above  even  when  ti is

small.  As for Cr, energy  bands near  the

Fermi  surface  are  thus  concluded  to

have  an  important effect  on  the determi-

nation  of  Qo. The  contribution  of  fcc
･Fe,

 in contrnst  to ()r, is found to be
almost  independent of  Q when  d  is
small.  We  therefere  reach  the conclu-

sion  that ,the nesting  of  the Fermi  surface

has only  a  minor  effect  on  the maximum

of  x(Q)  of  fcc Fe,
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   In the next  section  we  discuss another  origin  of  the maximum  of  x(op) of  fcc Fe

and  hence a mechanism  of  stabilizing  the SDW  of  fcc Fe. Contrary to the case  of  the

nesting  of  the Fermi  surface,  the orittin  of  the maximurn  of  x(Q)  is discussed in a real

space  picture with  the help of  non-local  spin  susceptibilit'ies.

                    g 3. Napm-aeeall spl,n swsceptEhgggty

   Local  and  non-local  spin  susceptibilities  are  defined as  the susceptibility  fer the

induced magnetic  moment'  Mi  at  the i'th site w･hcn  the magnetic  field hj :･s applied

locally at  the fth site;  thnt  is,

     xi.i:-(vai!hj)h,-･o. (2)

In terms  of  xij, the unenhanced  spin  susceptibility  x(Q)  is expressed  in pri･nciple as

     x(Q)-Zzi,fexp(iap(Ae.i-nei))=::xosexp(iopnes),  (3)
           j s

where  rei is the position vector  of  the x'th site  and  6 represents  the displacement

between the  y'th and  ith sites.  In the tight-binding method  xii is calculated  by

     xzJ-(2ttB2f?T)ImfEFdcv,III,l.Gzm."t(cv)(],n,ima(to), (4)

where  Gim.･n(di) is the site off-diagenal  element  of  the Green  function of  nonrnagnetic

state, which  is given  by･

(a) icc Ile20
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                        Solid Hnes  show  the correct  x(Q)  calcnlated  by

Broken, dotted-broken nnd  dottad lines corre.spond  t.o t,he cuses  o".-(･1 ,1  e), (,i OO) and
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     G,.,.,.(ev)-,:,.c.(k,,tt)c.*(k,")-g\-P(Ski(-t-.-!,tLil/-Kgi/- (s)

with  Cm(k,pt) denoting the mth  (n2=s,Px,"'i,das･,---) erbital  compenent  of  the
eigenvector  Ile, It>. Here we  confine  ourselves  to the case  of  zero  temperature,

   We  calculate  xos with  B up  to the neighbor  (4 4 O) (in units  of  af2)  for both fcc and
bcc lattices; the neighbor  (4 4 O) is the 17th neighbor  in an  fcc lattice and  the 12th one
in a bcc Iattice. In the ca]culation  we  perform  the h summation  of  Eq. (5) with  the
same  number  of  th points as  the ca]culation  of  x(Q).  Replacing the summation  over

the whole  Iattice sites in Ilq. (3) by the summation  up  to the shell  oi" the neighbor  o",

we  can  obtain  an  approximate  estimate  ef  x(Q), xs(Q); that is,

     Xs(Q)=,,(.ec,..,,xosrexp(iQresf), (6)

vLxhere  1?a=IKal, In Fig. 4 we  ehow the obtained  xs(Q)  of various  o"'s f.or fcc Fe and

Cr, together  with  a correct  x(Q)  caleulated  by Eq. (1), lt is found that  xs(Q)  can

reproduce  a general feature of  z(Q)  mJell  even  by a  summation  oi' a  relatively  small

number  ef neighboring  shells,  which  is cons･istent  with  a  similar  discussion for x(Q
=:O),  or  equivalently  for the density of  statc/  p(Eit).'3)

   (a) fcc ile (b) Cr Let us  discuss t.he maximum  of
    2o le "

"Ttvt-ec-"1"xptSiiy919

IB

17

16

48g
 .ww  cr

e ,.iP
 

u

 d9b"spP",, "

G .ee"
 

"
 .'Vlw.

