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Introduction

0.1. Quantized linear group

The quantum special linear group SL(n) over a field £ where ¢€k* is a
quantization parameter is represented by the Hopf algebra

F[SL(n)]=k{27>/R; 4,7=1,"-, n=2,

where R denotes the ideal in the free association algebra k<z/>, z/=2z} 4, generated by
the following relations: For all pairs i<j, k<! put a=z/; b=z' c=z" d=2z'
Then

ab=q 'ba; ac=q 'ca; cd=q 'dc;, bd=q 'db;
be=cb; ad—da=(q'—q)bc;

by
DET.(2/)= 3] (~g) 9z -2,5 =1,

The comultiplication is represented by the usual formula 4(z/*)=21%.2/®z" and the
antipode is given by a quantized version of Kramer’s rule. For ¢=1 we obtain the
polynomial function ring of the usual SL(#n).

A very large part of the theory of classical Lie and algebraic groups can be
extended in this way by deforming it into a growing domain of non-commutative
geometry: cf., Refs. 1) and 2) for basic constructions and results.

We want to remind also that the theory acquires some specific properties when
the quantization parameter ¢ is a root of unity. In particular, if ¢‘=1, /=1 mod 2, ¢
primitive, there is a non-commutative Frobenius morphism, defined over Z[q, ¢~ '](!):

OF SLq(n)*SL(%)I (Dl*(Z{,]):(Z?,q)l .

The ring A[SLq(%)] becomes finite over its center, the category of representations
ceases to be semi-simple and acquires some properties akin to those of the finite
characteristic case.

For some reason, precisely these values of ¢ are important in two-dimensional
conformal field theory.

0.2. Problem of quantization of abelian varieties

It is natural to expect that not only linear algebraic groups but also projective
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ones, i.e., abelian varieties, can be quantized in a similar manner. One obstacle,
however, is that even in the classical case there are no natural Hopf algebras of
functions on an abelian variety A. Of course, one can consider the graded algebra F
=F(A, L)=®5-0I"(A, L"), where L is an ample invertible sheaf on A. However, it
has no natural comultiplication. In fact, if m: AX A— A denotes the addition map, it
defines m*: F(A, L)-> F(AXA, m*(L)), but m*(L) % p*(L)Rp*(L) so that F(AXA,
m*(L)E=F(A, LYQF(A, L).

Mumford in Ref. 3) found a clever remedy. Namely, if :¥(L)=~L where 7: A— A,
i(x)=—x, then instead of m: AXA—-A one should consider M: AXA-AXA,
M(x,y)=(x+y, z—v), and try to describe M*: F(AXA, p*LRp*L)-> F(AXA,
M¥(p*LRp* L))~ F(AXA, p*L*Qp.*L*). Mumford succeeded to do this and
obtained a very detailed picture (at least for appropriate L’s). Unfortunately, to my
knowledge, there is no axiomatization of the algebraic structure he studied, which
would be similar to that of the Hopf algebras. Therefore, paradoxically, we do not
understand what properties of the ring (A, L) should be conserved (or lost) after a
quantum deformation.

0.3. Quantized theta-functions

The main idea of this note is to construct some quantum deformations not of the
ring (A, L) itself but of its separate homogeneous components (A, L),=1"(A, L"),
consisting classically of theta-functions of various types. We make non-commuting
the basic Fourier harmonics ¢*"* (instead of matrix coefficients z/ in the SLq(72)-
case), and the degree of the non-commutativity is measured by an appropriate
quantization parameter.

To be more precise, in the classical theory we start (for K= C') with the universal
covering map m: C"— A, trivialize 7%(L) and identify I'(A, L) with a certain subspace
of functions on C" behaving in a quasi-periodic way with respect to the lattice Ker 7.
If this lattice is of the form Z"@®L, in C”, we can instead consider an intermediate
covering o of A by an algebraic torus C*™:

Cnexp(2ﬂ°) c %, A

and consider p*(I'(X, L)) as a subspace of an appropriate space of entire functions on
()",

In order to define the quantized theta-functions, we suggest to replace (C*)" by
Connes’ quantum torus 75" whose polynomial function ring is C<ei™, -+, ex™">/(e:e;
—qitesedli<j), g=(qi) the quantization parameter. Although generally such a ring
is not a Hopf algebra, it is acted upon by a usual torus (with ¢;=1) so that the period
lattice corresponding to A can be used to describe the functional equations for the
deformed theta-functions on 7.

