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We review the critical behavior of 1D highly correlated electron systems and 1D quantum
many-body systems with long-range interactions. These models exhibit the common univer-
sal long-distance properties which are characterized as Luttinger liquids. The microscopic
foundation of Luttinger liquids is formulated on the basis of conformal field theory and
Bethe-ansatz solutions.

§1. Introduction

Conformal field theories describe the macroscopic fluctuations in two-dimensional
(2D) critical phenomena based on the representation theory of underlying infinite
dimensional symmetry.” The most fundamental conformal symmetry is generated
by the celebrated Virasoro algebra. By virtue of the rapid development in conformal
field theory (CFT) our knowledge of the 2D classical critical phenomena has become
very rich and precise in recent years.?"¥

In view of physics of critical phenomena the current interest is much focused on
quantum critical phenomena. For one-dimensional (1D) quantum systems with
short-range interactions there is no phase transition at finite temperatures, and hence -
the correlation functions decay exponentially at long distance. Critical phenomena
can take place only at absolute zero, T=0. The low-energy gapless excitations then
follow the linear dispersion relation. Consequently the long-distance behavior of
correlation. functions is characterized by the power-law decay. It is clear that 1D
quantum critical phenomena provide us with the active area for CFT to play a
significant role.” -

In the study of phasé transitions finite-size scaling has been recognized as an
important tool. In CFT the finite-size scaling method turns out to be so powerful that
we are able to evaluate the correlation exponents from the finite-geometry informa-
tion.”” The application of this method to a variety of quantum spin chains has
achieved remarkable success in both numerical and analytical approaches. We also
found an important application to 1D highly correlated electron systems such as the
Hubbard model®~® and the #-J model.” The correlation exponents have been calcu-
lated exactly starting with the microscopic models. We have thus obtained an
answer to the long-standing problem in condensed matter phy31cs since the discovery
of the Bethe-ansatz wave functions.

Our purpose in this article is to give a review of our recent works on 1D highly
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correlated systems™?® and 1D quantum many-body systems with long-range interac-
tions."”™ In § 2 we would like to describe the basic aspects of CFT putting much
emphasis on the points which play a vital role in our application.. In § 3 applying the
CFET technique to 1D correlated electron systems we derive the exact critical expo-
nents for various correlation functions.  In § 4 we discuss the conformal invariance
properties of 1D critical systems with long-range interactions of 1/7? type.

§ 2. Brief review of CFT
We consider a 2D critical system defined on the euclidean plane with coordinate
(2%, x%). It is convenient to introduce complex combinations
z=x'+tix*, ZzZ=x'—ix*. (2-1)
The conformal transformation is to make a replacement |
z-rw(z), z-ow(z), | | (2-2)

where w(z) and @(Z) are arbitrary analytic functions. Thus 2D conformal invari-
ance is infinite dimensional symmetry. In quantum field theory the generators of the
coordinate transformation are defined from a symmetric energy-momentum tensor
Tw(z!, x?). Scale invariance at criticality implies that the trace of the energy-
momentum tensor vanishes. The continuity equation 9.7 =0 is then reduced to

0:T(2)=0, %T(2)=0, ] | (2-3)

where we have defined
T(Z)=%( T11“iT12) , T(Z)=%( Tll‘f‘iTm) .. (2'4)
Expanding T'(z) as well as T(Z) in Laurent series

T()=Z =" Ly, T(2)=3Z 2" "L, | (2+5)

neZ

we obtain the infinite set of symmetry generators L, and L.
The energy-momentum tensor T(2) transforms under the conformal transforma-
tion (2-2) as? ‘

T()~(LY ) +Glw 2, | (2:6)

~where {w, 2} stands for the Schwartzian

 dPwlds 3 d*wld?\ |
(w, A= ez ) | @7

The transformation property (2:6) is equivalent to the commutation relations for L»

[Ln, Lal=(m—n) Lo+ = m)8mino | @9
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which is called the Virasoro algebra. For L. we have the same algebra, and L, and
L, are commuting. A number c, called the central charge, is an important parameter
of the theory. The central charge labels each universality class of the critical
systems. ’ '
In critical lattice statistical systems microscopic lattice variables renormalize to
- an infinite set of scaling fields in the continuum limit, each of which is characterized
by its scaling dimension. What is remarkable in 2D phenomena is that this infinite set
of scaling fields is under control. In CFT these fields are classified into subsets on top
of that there exists a primary field @(z, zZ). Under the conformal transformation
(2-2) a primary field behaves as an (4", #~) tensor

0(z, z)~- ( z) <Z—Z)> O(w, W) , (2-9)

where %%, called conformal weights, are another fundamental parameters in the
theory. Consequently the two-point correlation function reads

(D(z, 2)0(2, z')>=(z_z,)2,,%z'_ S S (2-10)

It is now clear that the conformal weights 4* determine the scaling dimension x of @
as x=h*+h". Starting with the primary field @(z, Z) we see that each subset forms
an infinite dimensional conformal tower whose elements are given by repeatedly
acting L, L, with >0 on @(z, z) D" Their conformal Weights take (h*+ N,
W+ N7) with N*=1,2,3,--.

