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'
 We  consider  electrical resistivity  of  ferromagnetic metals  in which  magnetism  and

electrical  currents  are  carried  by the same  electrons  of single  bands, Relaxation tirnes of
electrons  with  up  (or down)  spin  are  expressed  in terms  of  collision  integrals by  solving  a

coupled  Boltzmann  equation.  We  analyze  Umklapp  as  well  as  normal  processes of

electron-electron  scattering  in Born approxirnation  for ferromagnetic state.  The  coeMcient

of  the quadratic  term  in temperature  dependence of  resistivity  is found to decrease when

magnetization  develops at low temperatures.

gl. Introduction

   Electrical resistivi.ty  of most  of the ferromagnetic metals,  having subtracted  the

residual  one,  is nearly  proportional  to square  of  temperature  considerably  below the
Curie point, i.e., piiBT2  (for T<IT}). Usual explanatioh  for this characteristic

assumes  two  kinds of  electrons,  say,  d-electrens and  s-electrons.  The  former  have

heavy  masses  and  are  nearly  localized at  lattice sites. They  have  magnetic  moments

responsible  for ferromagnetism. The latter have light masses  and  are  itinerant from
site  to site  carrying  electric  currents  in metals.  Interaction between  them, i.e., s-d

interaction causes  scattering:  Then, s-electrons  loose their energy  by  exciting  mag-

netic  fluctuations or  spin  waves  in d-electron system.i)  As a result,  electrical  resis-

tivity is proportional  to square  of  temperature,  that reflects  the dispersion relation  of

spin  waves,  too[q2.  General discussions on  T2-term of  resistivity  in paramagnetic
case  have been given by Ziman using  Boltzmann equation2)'and  recently  by Yamada
et al. on  a basis of  Kubo  formula.3)

   However,  if the s-band  is unoccupied  we  must  deal with  magnetism  and  electrical

conduction  based on  the same  ground  taking  only  the d-band electrons  into account.

Such a  situation  is found in ferromagnetic transition metal  chalcogenides,  for exam-

ple, in CoSz, of  which  ternperature  dependence of  resistivity  changes  at  7} and  nearly

proportional to T2 at low temperatures.`) The chagacteristic  suggests  that 
'electron-

electron  scattering  in d-band restricted  by Pauli's exclusion  principle would  be the

rnain  origin  of  resistiyity.  As  known,  Umklapp  processes  are  indispensable to give

rise  to finite resistivity  in such  a  case.

   When  conduction  electrons  are  ferromagnetic, the sizes  of  the Fermi'surfaces of
up-spin  electrons  and  of  down-spin electrons  are  different. Since the electron  scatter-
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ing takes place near  the Fermi surfaces  at  low temperatures, a  direct influence of

ferromagnetism  on  electrical  conduction  is expected.

   In this paper  we  study  the relation  between magnetisrn  and  resistivity  focusing on
the  change  in electron-electron  scattering  process in ferromagnetic state  wit]hin  a

simplest  model  and  methods.  For  an  electron  system  with  single  band we  solve  a

coupled  Boltzmann  equation  in relaxation  time approximation  to obtain  a general

expression  for resistivity.  Normal and  Umklapp  scattering  processes for given
magnetization  are  exami'ned,  first in Born  approximation.  We  find that  the

coefficient  of  quadratic term  in temperature-dependent resistivity,  B(a)=R(T)IT2

decreases when  the  magnetization,  ev, develops. Enhancement  of  resistivity  due to

higher-order processes  of  scattering  is briefly'discussed.

g2. A  coupled  Boltzmannequation

   In the ferromagnetic state  the current  carried  by up-spin  electrons  is different
from the current  carried  by down-spin electrons.  We  set  up  a coupled  Boltzmann
equation  for distribution functions of  electron  of  wave  vector  k  with  up-spin,  fb', and
of  that with  down-one, fk- as  follows,

       eE  ofkcr ofkd 
･

     
-h'

