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We consider electrical resistivity of ferromagnetic metals in which magnetism and
electrical currents are carried by the same electrons of single bands. Relaxation times of
electrons with up (or down) spin are expressed in terms of collision integrals by solving a
coupled Boltzmann equation. We analyze Umklapp —— as well as normal —— processes of
electron-electron scattering in Born approximation for ferromagnetic state. The coefficient
of the quadratic term in temperature dependence of resistivity is found to decrease when
magnetization develops at low temperatures.

§1. Introduction

Electrical resistivity of most of the ferromagnetic metals, having subtracted the
residual one, is nearly proportional to square of temperature considerably below the
Curie point, i.e., p=BT? (for T<T.). Usual explanation for this characteristic
assumes two kinds of electrons, say, d-electrons and s-electrons. The former have
heavy masses and are nearly localized at lattice sites. They have magnetic moments
responsible for ferromagnetism. The latter have light masses and are itinerant from
site to site carrying electric currents in metals. Interaction between them, i.e., s-d
interaction causes scattering: Then, s-electrons loose their energy by exciting mag-
netic fluctuations or spin waves in d-electron system.” As a result, electrical resis-
tivity is proportional to square of temperature, that reflects the dispersion relation of
spin waves, wocg®. General discussions on T*term of resistivity in paramagnetic
case have been given by Ziman using Boltzmann equation®” and recently by Yamada
et al. on a basis of Kubo formula.?

However, if the s-band is unoccupied we must deal with magnetism and electrical
conduction based on the same ground taking only the d-band electrons into account.
Such a situation is found in ferromagnetic transition metal chalcogenides, for exam-
ple, in CoSz, of which temperature dependence of resistivity changes at 7t and nearly
proportional to 72 at low temperatures.” The characteristic suggests that electron-
electron scattering in d-band restricted by Pauli’s exclusion principle would be the
main origin of resistivity. As known, Umklapp processes are indispensable to give
rise to finite resistivity in such a case. '

When conduction electrons are ferromagnetic, the sizes of the Fermi surfaces of
up-spin electrons and of down-spin electrons are different. Since the electron scatter-
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ing takes place near the Fermi surfaces at low temperatures, a direct influence of
ferromagnetism on electrical conduction is expected.

In this paper we study the relation between magnetism and resistivity focusing on
the change in electron-electron scattering process in ferromagnetic state within a
simplest model and methods. For an electron system with single band we solve a
coupled Boltzmann equation in relaxation time approximation to obtain a general
expression for resistivity. Normal and Umklapp scattering processes for given
magnetization are examined, first in Born approximation. We find that the
coefficient of quadratic term in temperature-dependent resistivity, B(a)=R(T)/T?
decreases when the magnetization, @, develops. Enhancement of resistivity due to
higher-order processes of scattering is briefly' discussed. "

§ 2. - A coupled Boltzmann equation

In the ferromagnetic state the current carried by up-spin electrons is different
from the current carried by down-spin electrons. We set up a coupled Boltzmann
equation for distribution functions of electron of wave vector k with up-spin, f,*, and
of that with down-one, f,~ as follows,

_eE afk _5’ka|

Aok T ot e’ 2-1)
6=+(=) for up- (down-) spin,
that is,
el gﬁ: = 2 (Wt b= kot bu)
XA = Fa) A=) by fra— F i 1= F i) (A —F )]
+ W(ki+, ket; ks, kit )[(A— o)A —Fi)f 1S e
~ S (1= F)A— )]} (2-2)
and
Ll ks g’;: = 3 (Wki+, ko= kst bu—)
x[A—-rm( —fiz)f;;fz;—f;fz;(l — i) (1= Fw)]
A W(ki—, ke—; bs—, k= )[(1—f1)(1~f1,) 1S b
—f;fiz(l“ff;,)(l—fi)]} : (2-3)

where —e, m, ,° are electron charge, effective mass and energy with wave-vector &,
spin o, respectively.. We have approximated &,° by #%£*/(2m) — od/2(d=exchange
splitting) for simplicity. E is the electric field, which is chosen as directed to z- axis,
E=(E,0,0), in the following. W(a; b) represents the transition rate from state
b to state a or from a to b. To linearize the coupled equation we take the devia-
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tion from the equilibrium distribution function f°(e,%)={expl(e,”—r)/(kT)]+1}7,
(u=chemical potential, As=Boltzmann constant):

fu7= ey roliellhe OF(ET) (2:4)