To summarize the 2D umversahty class is completely spec1ﬁed by the value of the
‘central charge and the spectrum of the primary fields {(%z*, 27)}. Upon classifying
CFT let us first assume unitarity, then ¢>0. CFT with ¢>1 are qualitatively
different from those with 0<c¢<1. The unitarity condition selects discrete values of
¢ for 0< <],

6

=1 m+1)

m=3,4,5, - (2-11)

whereas unitarity is ensured for ¢=1 theories.”” For 0<¢<1 the number of primary

fields is finite and their conformal weights are rational numbers which are determined
by the Kac formula. In ¢=1 theory any non-negative coformal weight is allowed and
there exist infinite number of primary fields. Symmetry is at most discrete for 0<c¢
<1, such as Z. symmetry for the Ising model, realizing c=1/2 CFT, and Ss; symmetry
for the three-state Potts model, realizing ¢c=4/5 CFT. At c¢=1 there can exist Z=1
field, and hence the symmetry can be continuous.

The results for 0<¢<1 have been obtaind by making use of the powerful repre-
sentation theory of the Virasoro algebra. In ¢=1 theory, on the other hand, the
representation theory is not powerful enough to specify the theory. We know,
however, that the ¢=1 theory is nothmg but the gaussian field theory which we can
dlrectly deal with.
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21. ¢=1CFT

Since the ¢=1 theory is the most relevant CFT for our description of 1D quantum
liquids we wish to summarize its main properties. Let us consider the gaussian
theory on the cylinder geometry. The action reads

o |
S=§17? / dt K do0upd e | (2+12)

where ¢ is the temporal coordinate defined along the cylinder axis and ¢ is the spatial
coordinate across the cylinder with period 2. The gaussian field ¢(o, ¢) is assumed
to be periodic

o(o+2x, t)=¢(0, t)+27RN , (2-13)

where NEZ is the winding number and R is the continuous real parameter in the
theory. The cylinder coordinate (o, ¢) is related to that of the plane (z, Z) through
the conformal mapping z=e'“*?, 2=~ Then the equation of motion implies
the decomposition

oo, =L 3(2) + 3(2)]. e
The stress tensor is given by |
TR)=—4 @b, T(2)=—4@:H(2)F. @)
We have primafy fields with conformal weights (4%, #7)=(1, 0) as well as (0, 1)

J(2)=id:4(2), T(2)=i0z4(Z), - (2-16)

which are responsible for the continuous U(1) X U(1) symmetry of the system. From
these operators we may obtain the marginal operator JJ (2, Z) with conformal weight
(1,1). Then the system realizes the continuonusly varying criticality.
The primary fields in the ¢=1 theory may be divided into two classes. One class
consists of fields @u,n(z, Z) with continuously varying conformal weights
s+ 1

M 2 | |
h ——2—<2—iRN>, M, NSZ. o (2-17)

These fields are expressed in terms of the vertex operators

Oy N(Z Z):ei[a’M,N¢(2)+dM,—N¢_(5)]
> b

:ei[(M/R)¢(d,t)+2RN<Z(d,t)]

, | (2+18)

where ayv=(M/2R)+ RN and &(o, t)=[¢(z)— $#(2)]/2.¥ The primary fields in the -
other class are given by the differential polynomials of 0:¢(z) and 9z4(Z). Their
conformal weights are

*) The operators @un(z, Z) with M, NEZ are mutually local. To describe the full operator content of
the theory, however, we should also consider the parafermionic operators which generically do not
respect the condition M, NEZ. :
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h=n?4, n=0,1,2, ‘ | | (2+19)

which are obviously independent of R.