  
'

v

  ,v'

:II.avtsza .l

          "15

 Oa234

   .05A'r>,cavei

¢  .OQny:x

  
-.05O1234

   Rfifa

17

16

gs

t4

13

.os

.o

L.05

o

48g42

 dism

 1 ."ig

 
::  .eee44

 oM･fi' g"e

 :. ?46a
 ･: .fivv

4S

og

v  
'S

 rev:,

 s･::
 eA  A

e"'ii. lj't'

 ":'tu1

 2 34

O12S4

   Rs!a

Fig. 5, The  3 depenclence of  xes (Io",er figure) and

  xs(Q) (npper fiR'ure) for (a) fcc Fe  and  (b) Cr.
  In the lower figures, we  omit  (a) xoo foi' 6 eir the

  fiTst neighbor  in an  fec lattice and  (b) that  ol

  the  first and  second  ones  in a bcc lattice. In

  the uppcr  figures, smaEl  marks  represent  xe(Q)

  and  a  lurge mark  represents  tlLe cerrect  value

  of  x( Q) for Q aleng  (a) a"Q,  q, O) and  (b) a"'{q,
  O, O). Each  figure of  a  difiCerent q is specified

  by the k{nd of mark  and  is shifted  by  one  for

  every  change  of  q.

zs(Q)  m  comparison  with  that  of  x(Q).
For  fcc Fe, x(44o)(Q) has a  maximum

around  Q=-:=--a"(1, 8148, O), while  both

x(22o}(op) and  x(4ou)(Q) have  a  maximuin

at  Q==-'-a*(1, e, 0). Although  the maxi-

mum  of  x(,i4m(Q) is not  so  clear  as  that of

the correct  x(Q),  as is seen  in Fig. 4,
their positions of  maximum  are  rather

close  to each  ether;  the correct  x(e)  has
a maximum  around  Q==a"(1, 7!48, O).
For Cr, xs(G)  has a  maximum  at  Q
'==  a'(],  O, O) even  for ol -==  (4 4 O) and  there

seems  no  indicatien that xti(G)  cornes  to

httve a  rnaximum  around  Q=a'(46k8,
O, O) at  which  the correct  x(Q)  has a

maxirnum.  To  rnake  this clear,  we

investigate  the convergence  of  zs(Q)
with  respect  to 5, Figure 5 shows  xoa
and  xs(Q)  as  a  fttTictien of  6. It is found
t'or Cr that  xoe neariy  converges  to zero

and  xs(Q)  settles  to a certai/a  value  for o"
within  the 9th and  l2th neighbor  shells.

The  disagreement between  this value

and  the correct  x(ag) is particularly
large fer the case  q--46148,  which  is the

posit:Ton of  the inaximum  ol  x(Q).  It
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(a) fcc Fe20r"TNdi,Ltptms.--,･
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(b) Cr
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          FERMI  ENER.GY  EF  (Ry)

Fig. 6. Fig'ure similar  te F{g.r. 2, except  thzt  x((}:

   EF) is replaced  by xc"m(Q;  E'F).

correctly  reproduce  the maximurn  of

inore  distant 6. Jn i"act, xE(  ap) for 8 o

position of  thc maximum  of  z(Q),

sion  that the maximum  oi  x(Q)

   In Fig. 6 we  show  figures sirnilar  to

in place  of  x(Q;  Ei;). It i.s found that. for

be generally  reproduced  by x"4e)(Q; EF),
fu]ly reproduced.  XNe again  expect  that

xe(Q)  o'f' a  more  distant a. As  for Cr, it

nesting  of  the Fermi  surface  cannot  be
expected.

     x( (e)

   f the 17th neighbor  (4 4 O) reproduces  at. Ieast th

 ns  is mentioned  above.

of  fcc Fc can  bc cxplaii]ed

      Fig.

