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   We  review  the critical  behavior of  ID highly cerrelated  electron  sygtems  and  ID quantum
many-body  systems  with  long-range interactiens. These  rnedels  exhibit  the  common  univer-

sal long-distance properties which  are  characterized  as  Luttinger liquids. The  microscopic

foundation of Luttinger liquids is formulated  on  the  basis of  conformal  field theory and

Bethe-ansatz solutions.

gl. Introductibn

   Conformal field theories describe the macroscopic  fluctuations in two-dimensional

(2D) critical  phenomena  based on  the representation  theory of  underlying  infinite

dimensiQnal symmetry.i}  The  most  fundamental conformal  symmetry  is generated
by  the celebrated  Virasoro algebra.  By  virtue  of  the  rapid  development  in conformal

field theory  (CFT) our  knowledge of  the 2D classical  critical  phenomena  has become
very  rich  and  precise in recent  years.2)'3)

   In view  of  physics 6f critical  phenomena  the current  interest is much  focused on

quantum  critical  .phenomena.  For one-dimensional  <ID) quantum  systems  with

short-range  interactions there is' no  phase  transition at  finite temperatures,  and  hence
the correlation  functions decay exponentially  at  long distance. Critical phenomena

can  take  place  only  at  absQlute  zero,  T=  O. The low-energy gapless excitations  then
follow the linear dispersion relation.  Consequently the  long-distance behavior of

correlation.functions  is characterized  by the power-law  decay. It is clear  that ID

quantum  critical  phenomena  provide us  with  the active  area  for CFT  to play  a

significant  r'ole.`>

   In the study  of  phase transitions finite-size scaling  has been  recognized  as  an

important tool. In CFT  the finite-size scaling  method  turns out  to be so  powerful  that

we  are  able  to evaluate  the correlation  exponents  from the finite-geometry informa-
tion.5> The  application  of  this method  to a  variety  of  quantum  spin  chains  has
achieved  remarkable  success  in both numerical  and  analytical  approaches.  We  also

found an  important application  to ID  highly correlated  electron  systems  such  as  the

Hubbard  mode16)rv8)  and  the t-f model.")  The  correlation  exponents  have  been calcu-
lated exactly  starting  with  the microscopic  rnodels.  We  have  thus  obtained  an

answer  to the long-standing problem  in condensed  matter  physics  since  the discovery

of  the Bethe-ansatz wave  functions.

   Our purpose  in this article  is to give  a review  of  our  recent  works  on  ID  highly
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correlated  systems7)'9)  and  ID quantum  many-body  systems  with  long-range interac-'

tions.'O)'ii) In g 2 we  would  like to describe the basic aspects  of  CFT  putting  much

emphasis  on  the points which  play a  vital  role  in our  application.  In S 3 applying  the

CFT  technique  to ID  correlated  electron  systems  we  derive the exact  critical  expo-

nents  for various  correlation  functions. In g4 we  discuss the conformal  invariance

properties of  ID critical  systems  with  long-range intera¢ tions of  11r2 type.
                                                '
                                                     '

                        g2. Brief revievv  of  CFT

   We  consider  a  2D  critical  system  defined on  the euclidean  plane  with  coordinate

(xi, x2).  It is convenient  to introduce complex  combinations

     z==  xi  +  in2, 2- 
m-

 xi  -  in2. (2'1)

The  conformal  transformation  is to make  a  replacement

     z-,w(z),  2--nd(z-),  (2･2)

where  w(2)  and  nd(2-) are  arbitrary  analytic  functions. Thus 2D  conformal  invari-

ance  is infinite dimensional symmetry.  In quantum  field theory  the generators  of  the

coordinate  transformation are  defined froin a.symmetric  
'energy-momentum

 tensor

7';,v(xi,x2). Scale invariance at  criticality  implies that the trace o.f the energy-

momentum  tensor  vanishes.  The  continuity  eqttation  OptT;iu==O is then  reduced  to

     Oa-T(z)==O, aeT(2M)=O, '
 (2･3)

where  we  ha.ve defined

     T(2)-t(Tl,-i71,,), T(z-)-E(Tl,+iCTi,). (2･4)

Expanding  T(z) as  well  as  T(z-) iri Laurent  series

     T(z)=ZgT"r2L.,  T(z-)=Zg--"-2L-n, (2'5)
         , nEZ  nEZ
         '

we  obtain  the infinite set  of  symmetry  generators  Ln. and  Ln. ,

   The energy-momentum  tenser T(z) transforms under  the conformal  transforma-

tion (2･2) asi)  
.

       '

     T(z) -(  ee )2 T(w)+-iSt-{ w,  g}, (2･6)

where  {w, g}  stands  for the Schwartzian

     {w,2}=diXwbhaha3--g-(dik";ink2)2. (2･7)

The  transformation property  (2･6) is equivalent  to the commutation  relations  for 'Ln

     [Lm, Ln] =:  (m-  n)Lm+n+"iSt'(  m3-m)  am+n,o, 
'
 . 