This system defines the gaussian critical line on which we observe many interest-
ing symmetry enhancement points. We first note the duality symmetry under R
<(1/2R) corresponding to the interchange M« N. At the self-dual point R=1/,/2
the U(1) symmetry is enlarged to the SU(2) symmetry since in addition to J(z) two
holomorphic (1, 0) primary fields @s1,41(2)=e***? *® appear and these three currents
provide the SU(2) generators. It is well known that the spin-1/2 antiferromagnetic
(AF) Heisenberg chain at 7°=0 renormalizes to this fixed point. The point R=,/2
corresponds to the Kosterlitz-Thouless point in the XY model. Other interesting
points are R=,/3/2, realizing N=2 supersymmetry, and R=1, realizing free Dirac
fermion theory. In addition to this critical line we have the other ¢=1 critical line
on which the U(1)X U(1) symmetry is broken. This line describes the critical
behavior of the Baxter’s eight-vertex model and the Ashkin-Teller model.'~"
Many interesting physical as well as mathematical aspects of c¢=1 CFT are discussed
in Ref. 16).

The gaussian universality class plays a fundamental role in our understanding of
2D critical phenomena and 1D quantum critical phenomena. Its ubiquitous nature
was emphasized by several authors.!”~?” In the following we shall see several
examples of quantum critical systems which are mapped onto the gaussian theory at
long distance under renormalization. To complete this mapping we have to deter-
mine the parameter R in terms of the microscopic parameters, such as interaction
strength, particle density and so on. For the models we will discuss this calculation
is carried out exactly by using the Bethe-ansatz results.

2.2.  Finite-size scaling in CFT

We explain the finite-size scaling in CF T,' following the work of Cardy.” Let us
consider a 'two-point function of primary field (2:10). We apply the conformal

transformation
__L | ' .
w= 2ﬁlnz (2-20)

which maps the entire z-plane onto the surface of the cylinder. Notice that in this
finite geometry boundary conditions are periodic. The cylinder soordinate is w=1¢
+1i0 just as used in § 2.1 except that our metric here is euclidean and ¢ is the
L-periodic coordinate. From (2+9) one can easily find the correlation function on the
cylinder. Expanding this in Taylor series we get

< @(w, W) (D(w’, 77),)>cylinder

o0
NNiZ_OANie—(Zn/L)(x+N++N WE—t )e(ZTEZ/L)(S+N+_N—)(U——o‘) , ) (2.21)

where x=h"+ ", s=h*— k™ and the factors Ax- are irrelevant in the present context.
In terms of the transfer matrix formulation the left-hand side may be written as
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’§<O|G)(o‘)|n, k)e_(E"_E“(t—_t’)(n, klO(0)|0), | (2-22)

where Er and k are the energy and momentum eigenvalues of the hamiltonian A and
the momentum operator P, respectively. Here the ground state |0 corresponds to
|, £>=10,0>. Thus we see that for each primary state (h*, h™) there correspond an
infinite tower of the eigenstates of H and P with the eigenvalues E= Eo+27r(x
+N*+N")/L and P=2x(s+N*—N")/L. :

This result is understood in terms of the transformation property of the energy-
momentum tensor. Substituting (2-20) into (2:6) we find that - »

G287 L F\_._TC. .92)
H="HLo+L)—5f | _. | (2:23)

up to a non-universal bulk term. The scaling law now follows from the fact that
@(0, 0)[0> is an eigenstate of Lo (Lo) with eigenvalue #*(%”). In particular the ground
state has zero eigenvalues Z*=%4"=0. Notice also the appearance of the central
charge c. This leads to an 1mportant universal finite-size scaling behavior of the
ground-state energy":*? :

Eo~eol— (2 . 24)

6L’

where & is the ground-state energy density in the thermodynamic limit.

Therefore if we know the energy spectrum under periodic boundary conditions
the 1/L corrections to the ground-state energy gives us the value of the central charge
and the finite gap scaled as 1/L yields the conformal weights. Thus we can determine
the universality class and scaling dlmensmns of the operators from the finite-size
effects. '

In 1D quantum critical phenomena we have to take into account the anisotropy
factor in the finite-size scaling relations. The velocity v of the elementary excitation
fixes this factor. The scaling formulas are now written as

e
Ey~e&l 6L ,
E-E~2(z+ N*+N7). | (22

Replacing 1/L by T(=temperature) we realize that the specific heat C vanishes
linearly with respect to 722

zc ‘ ’ :
C~ gv—T : (2-26)

This is a useful relation to extract ¢ from thermodynamics. v

The results offer an efficient way of evaluating the scaling dimensions in the
numerical analysis of 1D quantum system. More crucial for our purpose is the fact
that for Bethe-ansatz solvable models full information about the scaling dimensions
is provided by the energy spectrum obtained exactly from the Bethe-ansatz equa-
tions.”~?"  In the Bethe-ansatz framework we are thus able to determine the long-
distance behavior of correlation functions without directly dealing with them. When
the system renormalizes to the gaussian fixed point we can also determine the
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dependence of R on the microscopic paramefer_s as will be shown in the subsequent
sections. ‘

§3. Correlated electron systems

The universal role of Fermi liquids is well established to describe the low-energy
properties of electron systems in higher dimensions. After the discovery of high- Tt
superconductivity, however, a fundamental issue in condensed matter physics has
been to clarify if the normal state of low-dimensional highly correlated systems
exhibits the non-Fermi liquid behavior.

