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      Quantgzed Theta-Fu"ctions

             Yu. I. MANIN

St'eklov Mathematical institz･tte, Moscow, [JSSfe

                            Introdiuctgon

O.1. Quanti2ed linear gptomp

   The  quantum  special  linear group  SLq(n)  over  a  field fe where  qCIIk* is a

quantization  parameter  is represented  by the Hopf  algebra

     F[SLq(n)]=-k<z,/j>li?; i,i'='1,･･･,n>2,

where  R  denotes the ideal in the  free association  a]gebra  k<zi'>, zi' L--  .af,q, generated  by

the fellowing relations:  For  all pairs i<7',k<l put  a=:=zih; b=-:-zi`; c=&･k;  d=&`.
Then

     ab==q-iba;  ac=q-ica;  cd=='q-tdc;  bd=q-idb;

     bc==cb; ad---do=(q-i--q)bc;

by

     DETq(zY')i･ ii,;-:- :  (-q)Mi(S)21S(])･･･a."(")=- IL .
              sESn

The  cornultiplication  is represented  by the usual  forn/tula itl(2ih)==:,"･.iaii(Ebafe  and  the

antipode  is given  by  a  quantized  version  of  Kramer's  rule.  For  q==1  we  obtain  the

p()lynomial  function ring  of  the usual  SL(n),

   A  very  large part of  the theory of  classical  Lie and  algebraic  groups can  be

extended  in this way  by  deforming it into a  growing  domain  of  non-commutative

geometry:  cf., Refs. 1) and  2) for basic constructions  pnd  results.

   We  want  to remind  also  that the theory acquires  some  specific  properties  when

the quantization  parameter q is a  root  of  ur/Lity. In parti¢ ular,  if q`=1, IF-1 mod  2, q

primitive, there is a  non-commutative  Frobenius morphism,  defined over  Z[q, q''i](!):

     Oi: SLq(n)-> SL(n): dit'(2Zi)==(zl,,)i.

   The ring  A[SLq(n)] becomes finite over  it$ center,  the category  of  representations

ceases  to be semi-simple  and  acquires,  some  properties akiR  to those of  the finite

characteristic  case.

   For some  reason,  precisely these values  of  q are  importa,nt in two-dirriensionai

conformal  field theory.

O,2. ]P7foblem  of quantization of abelian  van'eties

   It is natural  to expect  that not  only  linear algebraic  groups  but also  projective
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ones,  i.e., abelian  varieties,  can  be quantized  in a  similar  manner.  One  obstacle,

however, is that even  in the classical  case  there are  no  natural  Hopf  algebras  of

functions on  an  abelian  variety  A, Of course,  one  can  consider  the graded  algebra  F
r:=-1;(A,

 L)=-O:L.of"(A, L"), where  L  is an  ample  invertible sheaf  on  A. However,  it

has no  natural  comultiplication,  In fact, iz" m:  A × Au.A  denotes the  addition  map,  it

defines m":  F(A,  L).fi"(A × A, nz"(L)),  but m'(L)  tyPi"(L)opP2"(L) so  that i?-(A× A,

"z"(L))  7 F(A,  L) (Ei)F(A, L).

   Mumford  in Ref. 3) feund :a clev,er remedy･,  Namely,  if i*(L)ty-L wherc  i: A-A,

i(x)=--x, then  instead of' m:  AXA.A  one  should  consider  M:  AXA->AXA,

M(x,y),--(x''I'y,x'-y), and  try to deseribe A4": FCAxA,  pi*LE9)p2"L)-F(AxA,
M"(Pi'LE9P2"L))tr-F(AXA,  Pi"L2opP2'L2). Mumford  succeeded  to dc) this and

obtained  a  very  detailed picture (at least for appropriate  L's). Unfortunately, to my

1<nowl.edge, there is no  axiomatization  oir the algebraic  structure  he studied,  which

would  be similar  to that of  the I{opf algebras.  Therefore, paradoxically,  we  do not

understand  what  properties  of  the ring  F(A,  L) should  be conserved  (or lost) after  a

quantum  deformation.