'
 (2'8),

                                      '
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which  is called  the Virasoro algebra.  For Ln we  have the,same algebra,  and  Ln and

Ln are  commuting.  A  number  c, called  the central  charge,  is an  important parameter

of  the the6ry. The  central  charge  labels each  universality  class  of  the critical
                            '
systems.  ･ -

 
'

   In critical  lattice statistical  systems  microscopic  lattice variables  renormalize  to

an  
･infinite

 set  of  scaling  fields in the continuum  limit, each  of  which  is characterized

by its scaling  dimension, What  is remarkable  in 2D  phenomena  is that  this infinite set

of  scaling  fields is under  control.  In CFT  these fields are  classified  into subsets  on  top

of that there exists  a primary  field ¢ (2, z-). Under the conformal  transformation

(2,2) a  primary  field behaves as  an  (h', h-) tensor

¢ (z, zm)-(  Zlll )h"( 
ddZE'ff

 )h-¢ (zv,'m) , (2-9)

where  h', called  conformal  weights,  are  another  fundamental patameters  ih the

theory.- Consequently the two-poi'nt correlation  function reads

<di(Z, 2-)O(2',  z-t)>=
1-

(z-z')2h'( 2--  2-t)2h' 
･ (2-10)

It is now  clear  that the conformal  weights  h±
 determine the scaling  dimension x  of  O

as  x  =h"+hrr.  Starting with  the primary  field O(z, zrm) we  see  that each  subset  forms
an  infinite dimensional conformal  tower  whose  elements  are  given  by repeatedly

acting  Ln, L-n with  n>O  on  di(z, x-).') Their conformal  weights  take (h'+N',
h++IV-) with  N ± =1,  2, 3,･-･.

   To  summarize  the 2D universality  class  is cornpletely  specified  by the value  of  the

central  charge  and  the spectrum  of  the  primary  fie]ds {(h', h-)}. Upon  classifying

CFT  let us  first assume  unitarity,  then c>O.  CFT  with  c21  are  qualitatively
different from those  with  O<  c<1.  The  unitarity  condition  selects  discrete values  of

c  for O<c<1,

c=1-
6m(m+1),

 m=3,  4, 5, -･, (2･11)

whereas  unitarity  is ensured  for c21  theories.i2} For O<c<1  the number  of  primary

fields is finite and  their conformal  weights  are  rational  numbers,which  are  determined

by  the Kac  formula. In c=1  theory any  non-negative  coformal  weight  is allowed  and

there exist  infinite number  of  primary  fields. Symmetry is at  most  discrete for e< c

<1, such  as  Z2 symmetry  for the Ising model,  realizing  c=!112  CFT, and  S3 symmetry

for the three-state Potts model,  realizing  c=:4/5  CFT. At c=1  there can  exist  h==1
field, and  hence  the symmetry  can  be continuous.

   The  results  for O<c<1  have been obtaind  by making  use  of  the  poweriul  repre-

sentation  theory of･ the Virasoro algebra.  In c==1  theory, on  the other  hand, the

representation  theory  is not  powerful  enough  to specify  the  theory. We  know,

however,  that the c=1  theory  is' nothing  but the gaussian  field theory  which  we  can

ditectly deal with.
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2.1. c==1CFT  
-
 ･

   Since the c=1  theory  is the most  relevant  CFT  for our  description of  ID  quantum

Iiquids we  wish  to summarize  its main  properties. Let us  consider  the  gaussian

theory  on  the cylinder  geometry. The  action  reads

     S=  i. fatf2=do&qo"op, (2'12)

where  t is the temporal  coordinate  defined along  the  cylinder  axis  and  o  is the spatial
coordinate  across  the cylinder  with  period  2z. The  gaussian  field q(ai t) is assumed

to be periodic

     q(o+2n,  t)== q(o, l')+2nRN,  ･ (2-13)

where  NEZ  is the winding  number  and  R  is the continuous  real  parameter  in the

theory. The cylinder  coordinate  (o, t) is related  to that of  the plane  (2, 2-) through
the conformal  mapping.z==ei(`'cr),  z---ei(`-d). Then  the equation  of  motion  implies

the decornposition

     op(O, t)-= i [¢ (2)+ di< 7)] .                                                                (2･14)

The  stress  tensor  is given  by

     T(a) i=-S-(a.ip(z))2,  T(z') =--}(0.-ip-(zm))2.  (2･ls)

We  have  primary  fields with  conformal  weights  (h', hL)==(1, O) as  well  as  (O, 1)

     f(2)liaip(z), f-(z-)=iOiexz-,), (2'16)

which  are  responsible  for the continuous  U(1) × U(1) symmetry  of  the system,  From

these operators  we  may  obtain  the marginal  operator  JJ-(2, 2-) with  conforrnal  weight

(1, 1). Then  the  systern  rehlizes  the continuonusly  varying  criticality'.

   The  primary  .fields in the c=1  theory may  be divided into two  classes.  One class

consists  of  fields diM,N(z, z-) with  continuously  varying  conformal  weights

     h
±

==t(2nR4 ±RN)Z, M,IVEZ.  (2･17)

These  fields are  expressed  in terms of  the vertex  operators

     ¢ M,N(z,  2)=ei[aM･Npt(x)+aM,-Ne(z-)]

              =eil{M/R)pa(cr.t}+2RNmp(a,t)],  (2･18)

where  qnf,N==(M12R)+RAr  and  q-V(a, t)==[ip(z)T exz-)]12." The  primary  fields in the

other  class  are  given  by  the  differential polynomials of  of¢(z) and  0z-eF<g). Their

conformal  weights  are

 
*) The  operators  OM,N(2, z-) with  M,  NE!Z  are  mutually  local. To  describe the fu]1 operator  content  of

   the theory, however, we  should  also  consider  the  parafermionic operators  which  generically  do not

   respect  the  condition  M,  NEZ,



Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOEfice,  Piogiess  of  Theoietical  Physics

Conj?)maal Iiield 711ieo,y Apt)roach to One-Dimensional Quantztm.Liquicis

h== n214,  n=O,  1, 2, "', (2･19)

63

which  are  obviously  independent of  R.