Especially, in 1D electron systems the large quantum fluctuations give rise to the
anomalous behavior from the point of view of conventional Fermi liquids. Such
behavior was first discovered in the Tomonaga-Luttinger (TL) model many years
ago.®?  The TL model is recognized as the weakly correlated system in the sense
that the dispersion law for bare electrons is completely linear. The model can be

treated exactly by the bosonization method. The long-distance behavior of the

equal-time correlation functions has been obtained as follows:*”

: (a) charge deﬁsity correlator

<n(7’>)n(0)> ~const+ . Aor 2+ Ay v~ %cos2krr +A4r‘“°ejos4kFr., ‘ (3-1)
(b) spin density correlator ' |

F<Sz(7’)Sz(0)>~Bor‘2+Bzr‘“‘*0052kFr , | . ' (3:2)
(c) elecfron_ correlator ‘

Go~7r""cosksr, o=1,1, - _ ‘ (3;3)
(d) singlet and triplet pair correlators

Pur)=Pir)~7r"*, * | (3-4)

where ks is the Fermi momentum and the logarithmic corrections have been suppres-
sed. , - ‘
The critical exponents as, ac, @ 7 and 8 depend on the coupling constant of the
forward scattering with zero-momentum transfer. Inspecting the explicit results for
these exponents® one finds the universal scaling relations among them

as=0as,

as=1+ac/4,

n=(a.+4)*/16a., _

B=1+4/a.. | o ) (3-5)

Taking the Fourier transform of the electron correlator we obtain the momentum
distribution function near ke

<na>=<nuy—const|k—ks|’sgn(k—ks), o (3-6)
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ne> \ (2) (b)

ke ke

Fig. 1. Momentum distribution function for (a) Fermi liquid and (b) for Luttinger liquid.

where the exponent @ is given by _
0=n—1=(a.—4)*/16a. . , (3-7)

This power-law singularity in the momentum distribution features the non-Fermi
liquid nature of the TL model since the Fermi liquid theory predicts the finite jump
discontinuity at k. See Fig. 1.

This means that the quasiparticle picture, the heart of the Fermi liquid theory,
breaks down. Instead the low-energy excitations in the TL model are realized as the
collective modes. Furthermore the low-energy behavior is characterized by the
scaling relations (3+5) and (3+7). The TL model thus possesses the distinctive fea-
tures not observed in higher dimensions. Haldane pointed out that a large class of 1D
quantum critical systems share in fact the common low-energy properties with the TL
model. He expected this universality class to cover all 1D femion systems, and then
proposed to call such systems Luttinger liquids.'”

As for strongly correlated systems, however, the issue has not been settled until
very recently. Let us consider two models of correlated electrons; the Hubbard
model and the ¢-/ model. The Hubbard chain describes a system of itinerant elec-
trons interacting through the on-site Coulomb repulsion U. The hamiltonian is

‘.%Z—l‘<g C;ro‘Cjo“‘i“Uz.%m%i.L, U>0, . (3'8)
4>,0 4 . ) '

where the notation is standard. The hamiltonian of the #-J model is given by®*"

I=—t 3 clyciw+TZ(Ser 8, 1) (3-9)
{ip,o gy . ,

with an antiferromagnetic coupling />0, and it is assumed that every site is not
doubly occupied. It is shown that the strong correlation limit (U>¢) of the Hubbard
model is effectively described by the hamiltonian (3+9) with /<¢. The Bethe-ansatz
diagonalization was performed for the Hubbard model in the whole parameter
region®” and for the #-J model at the special point =73 We hereinafter set t=]
=1 for convenience. .

Let us define the filling factor v by v=/(density of electrons)/2. At half-filling v
=1/2 there opens the Hubbard gap in the charge excitation, namely these systems are
in the Mott insulating phase. In the long-distance limit, therefore, only the massless
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spin excitation survives. The universality class is that of the spin-1/2 AF Heisenberg
chain. Corresponding CFT is the ¢=1 SU(2) Kac-Moody theory as mentioned in
§2.1. For 0<y<1/2 both the charge and spin excitations are gapless. Our task is to
specify the universality class of this metallic phase.