        
'fcc

       theugh  the c

       an

      krfound that the peak  of  x(Q

       reproduced

rnay  therefore be cencluded  Lha'[ xs(Q)

canr,et  reproduce  the maximum  of  x( ee)
even  for 6 of  a  fairly･ distant neighboring
shell. The  maximum  of  x(Q)  ol' Cr

cannot  be ex'plained  jn a  reai  spnce  pic-

ture referring  
'Lo

 neighboi's,  but in a

reciprocal  k spafce  picture, thati s. , 1)y the

nesting  of  the Ferini･ surface,  which  is

consiste.nt  with  the disc:ussion iii S 2,

   Returning  to fcc Fe, vLre find from

Fig. 5 that zon ef  /t'cc I?e roughly  eon-

vcrges  to zcro,  theugh  the convergence  is

slow  compared  with  that of, Cr. Accord-

ingly xdi(Q) of  fcc 
Ty'e

 is gradtially ap-

proaching  a  certain  vfaiue  
'for

 6 up  to  the

l7th neighbor  shell. We  expect  that the

diisagreement betw･een xs(es) and  the

corrcct  x(ap) is due mainly  to this slow

convergencei  of  xes and  that xs(ee) can

when  the convergence  is attained  for a

                                 e

            We  thus  reach  the conclu-

             in a real  space  picture.

 2 discussccl in g 2; we  she"i  x{"o}( ap; EE,)
 Fe  the EF dependence  of  x(e;  Eb･) can

        hange  with  respect  to Q  is not

improveine.nt will  be brought. abeut  by

                     ; Ei,) due to the

       by xu4o)(Q;  Ei,), as  is iiaturally

   Wre thus  con'firm  that the maximum  of  x( ee) can  be ascribed  to the nesting  o' f the

Fermi  surface  fer the case  of  Cr buL to a  mechanisrn  descri.bable in a  real  space  picture
fer the case  ef  fcc Fe. }'{ere mre discuss this mechanism  in brief, recalling  

'Lhat
 the

maximum  of  x(Q)  can  be reproduced  by zc"o)(Q)  for f.cc .tt"c. XVe can  wri.te  xc44e)(es)

ior ag =-t:--a*(1,  q, (}) as

     x(44o)(Q)==.i<o+K2cos(2rrq)+I<licos(4nq), (7)

where  Kh==xo(ooo)-4xouie}+`di' , Kle=2xoc,ov)'-8xo(2ii)+'"" and  KU=2xoaoo}'-8xo{4-t'''.
We  note  that xes for 6 of  the nei.irest  ne.ighber,  xe(MD) gives a  constant  term  in xs(g)
of  Q=a'(l, a, O). 

'E'his

 is a  peculiarity of  the symmetry  line Q=-=--a"(1, q, O); the state
specified  by･ a  wave  vecter  on  t.his line i's described as  a  stacking  of  antiferromagnetic

planes  with  a  mngnetic  cotipling  betxareen adjacent.  p]anes  modified  by q, and  the

centribution  of  xo{iio) between adjacent  planes  ulways  cancels  out.  The  maxirnum  of

xs(Q)  can  be easily  solved  t'rom .EL'q. (7) nnd  is tur'ned out  to be deterrnined by
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competition  between  K!  and  Kl, or  by total balance among  xes's. When  xs(Q)  has a

maximurn  around  ag ==a*(1,  q, O) of  q#=O, there must  be a large negative  Kk (correctly
speaking,  IKbl< 

-4.KZ);
 in other  words,the  contribution  from xos for 6 of  a  relative]y

distant neighbor  such  as  xo(4oo) rnust  exceed  that from  xos fer 6 of  a  near  neighbor  such

as  xoaoe). In the present  case,  xo(422) has a large negative  va]ue.  (see Fig. 5) and  plays

an  important roie  in determining the maximum  of  zs(Q). The  mechanism  discussed

here is thus  analogous  to that  operating  in insulator helical magnets  like Mn02,i'O'i5)

and  is essentially  the sarne  as  we  presented  previously  in the disctission about  the

possibility･ ef  the SDXXr ground  state  in fcc Fe.