0.3. Qztantized thetafrnctions

   The  main  idea of  this note  is to eonstruct  some  quantum  deformations not  of  the

ring  F(A,  L) itse]f but of  its separat.e  homogeneous  components  F(A,  L)n=r(A,  Ln),

consisting  classically  of  theta-functic)ns of  various  typc,is. XVe make  non-commuting

the basic Fourier harmonics  e2M`h' (instead of matrix  coefficients  ziJ' in the SLq(n)-

case),  and  the degree of  the nen-commutativity  is measured  by  an  appropfiate

quantlzatlon parameter.

   To  be more  precise, in the classical  theory we  start  (for K=  C) with  the universal

covering  map  J'= C"' --A,  trivialize rr"(L)  and  identify f"(A, L) with  a  certaiii  subspace

of  functions on  C" behaving in a quasi-periodic  w･ ay  w･ ith respect  to the lattice Ker  iv.

If this iattice is of  the  form Z'ZO,e, in C", w･e can  instead consider  an  int.errnediate
covering  p Gf  A  by an  algebraic  torus C*":

     cnttt("t)c*nL.a

and  consider  p"(F(X,  L)) as  u  subspace  of  an  appropriate  space  of  entire  functions on

(C")n,
   In order  to define the quantized  theta-functions, we  suggest  to replace  (C")n by
Connes' quantum  torus 7'q`)'5) whose  polynomial  function ring  is C<et± i,

 
･･･,

 en
± i>!(eie,i

-Gl･iejeili<7'),
 q=(qiD  the quantizatien  parameter.  AIthough generally such  a  ring

is not  a  IIepf algebra,  it is acted  upon  by a  usual  terus (w･ith qi,･ ff,m-,-1) so  that the period
lattice corresponding  to A  can  be used  t'o describe the  functional equations  for the

cleformed theta-functions on  Zi.

   These  functions possess  many  properties similar  to the classicai  ones  and  consti-

tute a  welcome  addition  to the growing  family of  quantized  special  functiens (cf., in

particular Wess's and  Zumino's culcuius  on  quantum  plane). 0nc  major  problem  is

that we  generall}, cannot  multiply  quantized  theta-functions  since  the exponential

factors are  not  central.
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O.4. Plan

   The  first section  of  thls paper  is devoted to the  category  of  non-commutative  (or
quantum)  tori. We  describe several  types  of  rnorphisms  in that, category,  The  point
is that classical  relations  between  theta-functions  involve various  argument  changes

"Thich  traditionally are  expressed  via  the addition  iaw. Since, however, quantum  tori

are  not  even  quantum  greups,  we  must  be prepared  to replace  these ar.crument  changes

by morphisms.

   The  second  section  introduces the basic functional equat/ion  for our  quan'tized
theta-functions. We  construct  and  investigate the respective  linear spaces  P(X, L)q.

   In the  third section,  we  consider  the 
"root

 of  unity"  case,  its relation  to the Brauer

group  ancl  commutative  geometry.

   Our  presentation  of  theta-functlons  is very  much  motivated  by the P-adic theory,

and  we  hope  that the root  of  unity  case  may  have  number-theoretical  applications.

For  this reason  we  consider  tori over  arbitrary  complete  normed  fields, non-

necessarily  archimedean  ones,

S 1. Category of  quantevm  torg

1,1. Nbtation

   We  fix once  for all a  base field K. Consider the  class  ol' pairs (ff, a), where  H

is a  finitely generated  abelian  group and  cr: H × ffHK"  an  alternating  pairing:

     a(x,  ij)== ev(rp,x)"i; ev(xix2, rp)== ev(xi, 1?)a(X2, rp)

for all x, nyEH.  They form  objects  of  catE;go7ry of qmant'ttm  cha?ncter  gromps, whose

morphtsms  f: (ffi, ai).(th,  ev2) consist  of  group  homomorphisms  f: HL -  Hli consisteRt

with  ev,2:

     az2(f(x),  f( rp))=ai2(z, rp) (1･1)

for all x, rpci.lfi. The  form  E(x,ij)==evi(x,  ij)deuai(f(x),f(ny)) with  values  in {± 1} is

called  the characteristic  of  fl. The  quantum  toroid 7"(l,J,a) is defined by  its

polynomial  function ring  A(H,  a)  which  as  a ljnear space  is freely generated  over  K

by symbols  ev,.(x)==e(x),  xE",  with  multiplication  Iaw

     e(x)e(  rp)m-' a(x,  rp)e(x+  rp). (1-2)