 Oh 
==

 0t coii'
 (2'1)

     a=+(-)  for up-  (down-) spin,  ･

that is,

heE･lei Clfza
m 6Eza===

 Z  {ur(h, +, h, -;  h, +,  h, -)
 k2hsh4

  × [(1-f,',)(1-f,-,)fi,fF,-f,',h(1-ftt,)(1-f,1)]

  +  w(k,+,  k,+; le,+, le,+)[(1-fEi',)(1-f,',)fZ',fi,

  
ntfzaf:2(1-fh's)(1-fh'4)]} (2･2)

and

la eE - le, af E,
m 0Ek-2-:

 Z  {W(k,+, k,-i k,+, k,-)
 kikeh4

  × [(i-ft,)(i-fE,)ftsrl,-f:,h(1-fh)(1-fF,)]

  +  W(h,-, k,-; h,-,  h,-)[(1-fE,)(1-fk-,)f"k",

  
-fh-,fk-,(1-fk-,)(1-f4)]}

 
, (2･3)

where  
-e,

 m,  Eha  are  electron  charge,  effective  mass  and  energy  with  wave-vector  k,
spin  d, respectively.'  We  have  approximated  Ehcr by h2k21(2m) -ozi12(di=exchange

splitting)  for simplicity.  E  is the electric  field, which  is chosen  as  directed to x-  axis,

E=(E,O,  O), in the following. vr(a; b) represents  the transition rate  from  state

b to state  a  or  from  a  to b. To  linearize the coupled  equation  we  take  the devia-

'
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tion from  the equilibrium  distribution function fO(Eha)={exp[(E,a-")1(kBT)]+1}-',
(pt=chemical potential, kB=Boltzrnann constant):

     f,a=fo(E,if)+TdhC:ikx 
Ely'SSed).

 (2･4)

Here  we  have  employed  the relaxation  time  approximation  by  introducing Tcr, a

constant  relaxation  time of  spin-o  electron  on  the Fermi surface.  Aftet substituting
Eq. (2･4) into Eqs. (2･2) and  (2･3), we  multiply  kix and  k2x on  both sides  of  the

equations  and  sum  over  kix and  k2x, respectively  (this is a  variatienal  method2)).  For

an  elastic  scattering  si+e2  =E3+E4,  a useful  relation  between products  of  Fermi
distribution function,

     fO(ei)fO(E2)[1-fO(E3)][1-fO(e4)]-[1-rv(Ei)][1-fO(e2)]fO(e3)fO(e4), (2･5)

helps us  to reduce  the Bo!tzmann equation  to a coupled  equation  for T'  and  r-. For
fixed numbers  of  total electrons  with  spin  o, AIa, we  obtain

     (A"t/ll,;.1.E"' ...".-".'N..-)(i:)-2ff(iV:), (2･6)

     Au+N' 
-=<

 W(hi +, hz -;  k3 +, h4 -)'(kix-  k3x)2>u+N, (2'7)

     Au+Nn 
'==<

 W(  lei+, k2 -i  h3 +, k4 m)'(le2x-k4x)2>u+N,  (2'8)

     Au+NEi<W(ki+,  h2-; lt3+, h4-)'(kix-k3x)(k2x-k4x)>u+N 
,
 (2'9)

       a-  1
     Eu 

:-'2-<

 VV(kia, h2o; keo, h4o)･Gx2>u, (2･lo)

where  collision  integral

                                   1

     < W(  lei o, k2 d; k3 0, k4 d) 
'

 
'

 
*

 
*

 >u+N ='  kB T  k, th. aaki  + kz+  Ci ks +  h4

         X  W(kio, k2o'; k3o, k4o')･**sfO(EZ,)fO(eZL)[1-fO(eZ,)][1-fO(sX)] (2･11)
includes Urnklapp process, G;O,  as  well  as  normal  process G=O,  G  being reciprocal

lattice vector.  Similar notation  <'･･>u and  <'･･>N refers  to the Umklapp  process  and

the normal  one,  respectively.  These  equations  lead us  to a general expression  for
resistivity  in the relaxation  time  approximation  for given  relative  magnetization,  a