   This system  defines the gaussian  critical  line on  which  we  observe  many  interest-

ing symmetry  enhancement  points. We  first note  the duality symmetry  under  R
e(112R)  corresponding  to the interchange MeAi.  At the self-dual  point  R=11V2
the U(1) symmetry  is enlarged  to the SU(2) symmetry  since  in addition  to 1(z) two
holomorphic (1, O) primary  fields ¢ ± i,± i(z)=  e'`V2'V(t) appear  and  these three currents

provide the SU(2) generators. It is well  known  that the spin-112  antiferromagnetic

(AF) HeiSenberg chain  at  T:=O renormalizes  to this fixed point. The point R[:s12
corresponds  to the Kosterlitz-Thouless point in the XY  model.  Other interesting

points are  R=Vli12, realizing  N==2 supersymmetry,  and  R=  1, realizing  free Dirac
fermion theory, In addition  to this critical  line we  have  the other  c=  1 critical  line

on  which･  the U(1)× U(1) symmetry  is broken. This  line describes the critical

behavior of  the Baxter's eight-vertex  model  and  the Ashkin-Teller rpodel.i3)nyi5)
Many  interesting physical  as  well  as  mathematical  aspects  of  c=  1 CFT  are  discussed
in Ref. 16).

   The  gaussian universality  class  plays a fundamental role  in our  understanding  of

2D  critical  phenomena  and  ID  quantum  critical  phenomena.  Its ubiquitous  nature

was  emphasized  by  several  authors.i')iv20) In the following we  shall･see  several

examples  of  quantum  critical  systems  which  are  rnapped  onto  the gaussian  theory at

long distance under  renormalization.  To  complete  this mapping  we  have to deter-
mine  the parameter  R  in terms of  the microscopic  parameters,  such  as  interaction

strength,  particle density and  so  on.  For the models  we  will  discuss this calculation
is carried  out  exactly  by  using  the Bethe-ansatz results.

2.2. Rinite-si2e scaling  in CFT

   We  explain  the finite-size scaling  in CFT, following the work  of  Cardy.5> Let us

consider  a  
'two-point

 function of  primary  field (2･10). We  apply  the  conformal

transformation  ,

         L
           ln2 (2･20)     w  =]

         2rr

which  maps  the entire  2-plane  onto  the surface  of  the cylinder.  Notice that in this ,

finite geometry  boundary conditions  are  periodic, The cylinder  
,6oordinate

 is w==t
+io  just as  used  in g2.1 except  that our  metric  here is eu.cl{dean  and  a is the

L-periodic coordinate.  From  (2･9) one  can  easily  find the correlation  function on  the

cylinder.  Expanding this in Taylor  series  we  get

     <di(W, to).di(W', to')>cytinder

          oo

       .v z  AN..e-(2nlLXx+N++N-)(t-t')e{2rrilL){s+N+-'N')(O-O'), , (2.21)
         Nt･ !=O

where  x:=  h'+h-, s ==:  h'-h-  and  the factors AN ± are  irrelevant in the present  context.

In terms  of  the transfer matrix  formulation the left-hand side  may  be written  as
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     .Z,,<OlO(d)1n,
 k>em(E"-EO'`t-`"<n, kl di(d)IO>, (2･22)

where  En and  k are  the enAergy  and  momentum  eigenvalues  of  the hamiltonian lii' and

the momentum  operator  P, respectively.  Here the ground  state  10> 'corresponds  to

ln, le>=IO, O>. Thus  we  see  that  for each  primary  state  (h", h-) there  cerrespond  an

infinite tower  of  the eigenstates  of  a  and  P with  the eigenvalues  E=Ee+2rr(x
+N'+N-)!L  and  P:==2rr(s+N'-N-)IL.

   This result  is understood  in terms  of  the transformation property  of  the energy-
momentum'tensor.  Substituting (2r20) into (2･6) we  find that

     a-= 
2Lrr

 (Lo+[o)- 6"i (2･23)

up  to a  non-universal  bulk term. The  scaling  law now  follows from the 'fact that
O(O, O)10> is an  eigenstate  of Lo (lo) with  eigenvalue  h'(h-). In particular the ground
state  haS zero  eigenvalues  h'=h-==O. Notice also  the appearance  of  the  central

charge  c. This leads to an  irnportant universal  finite-size scaling  behavior of  the

ground-state  energy2i),22)

                                                             '

     Eo 
---
 EoL-  6vrLC ,'  . (2･24)

where  eo  is the ground-state  energy  density in the thermodynamic  limit.

   Therefore if we  khow  the energy  spectrum  under  periodic boundary conditions
the 1IL corrections  to the ground-state energy  gives us  the value  of  the  central  charge

and  the finite gap scaled  as  IXL yields the  conformal  weights.  Thus  we  can  determine

the universality  class  and  scaling  dimensions of  the operators  from the finite-size
effects.

   In ID quantum  critical  phenomena  we  have to take  into account  the anisotropy

factor in the finite-size scaling  relations.  The velocity  b'of the elementary  excitation

fixes this factor. The  scqling  formulas are  now  written  as

              rrvc
     Eo r" EoL-
              6L  

,

             2rrv
             L  (X+IV'+IV-). 

･
 ,. (2･25)     E-E,--

Replacing 1!L by T(i:temperature) we  realize  that the specific  heat C  vanishes

linearly with  respect  to T22) 
'

                                             '

     c-- gg T.-  
'
 (2･26)

This is a useful  relation  to extract  c  from  thermodynamics.