Recently several groups have carried out the numerical calculations to obtain the
correlation functions in 1D highly correlated electron systems for v<1/2.39~*" In
particular the results in Refs. 36) and 37) suggest that the TL scaling relation, which
is verified in the weakly correlated system, is also valid for the highly correlated
Hubbard chain. Last year several authors have successfully obtained the correlation
exponents in the Hubbard model®~® and the #-/ model.” The results show explicitly
that these models are characterized as the Luttinger liquid and their fixed point is of
the TL type. In the following we summarize our main results derived from the
Bethe-ansatz solution by using the finite-size scaling technique described in § 2.2.

3.1. Finite-size corrections

The corrections to the ground-state energy E, turn out to be **%

Ev~eNa—g 3= g\’/- , | (3-10)

where N, is the number of the lattice sites. Here v, and vs are the charge and spin
velocities, explicit formulas of which are available in Refs. 6)~9). From this expres-
sion we identify the central charge to be ¢=1 both for charge and spin excitations.

The finite-size corrections to the excitation spectra are expressed in terms of the
change of the number of electrons (or down spin electrons) denoted as I. (or Is) and
the number of particles moving from the left “fermi point” to the right one denoted as
D. (or D) for the charge (or spin) excitations. The energy gap consists of two
terms;*®"®® one is proportional to the charge velocity and the other to the spin
velocity

E— By~ 22 (15t ) + 225 (gt + ), 3-11)

where %.* are the left and right conformal dimensions in the charge (¢=c¢) and spin
(@=s) sectors:

1 1 I
1 41 L +
he 2( )+ 2)+NC’
2 .
hi=1<ls 17 Ds> FNGE (3-12)

Here Z: is a non-universal function called the dressed charge in the Bethe-ansatz
approach. The excitations carry the momentum

27

Voo (e —haT). B (3-13)

The number of low-energy particle-hole excitations is counted by the non-negative
integers N* which also label the infinite conformal tower. :
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The dressed charge Z. is determined from the solution to the Bethe-ansatz
‘integral equation

1(B)=1+ [ di cosk' Glsink—sink)ne(K) | (3-14)
for the Hubbard model, while for the #-J model at =/
ED=1+ [ dVRG-D)e), | (3-15)

where the kernel is given by G(x)=K(x; U, t) and R(x)=K(x; 2,1) with

exp(—twx ‘ :
K(x; a,5)= [ 52 1+eX§Ea|w|/<>zb» (3-16)
The Fermi level € as well as 4 is fixed by the electron concentration. The dressed
charge is then defined by Ze=72.(Q) (or &(A)) for the Hubbard (or #-J) model.
Therefore all the dependence of scaling dimensions on the microscopic parameters
enters in the dressed charge. We also mention that there exists the restriction on the

' quantum numbers I, and D,*®®

Ic+[s

5 1 mod 1 , ' ‘ (3-17)

Dc: 2

mod1l, Ds

which should be respected when making' the identification between field operators and
quantum numbers. :
3.2. Correlation functions

The two-point correlation functions of the scaling fields @x«(7, ) with conformal
dimensions 4* are now written

exp(i4keD.or)exp(i2keDsy)
— et )*" (7 4 twet P (r — st )5 (v + dvst )PP

{Du(7, £) D0, 0)>= (r .(3-18)
Let us first discuss the charge density correlation function. The number operator
n; will renormalize to a number of scaling fields at long distance. The scaling ﬁelds
are determined by assigning the quantum numbers (12, Dz, No™) to the field operators
“The asymptotic behavior of the equal-time correlator then takes the same form as
(3:1) in the TL model. The 4kr piece arises from the excitation of (I, Is, De, Ds)
=(0, 0, =1, 0), whereas the 2k piece from (I, Is, D¢, Ds)=(0, 0, =1, F1) and (0, 0, 0,
+1). The non-oscillating part is due to the lowest particle-hole excitation. We thus
find

aCZZZCZ, as:1+ac/4. Lo ' (3'19)

The spin correlation function is also given by (3-2) as in the TL model. The critical
exponent as for the 2kr part is equal to as of the charge density correlation

ds—ds . » ' (3'20)

Turning to the electron correlator we again find the same form as'(3~3) where the
ke oscillation comes from (I, Is, D, Ds)=(1,1,0,1/2). Therefore the momentum
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4 <Z — ' ' distribution function around k¢ exhibits
S o . the typical power-law singularity of
o' ~ Luttinger liquids with the exponent

s U=l g =(e—a)/(16a) . (3-21)