We  write  H  additively;  e(x)  should  be viewed  as  
"quantum

 Fourier harmonics", a  is
the quantization  parameter.

   If H  is free, T(ff, ev) is called  a  quantum  torzts, toreids also  occur  naturally  as

kernels, cokernels,  quantum  Tate  groups,  etc. For  a=1,  A(ff, a)  is the  ring  ef  a

usual  commtttative  group  scheme  Spec A(H,  ev). In general, we  define a  morphism  F:
T(ra, ev2)- T(ffi,evi) as  the inverse morphism  of  function rings  F*: A(H'i, cri).A(fE,

azi). The  for]owing result  describes all morphisTns  of quantum  t.ori.

1.2. Proposition

 a)  If H  is free, then  all  invertible elements  in A(H,  cr) are  of  the form  ae(x),  a
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E!iK',  xEff,  Therefore, any  morphism  of  quantum  tori F: T(H2, cy2)-7"(ff],  evi)

defines an  induced morphism  [F] =-:-  f: (ffi, nvi) 
'.

 (ffh, cor2) : F"(e(x)) =-  axe(f(x))  for some

axEK*,

  b) The  set  of  all rnorphisrns  F: T(ffle, de)-T(Ui,  a]) with  a fixed [F] is either

empty  or  has a  natural  structure  of  the principal homogeneous  space  over  the group
of  K-points of  the  c()mmutative  torus T(ffi, l)(K)=Hom(ffi,  .I<"),

f'toof Let ff be free, Consider a  linear form  l: HXR-->R  such  that any  equation

l(x)=aER  has no  more  than  one  solution  xE!U.  The  relation  xSrpOl(x)gl(rp)

defines on  U  a structure  of  a  well-orderecl  group.  In particular, the highest order

term of  a product Pq, P, qEA(ff,  cr) is the product  of  the highest order  terms, and  the

same  is true for the lowest order  terms. It follows that if P is invertible, then P
---=ae(x).

 Hence  F: T(M,  az).  T(Hi, evi) induces a  map  f: U]-U2  as  in the  Proposi-

tion. Since F*  is a ring  homomorphism  we  have

        F"(e(z)e(rp)) -  F"(e(x))F"(e(ny))

             l XX
      F*(evi(x, ij)e(x+' q)) axe(f(x))ave(f(rp))

             l "
     evi(x, rp)az- ve(f(x  l' v)) azavale(f(x),  f( rp))e(f(x)+f(  rp)) .

It follo"'s that f: Jl 
->If2

 is a  group  homornorphism.  Furthermore, in the equality

     a](x,  rp)cuLiLi(f(x), f(rp))=axavall･ 
o:

 =-E(x,  ny) (1"3)

the  left-hand side  is alternate  while  the  right  one  is symmetric  in x, rp, Hence  e(z,  rp)
='=  ± 1, and  a]2(x, rp)=-.cu22(f(x),f(v)). It follows thatfis  a  morphism  (M, evi).(ra,  cu2)

wi･th  characteristic  E(x,  rp). If a  system  {ax} verifying  (le3) exists  at  all, any  other

such  system  is of  the fc)rm axc(x)  where  c: ffi-K* is a  homomorphism, ee

   Notice that if f: (Hi, ai).(i[th,  cu2) has characteristic  e=-1,  it defines a  canonical

morphism  F: T(n2,  cle).  T(Eli, ai) with

     F"(e(x))-e(f(x)), (1･4)

which  we  shall  sometimes  denote a}so  f.