   The  results  offer  an  eMcient  Way of  evaluating  the  scaling  dimensions in the
numerical  analysis  of  ID  quantum  syStem.  More  crucial  for our  purpose is the fact

that for Bethe-ansatz solvable  models  full information about,the  scaling  dimensions
is provided  bY the energy  spectrUm  obtained  exactly  from the Bethe-ansatz equa-
tions.23)N27) In the  Bethe-ansatz  framework  we  are'thus  able  to determine the long-
distance behavior of  correlation  functions without  directly deaJing with  them. When
the system  renormalizes  to the gaussian  fixed point We  can  also  determine the
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dependence of  R  on  the microscopic  parameters  as  will  be shown  in the subsequent
   .sectlons.

                     g3. Correlated electron  systems

   The  universal  role  of  Fermi  liquids is well  established  to describe the low-energy

properties of  electron  systems  in higher dimensions. After the discovery of  high- 71]

supetconductivity,  howeVer, a  fopdamental issue in condensed  matter  physics has
been to clarify  if the pormal  state  of  low-dimensional highly correlated.  systems

exhibits  the. non-Fermi  liquid behavior.

   Especially, in ID  electron  system$  the large quantum  fluctuations give rise  to the

angrnalous  behavi,or from  the point  of  view  of  eonventional FerTni liquids. Such
behavior was  first discovered in the Tomonaga-Luttinger (TL) model  many  years

ago.28),29) The TL  model  is recognized  as  the weakly'  correlated  siystem in the sense

that the dispersion law  for bare electrons  is completely  linear. The  model  can  be

treated exactly  by the bosonization method,  The  long-distance behavior of  the

equal-time  correlation  functions has been obtained  as  follows:30>

(a) charge  density correlator

     <n(r)n(O)>--const+Aorm2+A2r-aScos2kFr+A4rrm"Cgos4kFr, (3･1)

(b) spin  density correlator  ,                                                  '

     <S.(r)Sx(O)>--Bor-2+B2r-"'cos2fetrr, ･･  
'
 (3･2)

                           '

(c) electron.correlator

     Gdt-r-UceskFr, o==T,;,  (3･3)

(d) singlet  and  triplet pair correlators

     A(r)--A(r)--r-", (3'4)

whege  leF is the Fermi  momentum  and  the logarithmic 6orrections have been suppres-
sed.

   The  critical  exponents  evs, ac,  ag, rp and  B depend  on  the coupling  c'onstant  of  the

forward scattering  with  zero-mornentum  transfer. Inspecting the explicit  results  for
these exponents30)  one  finds the  universal  scaling  relations  ainong  them
                                            '                                          '                '                                    '          t

     as  
==

 as,

     evs =!:  1 +  acl4  
,

     rp =(evc  +4)2116  ac ,

     B=:=1+4lac. (3'5)
Taking  the Fourier transform  of  the electron  correlator  we  obtain  the  rnomentum

distribution' function near  kF

     <nh>=<nk.>-constlfe-kFlesgn(k-ld), (3･6)
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ak>
(b)

               kF  hF

Fig. 1. Mementum  distribution functien for (a) Fermi liquid and  (b) for Luttinger liquid.

where  the exponent  e is given  by

e=  ij 
-1

 ==(ev,-4)2116  a.  . (3･7)

This power-law  singularity  in the momentum  distribution features the non-Fermi

liquid nature  of  the TL  model  since  the Fermi  liquid theory predicts the finite jump
discontinuity at  kF. See Fig. 1.

   This  mean's  that the quasiparticle picture, the  heart of  the Fermi  liquid theory,
breaks down.  Instead the low-energy excitations  in the TL  model  are  realized  as  t]he
colleetive  modes,  Furthermore  the low-energy behavior is characterized  by the

scaling  relations  (3･5) and  (3･7). The  TL  model  thus possesses the distinctive fea-

tures not  observed  in higher dimensions, Haldane  pointed  out  that a  large class  of  ID
quantum  critical  systems  share  in fact the common  low-energy properties with  the TL
model.  He  expected  this universality  class  to cover  all  ID  femion systems,  and  then

Proposed to call  such  systems  Luttinger liquids.'9)

   As  for strongly  correlated  systerns,  however, the issue has not  been settled  until

very  recently,  Let us  consider  two  models  of  correlated  electrons;  the Hubbard

model  and'the  t-f rnodel.  The  Hubbard  chain  describes a system  of itinerant elec-

trons interacting through the on-site  Coulomb repulsion  U. The hamiltonian is

.gg==-tZc;.cjo+UZn,,n,,,  U>O,
      <ij>,o i

(3･8)

where  the notation  is standard.  The hamiltonian of  the l-J mbdel  is given  bySi')

Lgg=-t<i.,,.c;ctad+f<zi,>(s,･si-nznj) (3･9)

with  an  antiferromagnetic  coupling  f>O, and  it is assumed  that every  site  is not
doubly occupied.  It is shown  that the strong  correlation  limit (U>t) of  the Hubbard

model  is effectively  described by the hamiltonian (3･9) with  f<t. The  Bethe-ansatz

diagonalization was  performed  for the Hubbard  model  in the whole  parameter
region32)  and  for the t-J model  at  the special  point t=J.33) We  hereinafter set  t=J
=1  for convenience.