=(N'TIV-)!iVei  and  Alhi:=N'+N",

         Vm
          2 (N'T++N-T-)-i     p==
         e

      =2,V,i:'il<1ptotGx2>u'Itllilii!fl.C22SD-'i<ipKl>le,iGGX.22>>".lxDi,  (2'12)

where

     JM.tEiit.2. W(hio, k2ol; h3o, k4d), (2･13)
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     CiiiAu'+Eu'-Au--Ev-

       ==<W(ki+,  le2rm; ka+, h4n)'(feixrm fe2x-k3x+k4x)Gx>u+Eu+-Eu-

     D  ii  A.." +  A...- -  2A. ..  t  E.+ +  E.-

       =Au'+Au--2Au-4AN+Eu'+EuM

       =:=  < ur(lei +7 k2 un ; ks +, h4 L)'(leixL  le2x- le3x+ le4x)2>u+N+ Eu++  EuT

We  note  AN'=ANm==-AN.  In paramagnetic  state,  ev=O,  then C==O,
sionto

 resistivity,  as  expected.  On
the normal  process  coupled  to Um
term  AN  in D  given by Eq. (2･15).
   All of  the collision  integrals in Eqs. (2･7)--(2･10)

    
'
 k2.rrT ,pu. ,,1<fl  Tli .

         × (a quadratic term  of  wave-vector  differences) 
,

where  <fl Tli> refers  to a related  t-matrix element.

to the integral over  energy  and  to tha,integral on  the constant  energy

space:

     \･･･ -  (,I), fa3le･･･ -=  (,Y)sfdereys, 
････

'(2･14)

(2･15)

                                                      and  the expres-
(2･12) reduces  to a  simple  one;  only  the Umklapp  process < VVIotCx2>u contributes

                       the other  hand in ferromagnetic state  we  notice  that

                         klapp one  also  contributes  to resistivity  through  a

are  generally represented  as

>128(eiO+E2d'-e30-e4cr')fO(Eid)fO(e2cr')[1-fe(E3C)][1-fO(E4d')]

                    (2･16)

We  now  change  the sum  over

               surface  in

(2･17)

kh-

By taking integral over  energy  in advance,  we  can  obtain  the temperature dependence
of  the collision  integrals imposed  by Pauli's principle at  low temperatures  (kB T<feB 7}r
=EF--Fermi  energy):

      k,ITffff:deids2desde46(Ei+s2-e3-E4)fO(ei)fO(E2)[1-fO(E3)][1-fO(E,)]
         2n2
       

--
 3(k,  T)2. (2･18)

Therefore it is natural  to express  the temperature  dependence of  resistivity  at  low

temperatures  as

     p( T)-B(ev)  T2.  (2'19)

It is neted  that  the  magnetization  a  is still temperature  dependent in ferromagnetic

state,  

'T<TL<7}r.
 

'

   In order  to evaluate  the coethcient  B(ev)=p(T)IT2,  knowledge  of  collision  inte-

grals for each  scattering  process is necessary.  Since the calculation  becomes compli-
cated  for general  t-matrices we  restrict  ourselves  at  first to Bom  approximation  to

discuss semi-quantitatitie  features of  the phenomena.  Further simplification  is

achieved  when  we  use  a  single-band  Hubbard  model,  the Hamiltonian  of  which  is
written  in conventional  notations  as  follows:
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     fl 
=

 :,.ehallaaha +-il7k,.Z. 
k,,G6k,+k,

 1- c,h,+k,atk,-1- atb,-ah,-ak,+,  (2.20)

     U==repulsive interaction on  site, Ar==number of  lattice sites.