1.3. Analytic frtnclions ova qttank･t7n tori

   0ur  theta-functions  will  be certain  infinite linear combinations  of  the formal

exponents  e(x).  In order  to define them  we  shall  furthermore  assume  that  K  is a

complete  nonned  field and  that  a  is unita7rJi, that it takes  values  in the subgroup-Kl*

={aCiiKHa  =l}.  In particular, if all values  of  a  are  roots  of  unity,  it is tmitary.

   A  formal series  :x.Haze(x), axEK,  is called  an  analytic  fi{nction on  T(ff, ev) if
for any  AI>O  there exists  c>e  such  that

     rzxl<c(Ilx  +1)-･xr ,

where  .1  is an  Euclidean nerm  on  ffQg)R.

   A  standard  computation  sho"is  the follewing fact.

1.4. Lemma

   If ev is unitary,  the space  o'f analytic  functions An(Hr, ev) on  T(H', cr) is a  ring  with
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respect  to the  usual  product of  formal series.  X

   Now  we  shall  list some  rnorphisms  of  quantum  tori.

1.5, Multiplication by n

   The  morphism

     [n] : T(H,  a)-  T(u,  evn2)

is defined by

     [n]"(e(x))-e((nx)) .

It is an  endomorphism  of  T(H,  a)  in two  iniportant cases:

  a)  n=L'-1,

 b) a  takes values  in roots  of  unity  of  degree d, and  n2E.---1 mod  d.

1,6. Direct Products and  mult'iplicat'ions

   In non-commutative  geornetry the tensor  product of  function rings  plays the same

role  as  in commutative  geometry: it morally  corresponds  to the direcl] product of

quantum  spaces,  although  is not  the  direct product  in the usua)  categorical  sense  (in
dual category).

   Following this convention,  we  put

     T(Ui, evi)×  T(Ih, ala)='=' T(Hleth,  eviOa2)

by

     eff1,al(X)opeH2,a2(ij)='  eHlell2,alsa2((X,  rp)) ,

Now,  we  can  define the multipiication  maps

     m.,":  T(H,  a)  ×  T(ll, B) -} T(H,  evB)

by

     m:.p(eH,.fi(x))=eH,cr(x)(Ei)eH,B(x).

In particular, mi,B  is the action  of  the usual  torus T(ff, 1) upon  its quantized  form

T(Ll, B) which  was  implicit]y used  in 1.2, and  which  will  be used  in the definition of

the period  lattices of  quantum  theta-functions.

   This construction  can  be generalized as  follows. First consider  n  tori CL･ ==  T(Hi,

ai), i=='1,･`･,n. For  each  IK-i<i<-n  choose  a scalar  product  7,v: EliXHf-K'  and

define the skew  product  o'f Ti w.r.t.  7=(7ij>  by

     n  1} -=  T(ff,e･･-eH.,  ev) ,
     (r)

where

                          n

     ev((x], "'', xn), (rpi, 
'-',

 rpn))= II ai(xi,  rpi) ]I rij(xi, vj)IJI r,r,i(rpj, zi) .
                          i:.1 i<.i i>j

As above,  we  can  define a multiplication  morphism
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     ?n: II Z/. T(H,  ai--ta.)  ; nz'(e(x))=,'  e((x,  e･･,  x)) ,
        {r)

ii"' the follo"ring condiJtion  is fulfi11ed: ffi<jrde･(x, rp) is syrnmetric  in x, rp. In fact:

     ev1"''an(X, rp)='=' ev1(X, ny)"c'evn(X, rp) ,

                        n

     a((x,  
''',

 x),(rp, "'', ny))='- fi evi(x, rp)R ri,-(x, rp)ff "1-i( rp,x) .
                       i-1  7/ <j  J' <i

1.7, QPPosite tortfs

   Let T(H,  cr)""P bc defined by the ring  A(fi, a)OPP with  multiplication  reversed  with

respect  to that in A(ff, a). We  have  a  canonical  isomorphism

     7'(ff, a)OPP 
='>

 T(If, a-i)  : eH,a(x)  i' Ueu.cr-J(X) .