   Let us  define the filling factor y  by  v=:(density  of  electrons)12.  At  half-fi11ing v

=112  there opens  the Hinbbard gap  in the charge  excitation,  namely  these systems  are

in the Mott insulating phase. In the long-distance limit, therefore, only  the massless
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spin  excitation  survives.  The  universality  class  is that of  the spin-112  AF  Heisenberg
chain.  Corresponding  CFT  is the c=1  SU(2) Kac-Moody  theory as  mentio'ned  in

S 2.1. For  O<  v<112  both th'e charge  and  spin  excitations  are  gapless. Our  task  is' to

specify  the universality  class  of  this metallic  phase.

   Recently several  groups have carried  out  the ndmerical  calculations  to obtain  the

correlation  functions in ID  highly correlated  electron  systems  for y<112.B`)A'3')  In

particular the results  in Refs. 36) and  37) suggest  that the TL  scaling  relation,  which  ,

is verified  in the weakly  correlated  system,  is also  valid  for the highly correlated

Hubbard  chain.  Last year  several  authors  have  successfully  obtained  the  correlation

exponents  in the Hubbard  mode16)LS)  arid  the t-f model.9}  The  results  show  explicitly

that these models  are  characterized  as  ,the Luttinger liquid and  their fixed point is of
the TL  type. In the  following we  surnmarize  our  main  results  derived from  the

Bethe-ansatz Solution by using  ,the finite-size scaling  technique  described in g 2.2.

3.1., FVnite-si2e corrections

The  corrections  to the ground-state  energy  Eo turn  out  to be 
38)'9}

Eo N  EoArlz -rrVcrrVs
6M 6AJh , (3･10)

where  IVh is the number  of  the lattice sites. Here vc  and  vs are  the charge  and  spin

velocities,  explicit  formulas of  which'are  available  in Refs. 6) '- 9). Frorn this expres-

sion  we  identify the central  charge  to,be c=1  both for charge  and  spin  excitations.

   The finite-size corrections  to the excitation  spectra  are  expressed  in termS of  the

change  of  the number  of  electrons  (or down  spin  electrons)  denoted as  h  (or k) and

the number  of  particles moving  from the left "fermi
 point" to the right  one  denoted as

Dc (or Ds) for the charge  (or .spin) excitations.  The energy  gap  consists  of  two

terms;38)'8)'9) one  is propbrtional  to the charge  velocity  and  the other  to the spin

velocity

E-Eors-2ikVlic (h,'+ hc-)+ 2ikt'S (hs'+ las') , (3･11)

where  ha' are  the left and  right  conformal  dimensiqns in the charge  (a=c) and  spin

(a= s) sectors:

  .-1lac 
mL27(  iC (2Dc+Ds)±  i {IL)2+AJb' ,

     hs
±

=t(k-TSL ±D,)2+ivk± .

Here  Zb is a non-universal  function called  the dressed

approach.  The  excitations  carry  the momentum

P=4kFDc+2leFDs+

The  number

integers N'ofwh

Xiti 
a.Z.
 
c,s(ha+

 
m
 han) .

(3･12)

charge  in the Bethe-ansatz

(3･13)

low-energy particle-hole excitations  is counted  by the non-negqtive
ich also  label the infinite conformal  tower.
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     < ¢ , ±(r, t)o,±(o, o)>                                                                (3･18)
                       (r- ivct 2hc'(r+

 ivct)2hc-(r- ivst)2hS'(r+ ivst)2hs- 
'

   Let us  first discuss the charge  density correlation  functien. The number  operator

ni  will  renormalize  to a  number  of  scaling  fields at  long distance. The  scaling  fields
are  determined by assigning  the quantum  numbers  (Ib, Da,.Aih±) to the field operators.8)
The  asymptotic  behavior of  the equal-time  correlator  then  takes-the  same  form  as

(3･1) in the  TL  model.  The  4kF piece arises  frorp the excitation  of  (Ib, Ig, Dc, Ds)
z=(O,  O, ±1, e), whereas  the 2kF piece from (Ib, Ik, Dc, Ds)=(O, e, ±1, I1)  and  (O, O, O,
± 1). Thenon-osciilatingpartisduetothelowestparticle-holeexcitation. Wethus
find

     evc=2Zc2,  as=1+ac14.  
'.･

 
'
 (3･19)

The  spin  correlation  function is also  given  by  (3･2) as  in the TL  model.  The  critical

exponent  a3  for the 2kF part  is equal  to as  of  the charge  density correlation

     ag=ev..  (3･2o)

   Turning  to the electron  correlator  we  again  find the same  form as  (3.3) where  the
kF oscillation  comes  from  (Il),'h,Dc,Ds)=(1,1,O,112). Therefore the momentuin

68 ･N,  Kawakami  and  S,-K, Yang
                                   '              '

   The  dressed charge  Zh is determined from the  solution  to the  Bethe-ansatz
integral equation

     rpc(k)=1+f:de'cosle'G(sink-sink')opc(k')  (3･14)

for the Hubbard  model,  while  for the t-J model  at  t=J

     E,,(A)-i+.L:aca'R(A-x)e.(A'),                                                                (3･15)

where  the kernel is given by G(x) =K(x;  U, t) and  R(x)==K(x;  2, 1) with

     K(x; a, b)==.[: gl.g ,.g.x,p[iStolx(),b) . (3･i6)

The  Fermi level Q as  well  aslA  is fixed by the electron  concentration.  The  dressed

charge  is then defined by Zc==rpc(Q) (or 8c(A)) for the Hubbard  (or t-f) model.

Therefore all the dependence of  scaling  dimensions on  the inicroscopic parameters
enters  in the dressed charge.  We  also  mention  that there exists  the restriction  on  the

quantum  numbers  za and  D.SS),9) 
-

         k+k
     Dc:= 2 

modl,  Ds==-{ILmodl, (3･17)
                                 '                         '
which  should  be ;espected when  making  the identification between. field operators  and

quantum  numbers.  