g4. ffeEi(xxg sg)w

   We  have  so  far discussed t/he SDW  states  in t.ransition metals  on  the  basis of

electronic  strueture  of  nonmagnetic  state.  AIthough  an  ordering  wave  vector  of

SDMJ has been expected  to be not  far from Qo, we  have to calculate  electronic

structure  of  S[)W  states  wkh  finite magne'tic  momer)ts  to obtain  the ordering  wave

vector  correctly.  Up  to the present, an  elec;tronic  structure  calculation  of  SD"･i states

has never  been carried  out  except  for the ealculation  by  means  of  a real  space

method.9)  This is because the size  of  matrices  to be solved  1's fairly large fc)r SDW

states  of  a  long pe,riod in orthodox  band  ca.lcu]ation  rmethods.  We  can  now  manage

to calculate  the electronic  $tructure  of  SDIN  states  in a  simplified  model  explained

belew. On  the basis of  calculated  electrortic  structure  of  SDW  states,  we  discuss in

this section  the stable  SD"r' state  and  the magnitude  of  local inagnetic  moments  of  fcc

Fe  and  Cr.

   As is well  known,  ihere are  a  few types  of  SDW,  fo'r example,  helical one,

sinusoidal  one  and  so  on,  .Experimentally,  the SDW  uf  Cr  is a  sinusoidal  one6)  and

that of  fcc Fe  is conjectured  to be a helical one.:") Nevertheless we  take helical SDW
states  only  into consideration.  The  caleulation  for sinusoiclal  SDW  states  is more

difficult than  that for helical SDW  states,  because in sinusoidal  SDW  states  the

magnitude  of  a  magnetic  mornent  at  each  atomic  site  is modulate,d  and  hence the

number  of  electrons  at  each  atomic  site  is inodulated.i6)  As  for helical SDW  states,

the direction of  a  magnetic  moment  at  each  atomic  site is moduiated  but the magni-

tude  of  a magnetic  moment,  as  well  as  the number  of  electrons,  is the same  for every

atomlc  slte.

   We  calculate  electronic  structure  of  helical SDW  states  "xith  a  simple  model

Hamiltonian  based on  the I}rst-princip].e tight-biT]ding me,t.hod.  Although  tight-

binding parameters  in sp{n-polarized  system  are  i'n principle te be obtained  by
potential parameters  determined self-consistently  in the  local spjn  densjt}r functional
formalism,  we  make  the following  simplification  to reduce  divacult.ies of  computation,

We  first assume  that most  of  the tight-binding par, umeters  are  the same  as  those of  the

nonmagnetjc  state  except  for the energy  levels of  d orbitals.  This assumption  is

naturally  justifiable "ihen  the magnJ.tude  of  local magnetic  moments  is small,  as  is
seen  in the calculat/ion  of  antiferromagne't/ic  Cr.]7) We  llext  introduce parameters  U
and  f which  refiect  electron  correlation  effect; U  represents  tl]e intra-atomic Coulomb
integral between  d  orbitals  and  f represc:nts  the exchange  one.  "re then  adopt  a
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Hartree-Fock approxirriation  to determine the  spin-dependent  shift  of  the energy

levels of  d  orbitals  in a self-consistent  inanner.  It is to be noted  that  for helical SDW
states  the parameter  which  we  vary  is a single  one  (ITR=-(U+4f)15, since  there is no

charge  modulation  in heliL'al SI])W states.  Details of  the derivation of  the model  
'

Haniiltonian is referred  to Ref. 9).