These functions possess many properties similar to the classical ones and consti-
tute a welcome addition to the growing family of quantized special functions (cf., in
particular Wess’s and Zumino’s calculus on quantum plane). One major problem is
that we generally cannot multiply quantized theta-functions since the exponential
factors are not central.
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0.4. Plan

The first section of this paper is devoted to the category of non-commutative (or
quantum) tori. We describe several types of morphisms in that category. The point
is that classical relations between theta-functions involve various argument changes
which traditionally are expressed via the addition law. Since, however, quantum tori
are not even quantum groups, we must be prepared to replace these argument changes
by morphisms.

The second section introduces the basic functional equation for our quantized
theta-functions. We construct and investigate the respective linear spaces I'(X, L),.

In the third section, we consider the “root of unity” case, its relation to the Brauer
group and commutative geometry. '

Our presentation of theta-functions is very much motivated by the p-adic theory,
and we hope that the root of unity case may have number-theoretical applications.
For this reason we consider tori over arbitrary complete normed fields, non-
necessarily archimedean ones.

§1. Category of quantum tori

1.1.  Notation

We fix once for all a base field K. Consider the class of pairs (H, @), where H
is a finitely generated abelian group and a: H X H— K™* an alternating pairing:

alx, m=aly, 2%  aCaxe, 7)=a(n, n)alx, 7)

for all x, & H. They form objects of category of quantum character groups, whose
morphisms f: (H, 1)~ (H>, a») consist of group homomorphisms f: H;— H, consistent
with a%

& (f(x), f(7)=a"(x, 7) (1-1)

for all x, »€H,.. The form e(x,n)=ax, na"'(f(x), /() with values in {1} is
called the characteristic of H. The quantum toroid T(H,a) is defined by its
polynomial function ring A(H, @) which as a linear space is freely generated over K
by symbols ex,«(x)=e(x), x& H, with multiplication law

e(x)e(n)=alx, n)e(x+n). (1-2)

We write H additively; e(x) should be viewed as “quantum Fourier harmonics”, @ is
the quantization parameter. ’

If H is free, T(H, @) is called a quantum torus, toroids also occur naturally as
kernels, cokernels, quantum Tate groups, etc. For a=1, A(H, a) is the ring of a
usual commutative group scheme Spec A(H, @). In general, we define a morphism F:
T (Hs, az)~ T(H\,a) as the inverse morphism of function rings F*: A(H., a1)— A(H,,
@). The following result describes all morphisms of quantum tori.

1.2.  Proposition

a) If H is free, then all invertible elements in A(H, @) are of the form ae(y), a
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©K* y&H. Therefore, any morphism of quantum tori F: T (I, an)— T(Hi, a1)
defines an induced morphism [ F]=f: (Hi, a1) > (He, az) : F*(e(x))=aze(f(x)) for some

EK*.

b) The set of all morphisms F: T (Hs, az)— T(H,, ) with a fixed [F] is either

empty or has a natural structure of the principal homogeneous space over the group
of K-points of the commutative torus 7(H., [)(K)=Hom(H;, K*).
Proof Let H be free. Consider a linear form /: H®R~ R such that any equation
[(x)=a<=R has no more than one solution y&H. The relation x<7p<[(x)<[(7)
defines on H a structure of a well-ordered group. In particular, the highest order
term of a product pg, p, g€ A(H, @) is the product of the highest order terms, and the
same is true for the lowest order terms. It follows that if p is invertible, then p
=ae(yx). Hence F: T(H., a»)— T(H,, @) induces a map f: Hi— H: as in the Proposi-
tion. Since F™* is a ring homomorphism we have

F*(e(x)e(n)) = F*(e(x)F*(e(n))
F*a(z, ﬂ)e(x +7)) axe(f(x))c«e(f(??))
ai(x, maze(f(x+n)  axana(f(x), F(7)e(f(x)+ /().