" Examine now the superconducting
correlation functions. The singlet and
triplet pair correlation functions have
the leading uniform term

PS(V, O)__'.Pt(r; O)Nr_ﬂ ’

9 B=1+4/a., ' (3-22)
- J.; . v
T v [T T which correspond to (I, Is, Dc, Ds)=(2,
o 025 05 34/2 —1)and (I, L D, D)=(2,2,0,0)
' v for Ps and P:, respectively. In Fig. 2 we

Fig. 2. Critical exponent a. as functions of elec- depict the 44 CDW exponent ac both for
tron filling v: Solid curves for Hubbard model” ~ the Hubbard model and the #-/ model,
and dashed curve for #-J model at ¢+=7.9 fro_m which one can readily read off

’ ‘other exponents using the relations
(3- 19) (3 21) and (3-22).
Comparing (3-12) with (2-17) one immediately recogmzes a typical form for the
¢=1CFT. In fact there exist two independent c=1 CFT’s describing separately the
charge and spin degrees of freedom. The action is given by '

27T aZ‘. Ua/dtf ddap¢aa Pa . | (3'23)

To fix the gaussian parameter R. in the charge sector we look at the 4%r charge
excitation (0,0, £1,0). It may be appropriate to call this excitation holon. The
correspondmg primary field is represented by the vertex operator

@iz,o(z, Z) éilzzw(dt) : v (3'24)

Comparison with (2-18) gives Rc.=1/Ze.
For the spin sector we get from (3-12)

0+Zzo y

fit= _
%Jrzzo . (3+25)

This is exactly the spectrum of the c=1 SU(2) Kac-Moody theory corresponding to
the allowed values of spin 0 and 1/2 for the level 1 highest weight representations.
Thus the spin sector stays in the SU(2) Kac-Moody theory for arbitrary filling, 0<v
<1/2. Notice that the 2% spin excitation (0, 0, 0, 1) is indeed identified as the spin
1/2 highest weight state with conformal weight 1/4. Let us refer to this spin excita-
tion as spinon. It is then clear that the holon and spinon excitations are the elemen-
tary massless degrees of freedom in the metallic phase. Asa result the electrons are
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no longer regarded as elementary, but the composites of holon and spinon.

We see clearly that the TL scaling relations (3+5) and (3:7) hold even for highly
correlated systems. Namely, in the metallic phase, the repulsive Hubbard model and
the £-J model at t=] renormalize to the TL fixed point, and thus they belong to the
universality class of Luttinger liquids. In CFT description the TL fixed point con-
sists of two independent ¢=1 CFT’s; one is associated with the charge sector which
is characterized by continuously varying criticality under the U(1) symmetry and the .
other represents the spin sector with the SU(2) symmetry.

Finally we remark that in Luttinger liquids the bulk quantities are closely related
to the correlation exponents.”»**~®  This is a direct consequence of the U(1) and
SU(2) Kac-Moody symmetry of the system, and hence the universal characterization
of the TL fixed point. One can also study the transport properties by analyzing the
finite-size effects under twisted boundary conditions.*”*” For furtheér details we refer
to original references. ‘ : k

§4. Critical systems with long-range interactions

In this section we wish to study the conformal properties of 1D quantum systems
with long-range interactions. We first discuss the continuum many-body system and
then turn to the anisotropic Heisenberg chain.

4.1. Continuum many-body system

We consider the N-body hamiltonian®®
ﬂ[_ ul az V 2 & 2 .
——Jaw“i—ng (.rj—xz)-l-a) jgl.l‘j , (4'1)

where the potential is of the 1/»? type 4
V(r)=g/r*. | , (4-2)

It is useful to define A=(1+,1+2¢)/2 and we restrict ourselves to the region 1>1/2.
The thermodynamic limit is taken by letting N~ oo, w—~0 with Nw being kept fixed.
Sutherland found the ground-state wave function in the Jastrow form*

¢o=i1}j|xi—xj|‘exp<—%§xi2> o (4-3)

with the energy eigenvalue
Eo=oN(1+AN-1)). (4-4)

One may recognize that ¢’ is identical to the probability distribution function for the
eigenvalues of matrices from a gaussian ensemble. For A=1/2, 1 and 2 the ensembles
are orthogonal, unitary and symplectic types, respectively. On the basis of the results
in the theory of random matrices Sutherland obtained the density correlation function
whose long-distance behavior is*?