1.8. vaunof2)id's ]norphism

   By  definition, it is

     as: T(Heff,  eveev)--->  T(ffeU,  ev2(IDa2)  
,

     il4*(e(x,  op)) =:  e(x+  rp, x-  rp) ･

   It is well  defined because

     (evea)[(x+ ny, x-  ny), (xt+ rpi, xJ-  rpx)]

       =r･  a(x+  rp, x'+v')cr(x-o,  x'-  rp')･ ev2(x, x')ev2(o, n') ,

                    S 2. Qmpantizedi tketa-fsuncgioRs

2.1. PerioLis and  foi'nzal thetas

   For  soine  time, we  can  work  with  formal  series  in e(x)EA(Ll',  ev), Consider a

subgroup  BC  T(II, 1)(K)-IIom(II,  K"). It acts  upon  A(N,  a)  by

     b'(e(x))z-x(b)e(x). (2m1)

We  shall  cali  a  fermal series  e=-2axe(x)  a  formal ldi' quanti2ed  thelaifatnction with

respect  to B  if there exist  two  ma.ps  B-K":  b i-Ab,  and  B-'.H: b-xb  such  that for

ull  bEiB we  have

     b*(e)-A,e(x,)e. (2m2)

Similarly one  can  irttroduce right  thetas by putting e(xb)  to the right-hand  side  of  0
in (2s2). They  are  reduced  te left thetas on  the opposite  torus (cf. 1.7).

2,2. Lemma

   If 0tO  verifies  (2-2), then

 a)  bexb  is a  hornomorphism  B.If;

 b) xb,(b2)  biinult.iplicatively depencls on  bi, b2 and  can  be represented  in the form

     Xb2(bD=(bi,  b2)[bi, b2], (2'3)
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where  (., ･)  is symmetric,  [n, `]  is alternate,  and  moreover

     [bi, b2]=ev(xbi, xb2). (2e4)
J'7oof Wehave

     (bi b2)"( 0) :L'  Ab,b,e(xb,b,) e . (2･5)

On  the other  hand, it equals  bz'[b2*(e)], that 'is,

     (bi)"[ilb,e(xb,)e], =-Ab,ilh,xb,(bi)a(xb,,  xb,,)e(xb,+xb,)0  . (2･6)

It follows, that zb,b2=･:-xbi+xb2 (compare (2･5) and  (2･6)). Moreover,  (2e6) should  be
symmetric  in bi, b2, which  gives

     xbi<b2)zb2(bi) ='  a-2(xb,,  zbe) .

On  the other  hand, (2-5) and  (2-,6) show  that

                    Rb,b,
     Xb2(bi)ev(Xb2, Xbi)=  A,,A,,] 

==(bi,

 b2) (2e7)

so  that the left-hand side  is a  symmetric  pairing. This shows  (2･3) and  (2e4).

2.3. 7heta-dyPes

  . Let now  (bi, b2) be  the symmetric  pairing from  (2･3). Assurne that there is a
symmetric  pairing  B × B--, K*: (bi, b2)i/2, whose  square  is (bi, b2). It certainly  exists

if K=C;  otherwise  it exists  in a  finite extension  of  K  (if B  is finitely generated),
Two  such  roots  differ by a  pairing B × B-li2==-{-H,1}.

   Choose (bi, bz)i'2, and  put ip(b)=Ab･(b, b)"i'2. From  (2e7) it follovL's that  ¢(bib2)
=ip(bi)di(b2).  A  change  in the choice  of  (bi, b2)"2 can  be compensated  by the corre-

sponding  change  of  gb without  infiuencing Ab.

   This justifies the following definitions:

   A  (gat) foTmal theta-lyPe for T(H,  a)  w.r,t.:  the period  subgroup  BC: T(H,  1) is
a  triple L=(q,  di, (e, -)ii2) consisting  of  two  group  homomorphisms  and  one  symrnetric

palrlng:

     g: B-  U,  q(b)=- xb; ip:B.K*;(e, ･)"2: LB × B--  K'  (2o8)

such  that

     Vb,EB, (b,, b,)-x,,(b,)ev(z,,, x,,), (2･9)

   A  (lefl') formal theta;function on  the toras T(", a) of  the t,ype L  is a  formal
series  e verifying  the functional equations

     b*( 0) =.-- ip(b)(b, b)!'ae(x,) e (2-10)

for all bEB.