Here we have employed the relaxation time approximation by introducing °, a
constant relaxation time of spin-o electron on the Fermi surface. After substituting
Eq. (2+4) into Egs. (2+2) and (2-3), we multiply %z and k2. on both sides of the
equations and sum over kir and A2z, respectively (this is a variational method®). For
an elastic scattering ei1+e2=e&s+ ¢4, a useful relation between products of Fermi
distribution function,

e (e)1—f(e)[1—f(e)]=[1—F(e)]l1 “f°(ez)]f°(8s)f°(e4) ; (2:5)

helps us to reduce the Boltzmann equation to a coupled equation for z* and r~. For
fixed numbers of total electrons with spin ¢, N, we obtain

Avit+Ev* Avin ™\ om (Nt
( Ave AU+§+EU-)(r-)= 7 <N‘)’ (2:6)
Avsti =< W(ki+, ko—; bs+, ba—)+(brz— kaz)Dvin | (2-7)
Avii =W (ki+, ks—; b+, bi—)+(Foz—Faz)Dusn, (2:8)
Avin=<W(ki+, ba—; bs+, Bs—)*(krz— Fsz)(koz— ksz) duen (2-9)
W= W0, Boo; ko, kuo)+ G, (2-10)

where collision integral

<W(k10’, k20’; kso, k40")‘***>U+NE"k—BlYTk‘Z 5kl+k2+G, B3tk

~bk, G .
X W(ks0, d'; Bxo, Ruo') -+ + f2(e5,) ()1 — ()= f(er)]  (2-11)

includes Umklapp process, G*+0, as well as normal process G=0, G being reciprocal
lattice vector. Similar notation <--->v and <--->x refers to the Umklapp process and
the normal one, respectively. These equations lead us to a general expression for
resistivity in the relaxation time approximation for given relative magnetization, &
=(N*—N7)/Na and Na=N*+N", ‘

pz_IZz% (Nttt+N-77)7!

VR s 1= CHD * { Wit Geu) ™ ]
= 2N e G 2T @ C— el Wi G2>0)ID (2-12)
where
Wtotz%;‘, W(kio, k20", kso, ko), (2:13)
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C=Av"+Evt —Av —Eyv

= W(ki+, ba—; bs+, ba—)*(kiz—koz— ksa+ kiz) Gadv+ Evt — Ev™,  (2-14)
D= Ausii+ Avsi —2Avin+ Ev* + Ev™

=Av"+Av —2Av—4Ax+ Evt+ Ey”

=(W(ki+, ba—; ks+, bi—)*(kiz— ko szt kae)Dvin+ Ev + Ev . (2:15)

We note Ax"=Ax"=—Ax. In paramagnetic state, =0, then C=0, and the expres-
sion (2-12) reduces to a simple one; only the Umklapp process £ WiotG,2>u contributes
to resistivity, as expected. On the other hand in ferromagnetic state we notice that
the normal process coupled to Umklapp one also contributes to resistivity through a
term Ax in D given by Eq. (2-15).

All of the collision integrals in Egs. (2:7)~(2:10) are generally represented as

hk T z>|26(51”+ez — &5 —84"')f°(61")f°(ezd')[1 FUes)[1—,(es”)]

X (a quadratic term of wave-vector differences), (2-16)

where <{f| T'|> refers to a related ¢-matrix element. We now change the sum over &
to the integral over energy and to the.integral on the constant energy surface in k-
space:

o= Ve (g = Vo (e (S .
%"‘ = (271_)3 /d k- = (271_)3 /dS hgk . (2 17)

By taking integral over energy in advance, we can obtain the temperature dependence
of the collision integrals imposed by Pauli’s principle at low temperatures (ks 7" < ks Tr
= Er=Fermi energy):

o [ derderdendesdie+ = e e ) e )1 — 7]

__Z_gfi(kBT)Z . (2’18)

Therefore it is natural to express the temperature dependence of resistivity at low
temperatures as ‘

o(T)=B(a)T?. (2-19)

It is noted that the magnetization «a is still temperature dependent in ferromagnetlc
state, T < T TF.

In order to evaluate the coefficient B(a)=p0(T)/T?, knowledge of collision inte-
grals for each scattering process is necessary. Since the calculation becomes compli-
cated for general #-matrices we restrict ourselves at first to Born approximation to
discuss semi-quantitative features of the phenomena. Further simplification is

. achieved when we use a single-band Hubbard model, the Hamiltonian of which is
written in conventional notations as follows:
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szskdzudko‘i‘% 2 5k1+k2+a,k3+k46121+ d12—0k4—6lk3+ ) (2-20)
ko By~ by G v

U=repulsive interaction on site, N =number of lattice sites.