   The  Hamiltonian  fGr helical SDW  states  which  we  take  is accordingly  written  as

the sum  of  the tight-binding one  of  nonmagnetic  state,  ff},,,. and  the parametrized one

for the electron  coi're]ation  in d  or･ bitnis; that is,

     HgDw7ffnun+ZZ  :(avi)o'o"afincraime" (8)
                 i m.Ed  d,o"

with

     gez='-Ukiifder2Lts,.eL',

'

,O.SpOZ(,ip,) 
SMOtei.Ps(o,Zip')1

 , (9)

whei"e  aimif  (a;L.a) is 'the annihilation  (crea'l ion) operator  for an  electron  of  spin  a  in the

mth  orbital  on  the ith site.  The  direction of  the magnetic  moment  at  
'Lhe

 i`th site  is

described by the polar  angie  0i and  the azimuthal  one  ¢ i, and  we  can  choose  the

coflditions  ei-- igrei and  gSi=e  without  less of  genera]itty for a  helical SII)W with  a

sifigle  wave  vector  Q. 
'-ihe

 d-cemponent  ef  the magnitude  oi  the magnetic  moment

h't the ith site, Mlii, which  is comrnen  for every  atomic  site  in the case  of  helical SD"J
states  (that is, iif,ti--Md  irrespective of  i'), is de'termined seif-eonsistently  by  the

foHowing  equations:

     Mliz 
==

 
.\,

 
d[Cos

 OT(<a)m t atni t>"'<a,"m L a!m  s >)

          +-sinOi(exp( ig5i)<all'm tai. J>  l-exp(iq5D<ai!}, 
.aim

 f･ >)] (10)

and

<a//ntaaimd･>=(- 11n )ImfEF dw< imo (w wu i'fSDw)-` i77zo'> , (11)

The  }{[amiltonian EikDw can  be rcadily  solved  in the basis set･ consisting  of  1dema>,
l fe +  Qmo>, 

"･",
 where  the nurnber  of  these basis vectors  depends on  the period of  SI)W.

   In practice  we  calculate  the electronic  structure  of  commensurate  hel/icai SDW

states  of  Q=a"(1, q, O) wi"Lh  q=e,  118, 1/,{ 'ln
 ari fcc lattice and  Q=a"(q, O, e) vL)ith

q==l, 15116, 7!8 in a  bcc lattice. The  size  of  the matr{x  to be solved  is l36£ sDw  for the

fcc Sff)IV and  18LsDw .for the bcc SI)N･V, w･here  LsDw denotes the number  of  layers of

which  one  peried  of  SI)"i consists;  T"or example,  the matrix  is 576 × 576 for the fcc

SDW  with  Q=a*(1, lf8, O) and  ulso  576 × 576 for the  bcc SDVLr with  Q=a*(15f16, O, O).

We  note  that  the electronic  structure  calcu]ation  o'f helical SD",r states  with  a  ]arge

LsDw requires  much  computation  tizne even  by this simplified  model  and  that it is still

difflcult to perform  the calculatien  b>i the I.MTO  method  or  another.

   As  for an  arbitrary  parameter  ey'R, we  can  estimate  a  value  ef  (yTR from  the

first-principle LMTO  calculation  for the antiferromagnetic  states  of  fcc Fe  or  Cr,

F()r example,  we  can  tentatively choosc  U'R such  that  the magnitude  of  local magnetic

moments  of  the antiferromagnetic  state  calculated  by the present. mocle]  coincides
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Fig. 7, Magnitude ef local magnetic  moments  of (
   (b) the states  AF, H(15116) and  II(7/8) of  Cr.

   Fe  and  those  of  ne  ==-5.92, 5.96 and  6 are  shown  for Cr. The  value  indicated in figures represents  the

   vnlue  of  O'R(mRy).