   Clearly, all  formal theta-functions  o'f given  type  L  form  a  linear space  which  we

denote I-(L).

   We  turn  now  to the situation  of  1.3, assuming  K  complete  norrna]  and  a  unitary.

Then  we  have  the followin.g. result  which  classically  leads to the introduction of
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Siegel's upper  half-spuce, parametrizing  abelian  varieties.

2A, 7Vzeo7em

 a)  We  have  always  (even without  unitarity  assumption)

     diml'(L) :-[ff:  q(B)]  .

 b) The space  I-(L) consists  only  of  analytic  funetions iff IU: op(B)]<  oo  and  log

(bi, b2) is a  positively defined bilinear form on  B. In particular, if B  is free, we  have
rfeB  =:-:- rnv  and  B  is a  discrete subgroup  of  Hom  (U, K*).
Proof For  e=Zaxe(x), we  can  rewrite  (2HIO) as  follows:

     b"(e) =' :: Z  axx(b)e(x)-  :!] ax+x,(x+xb)(b)e(x+xb)
           xEH  xEH

         ==  di(b)(b, b)i'2e(x,)(0) =-r:- - Z  a,x(b)  di(b)(b, b)i"2ev(xb, x)e(x+xb)  .
                            Z[H

This means  that for all hEB  we  have

     ax+x,=axip(b)(b,  b)i'2xb(b)-]a(xb, x)

         =.- a,ip(b)(b,  b)'i'2ev(xb, x). (2411)

Hcnce one  can  arbitrarily  choose  values  ax  for all x in a system  of  representatives  of

Hlg(B)  and  then  uniquely  reconstruct  e, This shows  the first part of  the theorem.

   In particular, if [U: go(B)]=-.:･-tx), there are  always  non-analytic  elcments  in r(L),

   On the other  hand, if [fl: p(B)]<  oo,  we  have  for a  fixed x and  varying  b:

     log a,,  
,,1

 ==  log (b, b)-i'2 ÷ loglaxdi(b)ev(xb, x) .

The  first summand  is quadratic  in b while  the second  is linear. Hence  analyticity  of

all OFr(L)  is ensured  precisely when  tog (b, b)i'21 is positively defined. ee

2.5. Dofnition

   A  t.heta-type L  is called  a  polarization  if [ff: q(B)]<  oo  and  logl(h, b) >0. It is

calledaprincipal  polarization if ff=q(B).  ew

   Let now  f: T(th, ev2)->  T(ffi, evt) be a morphism  of  tori, such  that  F"(e(x))
="'axe(f(x))  for some  f: Ui-fi2  (cL 1.1fi-･l.2). Let 0 be a  formal theta-function  on

T(Ell, cri) of  the type (qi: Bi-"i  ; dii: Bi-.K'i:; (-,n)]ir2: BiXBi->K*).  Consider a

period  subgroup  B2C: T(ra, l)(K") such  that f-L(Bz)[Bi.

2.6. Lemnza

   If F  has characteristic  1, that is, ax+v,=axav  (cf. (1.3)), then  F"(0)  is a  formal

theta-function  w.r.t.  B2 of  the type  (ep2, ¢ 2, (e, o)2i"2),  where  (writing a(x)  instead ax):

     ip2(b) ==  di(f*(b))a(xb), bEB2CHom(H2,  K'') ,

     (b: b)2i'Z ='  (f'(b)e f"(b))i]'2 
,

p2 is defined by commutativity  of  t.he diagram
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      Bi --ff1" Hi  giB2CHom(Rl,K*)

     ,t  if,  II
      B2 ''gP" Hli restriction  of f'* Ui4Hh---K'.

   Proof is a  formal application  of  definitions.