'

3.2. Correlationfanctions

   The two-point  correlation  functions of  the scaling  fields ¢ h ±(r, t) with  conformal

dimensions h± are  now  written

                     -  exp(i4kFDcr)exp(i2kFDsr)
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Fig.

2
  v
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                      y

 2. Critical exponent  ac as  functions of  elec-

tron ruling v: Solid curves  for Hubbard modelT)  ,
and  dashed  curve  for tV  model  at 

't
 F=1.9),

(3･19), (3,･21) and  (3･22).
   Comparing  (3･12) with  (2･17) one

c==1  CFT.
charge  and  spin  degrees of  freedom.

     S=  21rr .]Z,,,  vafdt  A2rr dodiqao"opa .

To  fix the gaussian parameter  Rc in
excitation  (O, O, ± 1, O). It may  be

distribution'function around  feF exhibits

the typical power-law  singularity  of

Luttinger liquids with  the exponent

   e =:  rp 
-1==

 (ae -4)21(16crc) . (3'21)

   Examine  now  the superconducting

6orrelation functions. The  singlet･and

triplet pair correlation  function's 

'have

the leading vniform term

   Rg(r, O)=Pt(r, O) -- r-B  
,

   B=1+4!bfc, (3'22)

which  correspond  to (k, h, Dc, Ds)= (2,
1, 112, -1)  and  (h, k, D,, Ds)=(2, 2, O, O)
for Rs and  R, respectively: In Fig. 2 we
depict the  4kE CDW  exponent  ac both for
the Hubbard  model  and  the t-J model,

from  which  one  can  readily  read  off

Other  exponents  using  the  relations

                      immediately  recognizes  a typical form for the
In fact there exist  two  independept c==1  CFT's  describing separately  the

                      The  action  is given by

(3･23)

                                
･the

 charge  sector･ we  look at  the 4kF charge

                              appropriate  to call  this excitation  holon. The

corresponding  primary  field is represented  by  the vertex  operator

     e ±z,o(z,  x-)=e
± i2ZcP(dt`).

 
･
 (3.24)

Comparison with  (2'18) gives Rc==1tzb.

   For the spin  sector  we  get from (3･12)

          f o+z.,  ,

,
 

hS±
=lt-z.,.

 (3･2s)

This is exactly  the spectrum  of  the c[= 1 SU(2) Kac-Moody  theory corresponding  to

the allowed  values  of  spin  O and  112 for the level I highest weight  repreSentations.

Thus  the spin  sector  stays  in the  SU(2)  Kac-Moody  theory for arbitrary  fi11ing, O<u
K112.  Notice that the 2kF spin  excitation  (O, O, O, ± 1) is indeed identified as  the spin
112 highest weight  state  with  conformal  weight  lf4. Let us  refer  to this spin  excita-

tion as  spinon.  It is then clear  that the holon and  spinon  excitatiens  are  the elemen-
tary  massless  degrees of  freedorn in the metallic  phase. As･a result  the electrons  are
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no  longer regarded  as  elementary,  but 
'the

 composites  of  holon and  spinon.

   We  see  clearly  that the TL  scaling  relations  (3･5) and  (3･7) hold even  for highly

correlated  systems.  Namely, in the metallic  pha.se, the repulsive  Hubbard  model  and

the tlJ model  at  t==J renormalize  to the TL  fixed point, and  thus they  belong to the
Universality class  of  Luttinger liquids. In CFT  description the TL  fixed point con-

sists  of  two  independent c=1  CFT's; one  is associated  with  the  charge  sector  which

is characterized  by continuously  varying  criticality  under  the U(1) $ymmetry  and  the ,

other  represents  the spin  sector  with  the  SU(2) symmetry.

   Fin'ally we･remark  that in Luttinger liquids the bulk quantities are  elosely related

to the correlation  exponents.i9)'39)'6)-8) This is a  direct consequence  of  the U(1) and
SU(2)  Kac-Moody  symmetry  of  the system,  and  hence the universal  characterization

of  the TL  fixed point. One  can  also  study  the  transport  properties  by  analyzing  the

finite-size effects  under  t"risted boundary conditions.40)'`i} For further details we  refer

to original  references.

S4. Critical systems  with-long-range  interactions

   In this section  we  wish  to study  the conformal  properties  of  ID quantum  systems

with  long-range interactiens. We  first discuss the continuurn  many-body  system  and

then turn to the anisotropic  Heisenberg chain.

4.1. Continuzam mamp-body  system

   We  consider  the IV-body hamiltonian`2)

     .fpc  =  
-
 
,z"=,
 o22,., +,l., v(x, -  x,)  + ca2tY.,x,2, (4.1)

where  the potential is of  the 11r2 type

     V(r)J=g!r2. ･ (4'2)

It is useful  to define il=(1+neg)12  and  we  restrict  ourselves  to the region  A21!2.

The  thermodynamic  limit is taken  by  letting N.oo,  w.O  with  Nca being kept fixed.
Sutherland found the ground-state  wave  function in the  Jastrow form`2}

     di,=,I, I.,lx,-x,laexp(-g;.]x,2) (4･3)

with  the energy  eigenvalue

     Eo :=  caN(1+A(N-1)).  ' (4 '4)

One  may  recognize  that ipo2 is identical to the probability distribution function for the

eigenvalues  of  matrices  from  a  gaussian ensemble.  For  A=112,  1 and  2 the ensembles

are  orthogonal,  unitary  and  sympTectic  types, respectively.  On  the basis of  the results

in the theory  of  random  matrices  Sutherland obtained  the density correlation  function

whose  Iong-distance behavior is`2)

     <p(r)p(O)>A-const+Aor-2+A2r-"cos2leFr, (4･5)

NII-Electionic  
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where  the exponent  ev is equal  to 4, 2 and  1 for n=112, 1 and  2, respectively.