     

      1 71B  1 7Y8  1 7/6

          g of  WAVE  VEC".VOR  a"(a,  O, O)

a) the states  AF, II(If8) and  H(1!4) of  fcc Fe and

[-{ he cases  of  ne=7.92,  8 and  8.08 are  shown  for fcc

9.nfEwtebeUodvazm
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  Fig. 8, Energy  ef  the SDW  states  of (a) fcc Fe  and  (b) Cr. The  energy  is rTTeasured  from  that  of  the

     corresponding  nonmagnetic  state. Others are  the  samL".  as  Fig. 7.

with  that by the LMTO  method,  which  vvas  reported  to be about  1.6 "B for fcc FeiS) and

e.3 paB for Cri') in the case  of  the experimer]tal  lattice constant,.  Nevertheless we  do

not  determine a  specific  value  of  (lk but d[scuss changes  of  the magnitude  of  local

magnetic  moments  and  the energy  with  respect  to a  chunge  of  Uk to illustrate the

NII-Electronic  Mbrary  
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differcncc bctweep. fcc Fe  and  Cr. Discussion concerning  the value  of  (JR and  in

addition  the validity  cf  the present  medel  will  be published  elsewhere  together with
details of  the calculation.

   Noi.itr let us  discuss result's  o,f. 
'L'ltc

 calculation.  For  the sake  of  simpliciiL'y,we

abbreviate  the fcc Sl])"i states  oi" (}-a'(1, a, G) "rith  q:=e, 118 and  114 as  states  AF,

I,-I(118) and  H(1/4), respective]y  and  the bcc SDW  states  of  Q=-=- a"(q,  O, O) with  q==1,
15,!16 and  718  as  statcs  AF,  }{(15f16) and  EI(718), respectively.  We  show  in Fig, 7 the

magnitude  of  local magnetic  moments,  W  and  in Fig. 8 the  energy,  E  of  these SDW
states,  where  E  is measured  frem  the energy  of  the nonmag'netic  state  with  the same

ne.  For fcc Fe  we  present  c.ases  of  the v,ajence  ne==7.92,  8 and  8.08. Y'or Cr we

present  cases  of  ne=-=-5.92,  5.96 and  6; for the  case  that  nc: is more  than  6, we  have an

almost/  only  solution  o'f the state  AF  .fer a small  UR.

   In the first placc,  wc  lc ok  over  t/he chang,e  of  M  "Jitb  respect  to the change  of  [jk

for every  case  of  ne.  The  change  oi" ilf  is rather  moderate  for fcc Fe  compared  with

thttt for Cr; we  note  herc that we  cheose  va]ues  of  L'y'R at  intervals of  4 inRy  for fcc gJ'e

and  of  1 rriRy  for Cr. T"here is alrnost  no  essential  differerice between the  cases  ne

=7.92,  8 and  8.08 for i"cc Fe, whereas  t,here is an  obvious  difference between  the cases
ne=t).92  and  6 for Cr. As  for the change  of  M  between  SDW  states,  it is found for
fcc Fe  that M  of  the state  AF  is the largest of  the' three when  evii{ is smali  and  that M

of  the state  X-E(lk) becomes  
'L'he

 largest when  CJR beconies large. en the other  hand,
it is ttound  for Cr  that ne ef  the state  AF  is always  the 1flrgest except  for the case  of

(JRunO.e75 Ry  and  ne==--5.92, "rhere  the st.at.e }i{.(15116) has the larnff.est au', As  ne

increases, the difference of  M  betwe.en the. states  AF,, ancl  H(l5116) beeomes  large and
finally the stnte  }{[(15/16) cnnnot.  hold a  finite M.

   ffn the next  place  we  discuss the state  having t.he low¢ st  energy.  It is /found  first

thnt  the state  having the lnrgest. tt does not'. alwayshave  the lowest energy.  For  fcc

Fe, the state  }{(118) has the low･est energy  of  the three for all cases  oEC ･CJR and  ne.