<p(7)0(0)> ~const+ Aor 2+ Azr~*cos2ksr , : (4-5)
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where the exponent « is equal to 4, 2 and 1 for A=1/2, 1 and 2, respectively.
We now put the same system in the finite geometry with linear size L. To
implement periodic boundary conditions we modify the form of the potential

Vir)- VL(V)=gniw(r+ nl) 2= gLﬁzz I:sin(ﬁ—;:)]_z ) (4-6)

The wave function for the hamiltonian with this finite-size potential again takes the
Jastrow form '

sih(—————”(x‘; Z;) )

A

for x:>x;, ' (4-7)

i>j

¢O=H

which indicates that the two-body scattering is essential to describe the asymptotic
form of the many-body scattering states. Moreover the integrability of the system
has been proven at the quantum level.* These observations imply that we can adopt
the Bethe-ansatz idea to describe the scattering states ¢(xi, --*, zn) in the asymptotic
region ;1< < x; KK xy. Sutherland called this approach the asymptotic Bethe-
ansatz.*® : ’
This offers a way of systematic construction of the energy spectrum, which is
summarized as the set of the algebraic equations 4 la Bethe ansatz

kjL:27[]j+E(A.*l)gsgn(kj—kl) for j=1,2,--,N, ‘(4-8)

where the quantum number /; is an integer (or half integer) for the Fermi (or Bose)
statistics. The energy and the momentum are given by E=2Xk,* and P=2ka,
respectively.

Since the system has no dimensionful parameter we may expect conformal
invariance at low energies although the interaction is long range. Let us extract the
information about the long-distance properties from (4-8).'” First of all we evaluate
the value of the central charge. We perform the low-temperature expansion of the
free energy F(T') since the analysis of the ground-state energy is rather subtle due to
the potential form (4:6). The result is F(T)~F(T =0)—zT?/(6v) with the velocity
v=27AN/L. According to (2:26) the central charge is identified as c=1.

In order to obtain the conformal dimensions we compute the finite-size correc-
tions in the energy spectrum. The change of the particle number is denoted as / and
the number of particles moving from the left to the right fermi point as D. The 1/L
corrections to the low-energy excitations are
E—E~ 24P+ iDr4 NN, 4-9)
where the non-negative integers N* correspond to the simple particle-hole excitation.
The associated momentum is '

P=27rkFD+%?}(ID+N+~N—) . (4-10)

The selection rule for D is D=1/2 mod 1 for fermions, Whilé DeZ for bosons. From
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4 1 T T . T these expressions the conformal dimen-
sions 4* can be read off'®

+ + 1 1 2 +
(I D N—)=—2—<—iZD) +NE

2
(4-11)

where the dressed charge function is Z
=1/J/A. We thus obtain the typical
formula for the ¢=1 CFT.

It is now easy to see that the
asymptotic form of the denity correla-
tion function is given by (4+5). The 24r

g oscillation term arises from the excita-
Fig. 3. Critical exponent « as a function of interac- tion ([ , D, N 1)2(0, 1 0)’ yielding

tion strength ¢.!® Sutherland’s results® are a=2 //1 ’ ( 4_12)
represented by @.

which is plotted in Fig. 3. We see that

the present result verified for any 1=>1/2
indeed agrees with Sutherland’s result at A=1/2, 1 and 2. For further discussion of
correlation functions we refer to Ref. 10).

4.2. Awmisotropic Heisenberg chain

Haldane*® and Shastry* independently introduced a model of exactly solved
spin-1/2 isotropic AF Heisenberg chain with long-range interactions. Let us investi-
gate the anisotropy effect in the Haldane-Shastry model.'? We take a periodic ring
of N sites and the position of the i-th site is represented by x:;. The hamiltonian is
defined by

H= g_]ij[Siijz—i_Sz’ijy—I_ASiszz] , (4'13)

where the inverse-square exchange Ji; is chosen to satisfy periodic boundary condi-
tions. Following (4-6) we set :

2 — )\ -2 o
Ja=24 [sin( 2 (xZN D) ﬂ (4-14)
with the AF coupling J >0.