It follows that f: Hi— H: is a group homomorphism. Furthermore, in the equality

a(z, ma (F(x), f(n)=ararazis: =e(x, 7) (1-3)

the left-hand side is alternate while the right one is symmetric in x, 7. Hence &(x, )
==+1, and & (x, 7)=a’(f(x), /(n)). It follows that f is a morphism (H,, a1)~ (Ha, @)
with characteristic e(x, 7). If a system {a,} verifying (1-3) exists at all, any other
such system is of the form a,c(x) where ¢: Hi— K* is a homomorphism. i

Notice that if f: (H1, 1)~ (Hs, @») has characteristic e=1, it defines a canonical
morphism F: T(Hs, an)— T (H,, 1) with

Fe(x)=e(f(2)), (1-4)

which we shall sometimes denote also f.

1.3.  Awnalytic functions on quantum tori

Our theta-functions will be certain infinite linear combinations of the formal
exponents e(y). In order to define them we shall furthermore assume that K is a
complete normed field and that « is unifary, that it takes values in the subgroup- Ki*
={a< K| |a|=1}. In particular, if all values of @ are roots of unity, it is unitary.

A formal series 2 enaze(x), axy< K, is called an analytic function on T(H, a) if
for any N >0 there exists ¢ >0 such that

lax <c(x|+1),

where [|-| is an Euclidean norm on HQR.
A standard computation shows the following fact.

14. Lemwma

If @ is unitary, the space of analytic functions An(H, @) on 7T(H, @) is a ring with
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respect to the usual product of formal series. |
Now we shall list some morphisms of quantum tori.

1.5.  Multiplication by n

The morphism
[n]: T(H, a)» T(H, a")
is defined by
[n]*(e(x))=e((nx)) .

It is an endomorphism of 7(H, @) in two important cases:
a) n=-—1.
b) a takes values in roots of unity of degree ¢, and #»*=1 mod d.

1.6.  Divect products and multiplications

In non-commutative geometry the tensor product of function rings plays the same
role as in commutative geometry: it morally corresponds to the direct product of
quantum spaces, although is not the direct product in the usual categorical sense (in
dual category).

Following this convention, we put

T(Hy, an) X T(Hs, an)=T(HP®Hz, P arz)
by

erna(0)Q e, ()= emamaea((X, 7)) .
Now, we can define the multiplication maps

Mas: T(H, )X T(H, B)~ T(H, aB)
by

mé s en,as( )= en.«(x)Qenax) .

In particular, m,, is the action of the usual torus 7°(H, 1) upon its quantized form
T(H, ) which was implicitly used in 1.2, and which will be used in the definition of
the period lattices of quantum theta-functions.

This construction can be generalized as follows. First consider # tori 7y= T(H,,
@), i=1, -, n. For each 1<i/<j<n choose a scalar product y:;: H;X H;~K* and
define the skew product of 7; w.r.t. y=(y;) by

!} T:= 7“(193<>“‘<>132,(Y),

where

a(Cxr, =5 xn), (o1, =+, vn))=lljlai(xi, m)l];ljm(xf, vj)gjyﬁl(m, Xi) .

As above, we can define a multiplication morphism
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m: [1Tim T(H, e+ an) ; m*(e(x)=e((x, -, 1)),

if the following condition is fulfilled: Il:<;y:;(x, #) is symmetric in x, 7. In fact:

aran(y, m=ax, n)ax, ),
al(x, = 2), (9, n)):ﬁlm(x, 77)}};,}’&'(%: v)}}iyﬁl(m %) -

1.7.  Opposite torus

Let T(H, @)° be defined by the ring A(H, @)°®® with multiplication reversed with
respect to that in A(H, ). We have a canonical isomorphism

T(H,a)™ —>T(H,a™"): enox)—ema(2).
1.8.  Mumford’s morphism
By definition, it is
M: T(H®H, a®a)—T(HBH, o*Pa?),
M*(e(x, M)=elx+n, x—n).
It is well defined because
(@@ (x+9, x—m), ' +7', ' —n)]

=a(xtn, x+n)alx—n x—n)=a*(x, x)a*(n, 7).

§ 2. Quantized theta-functions

2.1. Periods and formal thetas

For some time, we can work with formal series in e(y)=A(H, @). Consider a
subgroup BC T(H, 1)(K)=Hom(H, K*). It acts upon A(H, a) by

b*(e(x)=x(b)e(x) . (2-1)

We shall call a formal series 8 =">2a,e(x) a formal left quantized theta-function with
respect to B if there exist two maps B— K*: b—A,, and B— H: b—yx, such that for
all b€ B we have

b*(6)=2ve(xs)0 . (2:2)

Similarly one can introduce right thetas by putting e(xs) to the right-hand side of 0
in (2-2). They are reduced to left thetas on the opposite torus (cf. 1.7).