klowever, the energy  difference between  the st.ates ll(lf8) and  H(1/4) becomes smal-

ler, regardless  of  ('yTR, when  ne  increases. XVe therefore expect  tha4L q of  the wave

vector  a*(1,  ij, O) oi" the  lowest. energy  state  increases continuously･  between  118 and

l14. As  for Cr, the st'ate }{(15,/l6) is found to be the lowest energy  state  of  the three

for every  case  of  ne  -.5.92, 5.96 or  6, w･hen  CJ.,{ is so  smaN  that  M  of  the state  AF  is

around  O.3 liB. Nevc.rthelcss, we  expect  that q of  the wave  vector  a'(q,  C, O) of  the

lowest energy  state  i's betwee"  7/8 and  15116 for ne=5.92,  around  15116  for ne  
-5.96,

and  between 15116 and  l for f-ze=6,  judging from  the energy  difference between  the

three states.  As c"y'[{ becemes  large and  accordingly  M  becomes  large, q appronches

1 and  the  state  AF  gets to have  the lowest energy･  for every  case  of  ne.  It is to be
emphasized  tha'tthe wax･'e  veetor  of  

'the
 lowest energy  Sil)Vtr state  when  n4 is small

agrees  with  the  wuve  vector  at  which  the  tmenhanced  spin  susceptibility  becomes

maximum  for both fcc Fe  and  Cr. We  however  need  further calcuiations  for a  state

with  an  intermediate value  of  q between  O, l18 and  114･ for the fcc SDW  and  between

1, 15!16 and  7f8 fer the bcc SDW  to determine the wave  vector  of  the lowest energy
state  accurately,

   We  here reEer  to thc difference in the  SDW  states  between  fcc Fe and  Cr. As  is

seen  above,  the SDW  of  fcc Fce is rather. stiff bttt the SI])"i of  Cr is solt  against  the
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change  of  C)'R or  ne.; the magnitude  of  magnetic  moments  or  the wave  vector  o'f the

lowest energy  SDW  state  does not  change  much  for fcc Fe  but jt changes  much  for Cr.
Above  all,  the behavier against  the change  of  Uh and  hence against  that of  M  is

different between  
'fcc

 Fe  and  Cr: when  M  becornes large, the wave  vector  of  the Iewest

energy  SDVKr state  remains  almost  the same  position for LFcc Fq  xNThile it approaches

rapidly  to the wave  vector  of  the antiferromagnetic  state  for Cr, This rapid  change

of  the wave  vector  for Cr may  be due to the /iact  that  the SDW  of  Cr is ascribed  to the

nesting  of  the Fermi  surface.  We  suppose  that  features which  the Fermi  surface  of

nonmagnetic  state  possesses  fade out  and  the  nesting  of  the Fermi  surface  becornes

obscure  when  M  becomes  large. In this connection,  we  may  add  the following fact:

in the case  that the SDW  state  H(15!16) or  II (7!8) of  Cr has the lewest energy,  the

SDW  state  gain  a  certain  arfiount  of  energy,  for example,  about  e.08 rnRy  for the st.ate

H(15116) of  ne=  5.96 (see Fig. 8), once  having a solution  of  a finiLLe M.  The  explana-

tion of  this fact in vi,ew  of  the nesting  of  the Fermi  surface  will  be presented  {n a  .fut.ure

publication.

g5. CoRcgrd.i'ngremarks

   We  have  discussed in the former  half of  this paper  the SBW  states  of  fcc Fe  and

Cr on  the  basis of  the  unenhanced  spin  susceptibility  x(Q)  and  the  non-locar  spin

susceptibilities  xon's of  nonmagnetic  state.  We  have obtained  for Cr substantial

evidences  pointing  that the nesting  of  the Fermj surface  piays a  decisive role  in

determining the maximum  ef  x(Q)  and  hence the wave  vector  of  SDW.  Above  all,

the typical shift  of  peaks  observed  in the k..iF dependence of  x(Q)  and  the estimate  of

the contribution  from energy  bands  lying in the vicinity  oi  the Fermi  surface  are

conclusive  evidences.  In contrast  to Cr, we  have  not  obtained  an  evidence  pointing

that the nesting  of  the  Fermi surface  plays such  Ei decis'ive rule  for fcc Fe, We  have
then  tried to discuss the origin  of  the x(Q)  maximum  of  fcc Fe  in terms  of  xos, in other