   In Born  approximation  the t-matrix  element  of  two-electron  scattering  with

opposite  spins  is independent of  wave-vectors,  <fl T[i>=  UllV, while  that of  same-spin,

electrons  is zero.  On  the other  hand, we  describe ferromagnetism of  conduction

electrons  in rigid  band  picture, that is,

       r- a  
'

               ,
 (2･21)     sle-=elt;  2

where  A=U(AX"-N-)XZV  is the exchange  splitting.  Thus the Fermi wave-vector  of

up-  or  down-spin  electrons  is given by

     hF± =(1 ± a)i'3kFO, (2･22)

where  kFO represents  the Fermi wave-vector  in paramagnetic  state.

                   g3. Analysis of  scattering  processes

   As  shown  in Eq. (2･12), e!ectron-electron  scattering  causes  resistivity  through the

Umklapp  process, in which  sum  of  the momenta  of  two  electrens  with  opposite  spins

in the initial state,  K=hi+k2,  changes  to K+G=k3+k4  in the final state.  Here  lei

and  k3 (k2 and  k4) are  on  the Fermi  surface  of  up-spin  (down-spin) electrons.  The

momentum  difference G  is one  of  the reciprocal  lattice vectors.  Among  them  only

those parallel to the electric  field E  is relevant  to our  discussiQn.

   At  first we  consider  the  region  of  the tetal momentum  K  available  for the

Umklapp  process. Since the absolute  values  IKI and  [K+Gl must  satisfy  leF'-AiF-

KiKI,  IK+elKkF'+kF- simultaneously,  the region  of  K  is inside the two  spheres  of

radius  kF'+feFr separated  by  G==IGI. It is shown  as  the hatched region  in Fig. 1.

The other  conditions  kF'-kF-grKr, iK+Gi are  automaticaily  satisfied  since  we

consider  the Fermi sphere  always  being inside the  first Brillouin zone,  i.e., kF'< G12,

Fig.1. Region  of  total wave-vecter  K  (hatched)
available  for electron-electron  Umklapp  scat-

tering.

Fig.2. Umklappscatteringprocessinwave-vector

   space.  Initial wave-vectors  l and  2jump  to 3

   and  4 by Umklapp  scattering.  Total  wave-

  vector  changes  by  G.
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so  as  to be consistent  with  the appro'ximation  ek=:h2k2f(2m).  The volume  of the
region,  VK(ev), decreases with  foF"+kF- when  the magneti2ation  increases:

     v.(ev)- 
83Z
 ((le,++k,-)3--il-( le,++k,-)2G+ iilg]. (3･1)

The  tendency  manifests  a general feature of  the magnetization  dependence  of  resis-

tivity caused  by Umklapp  process.

   Let us  look at  some  details of  each  scattering  process. For given total momen-

tum  K(=:  ki+  h2), two  wave-vectors  lei and  k2 end  on  the two  circles  perpenclicular to

K-vector and  on  the spin-up  and  spin-down  Fermi  spheres,  respectively,  as  illustrated

in Fig. 2. The  radii  of  the circles  are  the same  and  given by

     r(K)  =lkLi}kal-=  
2k

 [(kF'+leFr)2TK2][K2-(kF'LkF-)2]. (3'2)

After the Umklapp  scattering  K  has changed  td K+G;  then, similarly,  two  wave-

vectors  k3 and  le4 are  on  two  circles  wtth  the same  radius,  r(K+Gl),  where

     IK+Gl=r KZ+G2-2KGcosOK,  (3'3)

and  eK  is the  angle  between K  and  
J

 G. These geometrical observations  lead us  to

express  the first collision  integral in Eq. (2･12) as

     < VKo±Gx2>v=<  W(ki+,  h2 um ; k3+,  k4 -)'  Gx2>uff Gu

              =  3.M2;.KZg (leE T)2(-Xl)2G'-u(a), (3･4)

     (u(a)=2(k.9feX.-)2fctSialS2as36k,+k,+o,h,+k,6(rh41-ki)

          =  (ilet,f29-x)2, IIMaXeS de .s  in e. l[::X" dKK2  r(K)  r(IK+  Gl) , (3･5)

where  the region  of  the integrals is the right  hatched region  in Fig. 1. If leF'+leF-

                                     K  GI V2, the limits of  the integrals can  be

er(o>

O.5

        o.o as  1.o
                   ex

Fig. 3, Normalized collision  integral Gu(ev)fGJ(e)

   in Born approxirnation  versus  relative  magnet-

  ization.