   We  now  put  the same  system  in the finite geometry  with  linear size  L. To

implement  periodic boundary conditions  we  modify  the form  of  the potential

      V(r) '  VL(r)= g.=i-.(r +  nL)-2  =  {tZ,2 [sin(-"L21-)]-2. (4.6)

The  wave  function for the hamiltonian with  this finite-size potential again  takes the

Jastrow form

     ipe=,I.I.,sin(n(Xt'NXj))A for xi>x,･,  (4･7)

which  indicates that the  two-body  scattering  is essential  to describe the asymptotic

form of  the many-body  scattering  states.  Moreover the integrability of  the system
has been proven  at  the  quantum  level.43) These observations  imply that we  can  adopt

the Bethe-ansatz idea to describe the scattering  states  ip(xi, ･･-, xN)  in the asymptotic

region  xi<"'<xi<･''<xN.  Sutherland called  this approach  the asyrpptotic  Bethe-

ansatz.4a)

   This offers  a  way  of  systematic  construction  of  the energy  spectrum,  which  is

summarized  as  the set of  the algebraic  equations  a la Bethe ansatz
                                        '
                      N

     fejL=:=27th+n(A,-1)Zsgn(,hi-lei) for 1'=1,2,･･･,N,  (4･8)
                     l==1 '

where  the ,quantum  number  Xi is an  integer (or half integer) for the Fermi  (or Bose)
statistics.  The  energy  and  the momentum  are  given  by  E=Zfen2  and  P=Zlen,

respectively.

   Since the system  has no  dimensionful parameter  we  may  expect  confornial

invariance at  low  energies  although  the interaction is long range.  Let us  extract  the

information about  the long-distance properties  from,(4-8).iO} First of  all we  evaluate

the value  of  the central  charge.  We  perform  the low-temperature expansion  of  the
free energy  F(  T)  since  the  analysis  of  the ground-state  energy  is rather  subtle  due to

the potential form  (4'6). The  result  is F(T).tF(T==O)-rrT21(6v)  with  the velocity

v=2rrAIVXL.  According to (2-26) the central  charge  is identified as  c=1.

   Ip order  to obtain  the conformal  dimensions we  compute  the  finite-size correc-

tions in the energy  spectrum.  The  change  of  the particle number  is denoted asland
the number  of  particles moving  from the left to the right  fermi point as  D. The  lfL

corrections  to the low-energy excitations  are

     E-  E,-  
2ZV(4A

 i2+G-D2+A[++ivr-),  (4･g)

where  the non-negative  integers  N'  correspond  to the simple  particle-hole excitation.
The  associated  momentum  is

                2rr
                L(ID+N+-N-).  (4･10)     P-2rrfe,D+

The selection  rule  for D  is D=112  mod  1 for fermions, while  DEZ  for bosons. From

'
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Fig, 3. Critical'exponent a  as a function of interac-

  tion strength  g,iO) Sutherland's results4Z] are

  represented  by  e  .

indeed agrees  with  Sutherland's resul.t at  A
correlation  functions we  refer  to Ref. 10).

4.2. Anisotmpic Hbisenberg chain

   Haldane") and  Shastry`5) independently introduced a  model  of  exactly  solved

spin-112  isotropic AF  Heisenberg chain  with  long-range interactions. Let us  investi-

gate  the anisotropy  effect  in the Haldane-Shastry model.ii)  We  take a  periodic ring

of  N  sites and  the position of  the i-th site is represented  by  xi. The  hamiltonian is
defined by

     .gc==zJ.[s,xs,x+s,ys,y+As,2sier],  (4･13)
         1<J

where  the inverse-square exchange  Jij is chosen  to satisfy periodic boundary  condi-

tions. Following  (4･6) we  set 
-

     J,- 
--
 
niv2
 ,J [sin( 

Z(Xt'
 
'
 
Xj)

 )]-Z (4･i4)

with  the AF  coupling  f>O.
   In the  following we  consider  the case  that there is a  positive even  integer P such

that44)

     p==S(1+Vilii2i-). , (4･ls)

For  these particular values  of  A  the ground-state  wave  function in the Jastrow･ form

has been demonstrated to exist."]  Applying  the method  of  asympto'tic  Bethe ansatz

one  can  express  the excitation  spectra  in terms  of  the pseudomomenta  la. Let M  be

the number  of  down  spins.  The  Bethe-ansatz-like algebraic  equations  for ki read`6)

 these expressions  the conformal  dimen-

 sions  h' can  be read  offiO)

   h
±(i; D; N')== ± ( 22  ± zD)2+N ±

 ,

                            (4･11)

 where  the dressed charge  function is Z

 =!:11M.  We  thus  obtain  the typical

 formula for the c=1  CFT.