words,  a real  space  expansion  of  x(Q),  It has been fot'tnd that the reai  space

expansion  of  x(Q)  up  to the 17th.neighbor (ti- 4 O) of  an  fcc lattice can  reproduce  the

maximum  position  of  x(Q)  of  fcc Fe. This fact enables  us  to cenclude  that the x(Q)
maximurn  o'f fcc Fe  is determined by  balance amomg  xos's, or  by  competition  between

xos's for 6 of  a  near  neighber  and  those of  a  sli.crhtly distant neighbor,  The origin  of

the SI)W  of  fcc Fe thus has been shown  to be diffe:rent from that of  Cr.

   Now  we  briefiy recall  the previous  discussion in vThich  we  predicted  the  possibil-
ity of  the  SDW  ground  state  o'f fcc Fe. As  mentioned  in g 1, the diffe"rence between
the  previous discussion and  the  present one  consists  essentially  in the  kind of  wave

vectors.  In the previous  discussion, we  investigated SDW  states  with  a  wave  vector

Q=a*(q, O, O) to show  that the condition  for the appearance  of  SDW  is given  by  xes
for a  near  neighbor  S such  as  xouio) and  xe(zoo), Since behavior of  these xoa's with

respect  to the fi11ing of  d band is simple,  we  could  connect  the appearance  of  SDW

with  the number  of  d electrons  as  fol]ows: the most  stable  state  changes  continu()usly

from  an  antiferromagnetic  state  to a ferromagnetic state  via  un  SDWT  one  when  the

number  of  d  electrons  changes  from  five to ten. In the present  case  ef  Q  =.',a"(1,  q, O),

however, the condition  for the'appearanc.e  of  SI])W is given  by xns for 6 of  a  distant
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neighbor,  the behavior e'f which  is rather  complex.  It is therefore not  easy  to express
'the

 appearance  of  SDVV"' adequately  by connecting  with  a quantit.y with  a  physical

meaniiig,  t.hough the fiurnber  of  d e.lect.rons  is renlly  a  decisi/ve factor in the appear-

ance  of  SDW,  At any  rate,  tke mcchtt･nism  of  thc appearance  oi" SDVi which  we

presented previously has been proved to･ bc' valid.

   Ill the latter ha]f oi  this paper we  haxre shown  that hclical Sl)VL' states  with  finite

magneti･c  momep,  
'ts

 have  reEtlly  lower energy  than  the anti'ferr. omagnetic  state;  that the

wave  vector  of  the helical SDW  state  having  the lowest  energy  nearly  equnls  r.o that

obtained  frofn the rnaximurr]  of  the unenhanced  spin  susceptibility  when  the magni-

tude  o/E local magnetic  moments  is small.  We  hav･e investigated characteristics  of  the

helical SDEigi stntes  in view  of  the rnagnitude  of  local magnetic  rnoments  and  the state

of  the 1'owest energy.  T/he c] linge  ef  the state  of  the lowest energy  when  the

mag.  nitude  of  local mn.gnetic  moments  becomes  large has revealed  the ditlerence in the

liielical SDW  stat.es betxKTeen foc Fe anc'･l Cr- . 
rl"he

 difference is considered  to arise  froin

the 'fac'L that the SDVZJ' of  Cr is ascribed  te the nestin.ff  of  the }]ermi surface  but the
SDW  of  fcc Fe i.s not/ . E;inal]y, ure  must.  add  that wc  haTve (iiiscussed  helical SDW
sta.tes instead of' sinusoidal  ones  

'l-or
 Cr. We  expec:t  however  that the energy

differencpv between  helical and  sinusoidal  SH)W  stat'es with  the samc  wave  vector  is

smali  cornpared  with  
'the

 energy  diiffe]'ence betw･een helical SDW  st.ates  with  different

wnve  vect･ors. 
"IVhe

 conclusion  for the  stable  SI)XXJ is therefore  expected  to be

unchan.cred.
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