         
-

 (leF'+kFT)2-G2sin2eK 
,

                            (3･6)

  maxK=leF'+kF",  (3･7)

  maxOK--cos7i(  2(k,+G+ k,r) ) , (3'8)

since  maxeK  is the angle  between the
vector  to a  vertex  of  the  hatched region

and  Jc-axis  in Fig. 1. Even  for kF'+kF-

>GIV2,  (3･6)--(3･8) remain  as  good
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approximation  for the  integration. The  result  of  numerical  calculation  of

Gu(a)IC"J(O) is shown  in Fig. 3 for feFO==:(1116)i'3G. It is a  monotonically  decreasing

iunction of  magnetization.

   Other collision  integrals are  evaluated  in a similar  manner.  An  explicit  calcula-

tion of  Au'(Au-) is described in the Appendix. We  note  here useful  relations  between

the collision  integrals, that are  deduced from their definitions:

     A.==-II-(c;,-A.+-A.-) (3･g)

and

     A.=-A.+==-A.-.  (3･10)

   As for the  collision  integrals of  the normal  process, where,  K,  the  total wave-

vector  of  two  electrons  is conserved,  we  first integrate over  an  initial wave-vector  hi

and  a  final vector  h3 along  t]he circumference  of  the circle  on  the up-spin  Ferrni surface

for given  K.  Then  we  integrate over  K  and  obtain  the analytical  expression  for AN.

     ,4.  -  3.M21.V,Z, (k, T)2(-X)2AAV.(.), (3.11)

     A-N(a)=-(le,+2i-)2.[ld(coseK)Yl]#,P-";.hi-dKK2r(K).L)C2-doidep3(ki.-le3.)2

          =--lt21;?{F!(±isn i-a)[7-3Gi:)2'3](le.o)3.  (3･i2)

Here  we  have  used

     (kix-k3x)2=r2(K).(cosepi-cosep3)2.sinZOK, (3.13)

where  qi and  op3 are  angles  of  hi and  k3 projected in a  plane perpendicular to K.

g4. Results in Born  approximation

   Having  numerically  calculated  the collision  integrals Gu, Au'and Auu and  by
using  (3･11) for AN  we  can  express  the coeMcient  of  T2-term in resistivity,  B(a), as

a  function of  the magnetization.  We  have  chosen  the total number  of  electrons  by kFe
=(1116)i'3G.  The  ratio,  B(a)B(O), (=p(T,a)/p(T,O) at  low temperatures) is a

monotonically  decreasing function as  shown  in Fig. 4 and  vanishes  at  ev==1. We

notice  a  close  similarity  in the magnetizati,on  dependence of  B(a)IB(O) and  of

au(a)ICu(O), (Fig. 3). That  means  < PVIotGxZ>u in Eq. (2･12) dorninates the resistivity.

The  result  ior the relaxation  times  T'  and  Trr deterrnined from  Eq. (2･6) are  shown  in

Fig. 5; r'(ev)  diverges to infinity, while  r-(a)  goes  to zero  when  magnetization

saturates.

   In order  to trace the explicit  temperature dependence  of  resistivity,  one  needs  to

know  the temperature  dependence of  magnetization.  Here  we  assume  a  simple  form,

     a(T)=-a(o)Vr=l(ri7iii:7y F)
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        O ex 1.0

Fig. 4. CoeMcient of T2 -term of  resistivity  versus

  relative  magnetization.  (dotted curve:  nermal

  process omitted)

1.0

p(T)p(L)

3.0

2D

1.0

      
O
 cr 

'
 1.0

Fig. 5. Relaxation  times  of  electrons,  T' and  f-

   (normalized), versus  Telative  magnetization.

just to find a  qualjtative feature. A

result  for normalized  resistivity

p(T)Lp(Tk) is shown  in Fig. 6 for a(O)

==  1, saturated  magnetization  at  T=O.
'A

 reduction  of  resistivity  in fer-
romagnetic  state  is evident.