In Born approximation the #-matrix element of two-electron scattering with
opposite spins is independent of wave-vectors, <f|T|7>= U/N, while that of same-spin.
electrons is zero. On the other hand, we describe ferromagnetism of conduction
electrons in rigid band picture, that is,

Gi=eTS, (2-21)
where 4= U(N*—N-)/N is the exchange splitting. Thus the Fermi wave-vector of
up- or down-spin electrons is given by

kﬁ=(1ia)”3kp° y (2'22)

where %=° represents the Fermi wave-vector in paramagnetic state.
§ 3. Analysis of scattering processes

As shown in Eq. (2-12), electron-electron scattering causes resistivity through the
Umklapp process, in which sum of the momenta of two electrons with opposite spins
in the initial state, K= ki+ ks, changes to K+ G =ks+ R in the final state. Here ki
and ks (k; and ky) are on the Fermi surface of up-spin (down-spin) electrons. The
momentum difference G is one of the reciprocal lattice vectors. Among them only
those parallel to the electric field E is relevant to our discussion. .

At first we consider the region of the total momentum K available for the
Umklapp process. Since the absolute values |K| and |K+ G| must satisfy ks — ks~
<|K|, | K+ G|< kst + ks~ simultaneously, the region of K is inside the two spheres of
radius A"+ ks~ separated by G=|G|. It is shown as the hatched region in Fig. 1.
The other conditions At —A: <|K]|, |K+ G| are automatically satisfied since we
consider the Fermi sphere always being inside the first Brillouin zone, i.e., £*<G/2,

@]

———— *——-————-~———>g\

e 3
e " 3

G G
2 Fig. 2. Umklapp scattering process in wave-vector
Fig. 1. Region of total wave-vector K (hatched) space. Initial wave-vectors I and 2 jump to 3
available for electron-electron Umklapp scat- and 4 by Umklapp scattering. Total wave-
tering. vector changes by G.
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so as to be consistent with the approximation e,=#%%£%/(2m). The volume of the
region, Vg(a), decreases with k=" + A=~ when the magnetization increases:

V(@)= (ke + b P =Sl + Y G+ ¢ £l (3-1)

The tendency manifests a general feature of the magnetization dependence of resis-
tivity caused by Umklapp process.

Let us look at some details of each scattering process. For given total momen-
tum K(=Fk,+ k), two wave-vectors ki and k. end on the two circles perpendicular to
K -vector and on the spin-up and spin-down Fermi spheres, respectively, as illustrated
in Fig. 2. The radii of the circles are the same and given by

ki X b, 1 T — S " . —
Xl L e P~ BT (e — ke 7. (3-2)

r(K) =

After the Umklapp scattering K has changed to K+ G; then, similarly, two wave-
vectors ks and ks are on two circles with the same radius, »(|K + G|), where

K+ G|=vK*+G*—2KGcosOy , (3-3)

and @ is the angle between K and — G. These geometrical observations lead us to
express the first collision integral in Eq. (2:12) as

Wit Ge2Dv=A W (k1+, bs—; ks+, ba—)* G:>v=Gu

4
W(%TV( )Gu(a’) (3-4)
Cola)= 2{ ) 5102011131 6105 T = )
3 2 max@g maxk
:%F‘% [ aossines [ arkE (B r(K+G)), (3-5)

where the region of the integrals is the right hatched region in Fig. 1. If A" +/Ar
: <G/ /2, the limits of the integrals can be

10 ‘expressed by
Bl minK=GcosOg
G,(0)
% — (ke + ke )?— G%sin® Oy
0.5F (3-6)
I maxK=rFke"+ ke, (3-7)
= . 1 G .
max @ x=cos (————_Z(ky++k;:”)> , (3-8)

L 1 1 1 L : 1 L
0. 0.5 ) . .
0 P 1.0 since max®g is the angle between the

. - - vector to a vertex of the hatched region
Fig. 3. Normalized collision integral Gu(a)/Gu(0)

. o ) and x-axis in Fig. 1. Even for As*+ ks~
in Born approximation versus relative magnet- .
ization. > G/x/—z—, (3 : 6) ~ (3 : 8) remain as good
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approximation for the integration. The result of numerical calculation of
Gu(a)/Gu(0) is shown in Fig. 3 for &°=(1/16)"*G. It is a monotonically decreasing
function of magnetization.

Other collision integrals are evaluated in a similar manner. An explicit calcula-
tion of Avt(Ay~) is described in the Appendix. We note here useful relations between
the collision integrals, that are deduced from their definitions:

AU:—%‘(GU—AU_'—_AU—) (3°9)
and

Av=—A"=—Ax". ' (3'10)

As for the collision integrals of the normal process, where, K, the total wave-
vector of two electrons is conserved, we first integrate over an initial wave-vector
and a final vector ks along the circumference of the circle on the up-spin Fermi surface
for given K. Then we integrate over K and obtain the analytical expression for Ax.