In the following we consider the case that there is a positive even integer p such
that*®

p=3(1+/1482). | O (415)

For these particular values of 4 the ground-state wave function in the Jastrow form
has been demonstrated to exist.*¥ Applying the method of asymptotic Bethe ansatz
one can express the excitation spectra in terms of the pseudomomenta k;. Let M be
the number of down spins. The Bethe-ansatz-like algebraic equations for k; read*”
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ij=27rL-+ﬂ(p—1)§Isgn(kj—kl) for j=1~M, | (4-16)

where I; is an integer or a half-odd integer and the second term on the right-hand side
is the sum of two-body phase shifts. The total energy is given by

. M
E(M, 2)=Eo(M, D +2307 (4-17)
with the constant energy shift

2
Eo=o (W= (N 4 4~ 2(N*+2)M]. (418)

It is clear that (4-16) does not produce all the eigenstates of (4:13). Since (4-16)
describes only the scattering states it is not useful when the system is in the Ising-type
ordered state. The scattering states, however, will describe certain massless dis-
ordered phase (liquid phase) which may be realized under applied magnetic fields."”
In order to identify the liquid phase let us first look into (4:16). The ks take the
values in the region [—x, 7] due to the periodicity of the lattice system. For given
» we have |LI<N/2—(p—1)(M —1)/2. Thus one finds that kjn=k;+27p/N. As a
consequence the allowed maximum number of down spins is N/p, which in turn gives
the lower bound on the magnetization in the liquid phase, i.e., mins.=1/2—1/p.
Notice that mins; is finite for p>2. This is quite peculiar in view of the nearest-
neighbor interaction models.

We now argue that the spin-liquid phase with the magnetization s:>1/2—1/p
exists in the presence of external magnetic fields. First of all the elementary excita-
tion obtained from (4-16) has the linear dispersion at low energies for s:=>1/2—1/p,
and hence the system is in the massless phase. Let us next examine the energy shift
due to the change AM of the number of down spins. Extracting the term linear in AM
gives the magnetization curve as a function of magnetic field H

szz—%——ﬂ%' (HoH[J (4-19)

for Hoi< H < Hcs, where the upper and lower critical fields, H¢, and H.i, are given by
2 2
ch=—”6] (A(p)+%) , Hcl=—~”6] (A(p)—1). (4+20)

At H¢; all the spins are fully polarized ferromagnetically, while at H¢: the magnetiza-
tion takes its minimum value s;=1/2—1/p allowed in the liquid phase. From (4-19)
we obtain the differential spin susceptibility

__ 4
Xs 7t2p2]

_ 1
— 1—_ L .
(1—2sz) perey (4-21)
where the velocity v of the spin wave excitation is v=zp(1—2sz)/(4]).

Let us consider the low-energy conformal properties of the spin-liquid phase.'”’
The analysis is essentially the same as for the previous continuum model in §4.1.

The central charge is obtained from the 7 -linear coefficient of the specific heat. The
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result is again ¢=1. The universal 1/N corrections to the excitation energy are
expressed as

E(AM; 4D)— E(0; o)~—2—]7(,—”(%AM2+%ADZ+N++N~) . (4-22)
where the quantum number 4D is related to the momentum change 22MAD/N and the
non-negative integers N* represent the particle-hole excitations. The momentum
carried by the excitation is

P=2kedD +2W”<AMAD+N+—N~) , (4-23)

where kr=nM/N. ‘
The scaling dimensions are read off from the energy spectra. One finds that the
asymptotic form of the longitudinal spin correlation function is written

»<SrzS()z>NCOIlSt‘|‘A07’_2+A27’_aCOS2kF7’ , (4-24)

where the 2kr exponent is a=2/p corresponding to the excitation (4M, 4D, N*)=(0,
1,0). The transverse spin correlation, on the other hand, has the leading non-oscilla-
tion term ‘

(S,*So™>~Bor~, | (4-25)

where we get the correlation exponent f=p/2 which follows from (4M, 4D, N*)
'=(1,0,0). We see that the 2k exponent @ in <S-2S:*> becomes small as 4 increases,
implying the tendency to stabilize the spin alignment with the period x/k==N/M.
Notice that this alignment will be stabilized as a long-range spin order under certain
conditions if favored energetically. ‘

One feature of interest is that there is no dependence of the critical exponents on
magnetic fields but only on the anisotropy parameter 4. This is in marked contrast
to the short-range interaction models. We also point out that the critical exponents
@ and B obey the scaling relations inherent in the Luttinger liquid, 8=1/e, reflecting
the U(1) symmetry in the spin-liquid phase.?*® Only in the isotropic limit 4=1 at
H=0, the SU(2) symmetry is recovered, then 8=a=1. This case has already been
discussed in detail in Refs. 44)~46). '

- We have shown that the spin-liquid phase is realized under external magnetic
fields. The low-energy behavior of this phase is described by the ¢=1 CFT, and
critical exponents of spin correlation functions have been calculated. For low
magnetic fields it is natural to expect the ordered state with a gap to appear. It will
be an interesting issue to clarify the nature of this long-range ordered state.
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