        O T h

Fig. 6. Temperature dependence of resistivity in , S5. Discussion
   ferromagnetic state  for a(O)=1  (solid curve)

   and  in paramagnetic  state  (dotted one),
                                         So far we  have calculated  the resis-

tivity within  a  simplest  approximation,  i.e., in Born  approximation.  Higher  order

terms  in t-matrix  are  expected  to be important particularly  in ferromagnetic metals.

In higher orders,  scattering  processes between electrons  with  the same  spin  as

described by Eug  in Eq. (2･10) also  contribute  to resistivity.  Among  others,  Umklapp

processes  accompanied  by multi-scattering  normal  processes  with  small  momentum

transfer in iritermediate, states  tend to enhance  the resistivity.  The enhancement  is

related  to that of  dynamical  susceptibility  in the ferromagnetic system.  However,  a

real  excitation  of  spin  fluctuations or  spin  waves  is impossible for a  large momentum

transfer required  in Umklapp  processes. The situation  is contrasted  to that in the
two-band  (e.g,, s- and  d-6ands) model  of  ferromagnetic metals.i)  Further considera-
tion on  higher order  processes  is left to a  separate  paper.

   To  summarize:  We  have  shown  that  the resistivity  due to electron-electron

Umklapp  scattering  is suppressed  when  rnagnetization  develops in ferromagnetic
metals  in which  conduction  electrons  and  magnetic  ones  are  the same.  This is mainly

because the  larger the difference between  two  Ferrni surfaces  with  opposite  spins  the

smaller  the  volume  of  the  region  available  for Umklapp  processes  in the wave-vector
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space.  From  Boltzmann  equation  it has been found that not  only  the  Umklapp

processes but normal  processes coupled  to them  also  contribute  to the resistivity.

Although we  have  assumed  spherical  Fermi  surfaces  te make  our  analysis  as  clear  as

possible, the conclusion  will  be useful  to discuss real  ferromagnetic metals  with  more

general  Fermi  surfaces.
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Appendix

   We  calculate  the collision  integral of  the Umklapp  process Au'  (Auu) in Born

approximation.  To  this end  it is convenient  to introduce six  vectors,  s3-i, (s4-2), ti,

(Q) and  fa (a) for given K  and  K+  G. Here, s3-i  is a  vector  from Oi, the center  of

the circle  that  the end  point of  the initial wave-vector  hi lies on,  to 03 
'the

 center  ef

the circle  that the final vector  k3 ends  on.  The vectors  ti and  ts are  the perpendicular

components  of  hi and  h3 with  respect  to K  and  K+G,  respectively.  Other three
vectors  are  defined in the sarne  way.  Thus we  obtain  the following ekpressions:

Au'=u;3i-;{?7tsgm(
.M2`nV3hleBT2)(ilf)2Ae'.+(cr),

(A･1)

t21u'(a)=  le,lkrr,L)2.fa(cesOK)JltKK2r(K)r(IK+Gl)

x  
J6C2X

 dipl dip3(s3-1,x- tlx+ tsx)2

4n3(kF+leF-)2fd(coseK)fdKKZr(K)r(IK+Gl)

             x{t[f?(K2+(k,+)2-(k.L)2)cosO.

              Uif.GltkSeEEi=!kEle.coseK+G]2

             +sin20K[r2(K)+(-K5Glr(iK+GL))2]1,  (A･2)

where  OK+G  is the angle  between K+  G  and  
-

 G. The  intervals of  the integrals are

the same  as  those in Eq. (3･5). The  expression  for Au- is obtained  by interchanging

feF' and  feF- in th above  formula.
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