    It.is now  easy  to 
'see

 that the

 asymptotic  form  of  the denity correla-

 tion function is givep  by  (4'5). The  2leF

 oscillation  term  arises  from the excita-

 tion (I, D, N')-(O,  1, O), yielding

   a=-2za,  (4･12)

 which  is plotted  in Fig. 3. We  see  that

 the  present  result  verified  for any  A>112
==112,  1 and  2. For further discussion of
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                      M

     hN==27tlli+z(P-1)Zsgn(k･-kt) for i=1--M, (4･16)
                     t=1

where  L  is an  integer or  a  half-odd integer and  the  second  term  on  the right-hand  side

is the sum  pf two-body  phase  shifts. The  total energy  is given  by

     E(M,  A)=E.(A4,  Z)+-t,".,la2 (4･17)

with  the constant  energy  shift

          z2J

     Es=  241v, [(N2-1)(IV-4M)A-2(IV2+2)M]. (4.ls)

   It is clear  that  (4-16) does not  produce all the eigenstates  of  (4･13). Since (4･16)
describes only  the scattering  states  it is not  useful  when  the  system  is in the  Ising-type

ordered  state.  The  scattering  states,. however, will  desCribe certain  massless  dis-
ordered  phase (liquid phase) which  may  be realized  under  applied  magnetic  fields.ii)

In order  to identify the liquid phase  let us  first look into (4･16). The  la's take  the

values  in the region  [- rr, rr] due te the periodicity of  the lattice system.  For  given

p we  have  ILI<Ai12`(P-1)(M-1)12. Thus one  finds that lej+i=k+2mpXIV. As a

consequence  the  allowed  maximum  number  of  down  spins  is AJIP, which  in turn  gives

the lower bound on  the magnetization  in the liquid phase,  i.e., minsx==112-1lp.

Notice that minsa  is finite for P>2. This is quite peculiar  in view  of  the nearest-

neighbor  interaction models.

   We  now  argue  that the spin-liquid  phase with  the magnetization  sz>1!2-1lv

exists  in the presence  of  external  magnetic  fields. First of  all the eiementary  excita-

tion obtained  from (4･16) has the linear dispersion at  low  energies  fer sz2112-1lo,

and  hence the  system  is in the massless  phase.  Let us･ next  examine  the energy  shift

due to the change  AM  of  the number  of  down  spins.  Extracting the term  linear in AM

gives the magnetization  curve  as  a function of  magnetic  field H

     s.=e-  iZil vc/ ili=mz7') ,il (4･1g)

for Hbi<H<  H}2, where  the upper  and  lower critical  fields, Hb2 arid  Hbi, are  given  by

     m,== 
zgf(rf(p)+t),

 ll},--z'IL(6J A(p)-1). (4･2o)

At  ffb2 all the spins  are  fully polarized ferromagnetically, while  at  Hbi the magnetiza-

tion takes  its minimum  value  sz=:lf2-1lv  allowed  in the ]iquid phase.  From  (4･19)
we  obtain  the differential spin  susceptibility

     Xs=rr2;2J(lm2sa)-i:=  ithv, (4'21)

where  the  velocity  v of  the spin  wave  excitation  is v=n?b(1-2sa)1(41).

   Let us  consider  the' low-energy conformal  properties  of  the spin-liquid  phase.ii)
The  analysis  is essentially  the same  as  for the previous  continuum  model  in g4.1.
The  central  charge  is obtained  from  the T-linear coeMcient  of  the specifie  heat. The
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result  is again

expressed  asc=

 1. The universal  1!N corrections  to the  excitation  energy  are

     E(AM;diD)-E(o;e)-2XiV(-2-AM2+-i;-AD2+iv++ivm),  ,

where  the quantum  number  AD  is related  to the  momentum  change  2

non-negative  integers N'  represent  the particle-hole excitations.
carried  by  the excitation  is

P-2feFtiD+-Kfi(l AA`[oD-lv+-Ar-) ,

(4･22)

trMAD/N  and  the
The momentum

(4･23)

where  kF= rrMIN.
   The  scaling  dimensions are  read  off from the energy  spectra.  One  finds that the

asymptotic  form of  the  longitudinal spin  correlation  function is written

     <SrZSo">r-･const+Aor-2+A2r-"cos2leFr, (4･24)

where  the 2kF exponent  is a=:2lv  corresponding  to the  excitation  (ZM, ZD,  N ±)==(O,
1, O). The transverse spin  correlation,  on  the other  hand, has the leading non-oscilla-
 .tlon

 term

     <Sr'So-> ""  Bor-", (4 '25)

where  we  get  the correlation  exponent  B =P12  which  follows from  (dM, dD, IV')
=(1,  O, O). We  see  that the 2kF exponent  ev in <Sr2SoX> becomes  small  as  n  increases,

implying the tendency  to stabilize  the spin  alignment  with  the period 7tfleF:=:AilM.

Notice that this alignment  will  be stabilized  as  a  long-range spin  order  under  certain

conditions  if favored energetically.

    One  feature of  interest is that there is no  dependence of  the critical  exponents  on

magnetic  fields but only  on  the anisotropy  parameter  A. This is in marked  contrast

to the short-range  interaction models.  We  also  point out  that the critical  exponents

.a and  B obey  the  scaling  relations  inherent in the Luttinger liquid, B==1!a, refiecting

the U(1) symmetry  in the spin-liquid  phase.29)'i9) Only in the isotropic limit rf=1 at
H=O,  the SU(2) symmetry  is recovered,  then B:= ev=1.  This case  has already  been
discussed in detail in Refs. 44)-46).

 
'
 We  have  shown  that the spin-liquid  phase  is realized  under  external  magnetic

fields. The  low-energy behavior of  this phase is descri,bed by the c=1  CFT,  and

critical  exponents  of  spin  correlation  functions  have been calculated.  For  low
magnetic  fields it is natural  to expect  the erdered  state  with  a  gap  to appear.  It will
be  an  interesting issue to clarify  the nature  of  this long-range ordered  state.
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