2.2. Lemma

If 0=0 verifies (2-2), then
a) by, is a homomorphism B H;
b)  xs,(b2) bimultiplicatively depends on &1, b, and can be represented in the form

sz(bl):<b1, bz)[bl, bz] 5 (2"3)
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where (-, +) is symmetric, |-, -] is alternate, and moreover

(b1, b2]= a6,y X52) - (2-4)
Proof We have

(6162)*(0)=2p16,6(Xb152) 0 . (2:5)
On the other hand, it equals bi[65(8)], that is, |

(61)*[A626(x62) 01= Ao Ao xoo( D) (X2, X51) (251 F 252) 0 . (2-6)

It follows, that Xs.6,= X6, + X, (compare (2:5) and (2:6)). Moreover, (2:6) should be
symmetric in b1, bz, which gives

xb1<b2>xbz(b1>:aﬁ2(xbu sz) .
On the other hand, (2-5) and (2-6) show that

20:(00) (26, xbl)zjf—bj’—zzr = (b, ba) (2-7)

b1/\b
so that the left-hand side is a symmetric pairing. This shows (2-3) and (2-4).
2.3. Theta-types

- Let now (b1, b») be the symmetric pairing from (2:3). Assume that there is a
symmetric pairing B X B—- K*: (b1, b,)""*, whose square is (b1, bs). It certainly exists
if K=C; otherwise it exists in a finite extension of K (if B is finitely generated).
Two such roots differ by a pairing BX B— g={=*1}.

Choose (b1, b2)"%, and put ¢(b)=2,+(b, b)""%. From (2-7) it follows that ¢(b,b,)
=¢(b1)¢(b2). A change in the choice of (b1, b2)"* can be compensated by the corre-
sponding change of ¢ without influencing As.

This justifies the following definitions:

A (left) formal theta-type for T(H, a) w.r.t.: the period subgroup BC T(H, 1) is
a triple L=(¢, ¢, (+, *)'"*) consisting of two group homomorphisms and one symmetric

pairing:

o: B-oH, o(b)=xv; ¢ : BoK*; (-, )V% BXB-K* (2-8)
such that

Vb:EB, (b1, b2)=xu.(b1) (X2 X51) - (2+9)

A (left) formal theta-function on the torus T(H,a) of the type L is a formal
series @ verifying the functional equations

b*(0)=¢(b)(b, b)*e(x0)0 (2-10)

for all bEB.

Clearly, all formal theta-functions of given type L form a linear space which we
denote I'(L). _

We turn now to the situation of 1.3, assuming K complete normal and « unitary.
Then we have the following result which classically leads to the introduction of
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Siegel’s upper half-space, parametrizing abelian varieties.

2.4. Theovem
a) We have always (even without unitarity assumption)
dim/(L)=[H: ¢(B)].

b) The space I'(L) consists only of analytic functions iff [H: ¢(B)]<co and log
|(by, by)| is a positively defined bilinear form on B. In particular, if B is free, we have
ykB=7kH and B is a discrete subgroup of Hom (H, K*).

Proof For 0=2>1a,e(y), we can rewrite (2:10) as follows:

b*(ﬁ):EHaxx(b)e(x)=Xg{amb(xﬂb)(b)e(ﬁxb)
=¢(0)(b, 0)"e(x:)(0)= Z axx(b)$(b)(b, b)"* a0, 2)e(x+ 25) -

This means that for all b& B we have
Qrrz=ax (D), D) 26(D) a0, )
=axd(0)(b, b) " a(xe, 1) . (2-11)

Hence one can arbitrarily choose values a, for all y in a system of representatives of

H/o(B) and then uniquely reconstruct #. This shows the first part of the theorem.
In particular, if [H: ¢(B)]=o0, there are always non-analytic elements in I'(L).
On the other hand, if [H: ¢(B)]<oo, we have for a fixed y and varying b:

loglayx|=1og|(b, b) | +loglad(b)alxs, 2) -

The first summand is quadratic in b while the second is linear. Hence analyticity of
all 0I'(L) is ensured precisely when log [(b, 6)"?| is positively defined.