Av=52es  TH(5) Ada), (3:11)

Ald)=—15 % o f d(cos @) / " AKKr (K) [f dordoy e — Fsa)’

_ 5127% .. _of 1=a V), oy .
315 (1~ @) [7 3<1—|—a'> }(k‘?)' (3-12)
Here we have used

(brz—Fsz)?=7*(K)-(cosp1—cos@s)?+sin@g , | (3-13)

where @1 and ¢s; are angles of & and ks projected in a plane perpendicular to K.

§ 4. Results in Born approximation

Having numerically calculated the collision integrals Gu, Av*and Ay~ and by
using (3-11) for Ax we can express the coefficient of 7%term in resistivity, B(a), as
a function of the magnetization. We have chosen the total number of electrons by %z’
=(1/16)"*G. The ratio, B(a)/B(0), (=o(T, a)/o(T,0) at low temperatures) is a
monotonically decreasing function as shown in Fig. 4 and vanishes at a=1. We
notice a close similarity in the magnetization dependence of B(a)/B(0) and of
Gu(@)/Gu(0), (Fig. 3). That means { Wit G2*v in Eq. (2-12) dominates the resistivity.
The result for the relaxation times r+ and 7~ determined from Eq. (2-6) are shown in
Fig. 5; t™(a) diverges to infinity, while r (@) goes to zero when magnetization
saturates.

In order to trace the explicit temperature dependence of resistivity, one needs to
know the temperature dependence of magnetization. Here we assume a simple form,

a(T)=a(0)WW1—(T/T.)?
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Fig. 4. Coefficient of T -term of resistivity versus 1.0
relative magnetization. (dotted curve: normal » T
process omitted) (0)
'.
0 o 1.0
1.0
Fig. 5. Relaxation times of electrons, r* and ¢~
o(T) (normalized), versus relative magnetization.
e(T.)

just to find a qualitative feature. A
result for normalized resistivity
o(T)/o(Te) is shown in Fig. 6 for «(0)
=1, saturated magnetization at 7 =0.
‘A reduction of resistivity in fer-
romagnetic state is evident.

Fig. 6. Temperature dependence of resistivity in § 5. Discussion
ferromagnetic state for a(0)=1 (solid curve)

and in paramagnetic state (dotted one). So far we have calculated the resis

tivity within a simplest approximation, i.e., in Born approximation. Higher order
terms in /-matrix are expected to be important particularly in ferromagnetic metals.
In higher orders, scattering processes between electrons with the same spin as
described by Ev’ in Eq. (2-10) also contribute to resistivity. Among others, Umklapp
processes accompanied by multi-scattering normal processes with small momentum
transfer in intermediate states tend to enhance the resistivity. The enhancement is
related to that of dynamical susceptibility in the ferromagnetic system. However, a
real excitation of spin fluctuations or spin waves is impossible for a large momentum
transfer required in Umklapp processes. The situation is contrasted to that in the
two-band (e.g., s- and d-bands) model of ferromagnetic metals.” Further considera-
tion on higher order processes is left to a separate paper.

To summarize: We have shown that the resistivity due to electron-electron
Umklapp scattering is suppressed when magnetization develops in ferromagnetic
metals in which conduction electrons and magnetic ones are the same. This is mainly
because the larger the difference between two Fermi surfaces with opposite spins the
smaller the volume of the region available for Umklapp processes in the wave-vector
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space. From Boltzmann equation it has been found that not only the Umklapp
processes but normal processes coupled to them also contribute to the resistivity.
Although we have assumed spherical Fermi surfaces to make our analysis as clear as
possible, the conclusion will be useful to discuss real ferromagnetic metals with more
general Fermi surfaces.
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Appendix

We calculate the collision integral of the Umklapp process Av* (Av™) in Born
approximation. To this end it is convenient to introduce six vectors, Ss-1, (84-2), 1,
(%) and & (&) for given K and K+ G. Here, 851 is a vector from O, the center of
the circle that the end point of the initial wave-vector ki lies on, to Os the center of
the circle that the final vector ks ends on. The vectors & and ¢ are the perpendicular
components of k; and ks with respect to K and K+ G, respectively. Other three
vectors are defined in the same way. Thus we obtain the following expressions:

AU+_3—2’7'5—h9(kB Tz)( ) AU+(J) s (A'l)
A (@)= sz [d(cosOx) [aRK*r(K)r(K+G))
X _/.0 znd¢1d§03(83—1,x— bzt tsz)?

o, s [d(cosOx) [dRE*H(K)r (K +G)

X {—%-I:%(K 24 ()2 — (kF")z>cos Ok

2 +\2_ —\2 2
K G Y s, |

+sin2@K[rz(K)+(|T%r(|K+ G|)>2]} , (A-2)

where Ok, ¢ is the angle between K+ G and — G. The intervals of the integrals are
the same as those in Eq. (3-5). The expression for Ay~ is obtained by interchanging
k" and k=~ in th above formula.
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