                  S3. Tori and  thetas h't roots  of  umity

3.1. Cross-Prodztcts

   Let A  be a  commutative  ring,  G  a  commutative  group  acting  upon  A: C × A--A,

(G, f) p->gf.  Consider a  cocycle  A  =::  (a(o, r)} : G  × G.A'.  The  cross  product  A[o; o]

is a free A-module  Oo-EaAea with  multiplication

     Ig:.(I',Lll.9.1;...,.

 :i:li
Its center  contains  the ring  of  G-invariants of  A.

3.2, Fztnction ring  on  a non-commutative  tortts as  a  cross  Prodblct

   Consider a torus T(If, cr) for which  a  takes  values  in roots  of  unity.  Assume

that there is a filtration II'CICH  such  that ll'=r-Ker a2, I is a2  isotropic and  a2

induces a perfect duality ev: H!I × JIH'.K",

   Clearly, A=A(f,  1) is a  commutative  subring  of  A(U,  a), and  A(U', 1)[A  is the

center  of  A(U,  ev), The  group

     G-Hom  (111[f', K") =Ior

acts  upon  A  by

     ol e(x)]  -  a(x)e(x)  =--  a2( rp, x)e(x)  
,

where  aEI  G, xEI,  uEH,  o  corresponds  to op rnod  l,

   Choose now  a system  ef  representatives  (;CIU  for lf mod  I and  define the
application  3: G  

-Z>G
 as  reduction  mod  f. .For rpcl--Lr, let ip' (!  tt- be its representative.

Put for ny,xEHi

     aHco),p(x)=  a(  rp, x)  ke( rp tx,  rp +x)e(  rp tx-(  rp +x)) . (3･3)

3,3. Proposition

 a) (3･3) is a cocycle  GXG  '>A*,

 b) There  is an  isomorphism

     F: A(H,  ev) 
"'.

 A(I, 1)llG, a]  (3e4)

such  that

     F(e(x))='=:'e(x) for xEf,

     F(e(rp))=efi{i) for rpEG-.
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boof  Clearly, A(ff, cr)'=-eT,E(if1(L1)e(rp)  as  A(I, 1)-rnedule. It remain$  to check

the mu]tiplication  table. For xef  we  have

     e(rp)e(z)-a2(rp,x)e(x)e(rp),

which  after  applying  F  becomes  (3e1):

     es{,,f=P(g)fe(rp)

for f=e(x). IVIoreover, for x, vE(]  we  have

     e(rp)e(x)-･- a(rp, x)e(rp+x)-ev(za  x)ev(i+x,  rp"x)e(rp+xm(ut'  I))e(vtx),

which  after  applying  F  becomes  (3･･2):

     eB(ny}eB(x)=afi{ny},pcx)efi(v)-p{m･  ge

3.4. Centval ijWes and  sheaves

   Wit.h the previous  notation,  call  a  theta-type  L':=':(ep', ¢
',(･,

 ･)]i'2) 'for
 T(H,  cr)

central,  if ¢
'(B)[ff'.

   Any  type L=(q,  op, (", o)i'2)  can  be multiplied  on  the right  by  a  central  type:

     LL'=(g+  q', gbgb3 (o, .)LS2(.,  
.)ii2)

and

     l](L)r(Lr)c[i7(LLt)

in the ring  of  analytic  functicns of  1'(H, cr).

   In particular, let Lo be a  central  polarizatien. Then  it clefines an  invertible sheaf

on  the abelian  variety  Ll=  1i(H', 1)IB which  we  shall  denote again  by  Lo. 
'Phe

 space

of  sections  f'T(Ln, Lon) is a  subspace  of  f'(Lff) in the  sense  of  2.3.

   For  any  formal type  L  for (H, ev) put

     M=-O..,T(LL//).

It is a  Z-graded module  over  O./.･ of](di,  L  ;,i ), Therefore it defines a  coherent  sheaf

of  J. in this way  theta-functions nt  roots  of  unity  become  sections  of  sheaves  on

usual  algebraic  varieties.

1)Z)3)4)5)
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