2.5.  Definition

A theta-type L is called a polarization if [H: ¢(B)]<co and log|(b, )| >0. It is
called a principal polarization if H = ¢(B).

Let now f: T (M, a)— T(H,, au) be a morphism of tori, such that F*(e(x))
=aye(f(x)) for some f: Hy— Hz (cf. 1.1~1.2). Let € be a formal theta-function on
T(H., @) of the type (¢ Bi~»Hy; ¢i: Bi—»K*; (-, )WY% BiXB;—~K*). Consider a
period subgroup B.C T'(H., 1)(K*) such that f~'(B.)C Bu.

2.6. Lemma

If F has characteristic 1, that is, ay+s=aza, (cf. (1.3)), then F*(8) is a formal
theta-function w.r.t. Bz of the type (gs, ¢, (¢, <)%, where (writing a(y) instead ay):

Gab)=g(f*(D)a(xs),  bEB:CHom(H,, K¥),
(b, b)2=(F*(0), F*(D)1'*,

@2 is defined by commutativity of the diagram
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B %, H g: 132C:I{()n3(ff§,Jﬁf*)
g1 Vi, |
B R H, restriction of f* H, 5 H—K* .

Proof is a formal application of definitions.
§3. Tori and thetas at roots of unity

3.1. Cross-products

Let A be a commutative ring, G a commutative group acting upon A: GXA- A,
(0, f)—°f. Consider a cocycle A={a(o, 1)} : GX G- A*. The cross product A[s; ¢]
is a free A-module @secAes with multiplication

€cCr—Aao,7C0+7 . (3'2)

{egfm"feg , (3-1)

Its center contains the ring of G-invariants of A.

3.2.  Function ring on a non-commutative torus as a cross product

Consider a torus 7(H, @) for which @ takes values in roots of unity. Assume
that there is a filtration H'CICH such that H'=Ker «® I is ¢* isotropic and «®
induces a perfect duality a: H/I X [/H - K*.

Clearly, A=A(I, 1) is a commutative subring of A(H, @), and A(H’,1)C A is the
center of A(H, @). The group

G=Hom ([/H', K*)>~H/I
acts upon A by
ole()]=0(x)e(x)=a*(n, x)e(x),

where 0 G, €1, p& H, ¢ corresponds to » mod /.

Choose now a system of representatives GCH for H mod I and define the
application #: G =G as reduction mod I. For 7EH, let 7€ G be its representative.
Put for 5, y& H:

asenscn=aln, xa(n+x, n+x)e(n+x—(n+2)). (3-3)

3.3.  Proposition

a) (3:3)is a cocycle GX G~ A*.
b) There is an isomorphism

F: A(H, a) > A, DIG, al (3:4)
such that

Fle(x))=e(x) for x€I,

Fle(n))=epwn for ned.
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Proof Clearly, A(H, a)=®,ccA(I,1)e(n) as A(I,1)-module. It remains to check
the multiplication table. For y&/[ we have

e(n)e(x)=a*(n, x)e(x)e(n),
which after applying & becomes (3-1):

e/;(,,)f:ﬁ(”)fe(ﬁ)

for f=e(y). Moreover, for x, <G we have

e(n)e(x)=a(n, xY)en+x)=aln, x)a(n+x, n+x)e(n+x—(n+x)e(n+zx),
which after applying I becomes (3-2):
Cpn) R ™ Ap(n) B CR(M+A(1) - @

3.4. Central types and sheaves

With the previous notation, call a theta-type L'=(¢’, ¢, (-, -):i*?) for T(H, a)
central, if ¢(B)CH'.

Any type L=(¢, ¢, (-, -)*’*) can be multiplied on the right by a central type:

LL'=(p+¢, ¢, (=, )"+, - 1'?)
and
r(oyr{)cr(Lr)

in the ring of analytic functions of 7 ([, @).

In particular, let Lo be a central polarization. Then it defines an invertible sheaf
on the abelian variety A= 7(H’, 1)/B which we shall denote again by Lo. The space
of sections I'(A, L") is a subspace of I'(L{) in the sense of 2.3.

For any formal type L for (I, @) put

M=, (LL}) .

It is a Z-graded module over @,,-/ (A, L[ ). Therefore it defines a coherent sheaf
of JA. In this way theta-functions at roots of unity become sections of sheaves on
usual algebraic varieties.
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