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                  g 1. Introduction to fractional statistics

   Particles obeying  fractional statisticsi)""3>  can,  in two  space  dimensions form an

exotic  quantum  fiuid which  can  condense  into a  new  type  of  superconductor.`)  The

simplest  realization  of  a  fractional statistics  particle or  
`anyon'

 consists  of  an  ordi-

nary  boson  (or fermion) bound to a magnetic  flux tube (oriented perpendicular  to the

2D  plane)  as  shown  in Fig. 1.

   If one  anyon  is dragged  adiabatically  around  another  in a  closed  counter-

clockwise  path, the quantum  state  acquires  an  extra  (Berry's) phase  due to the

Aharanov-Bohm  effect, If we  call  this phase  factor exp(i2e)  then adiabatic  counter-

clockwise  exchange  oi  two  particles will  yie]d an  extra  phase exp(iO).  Hence  0

(whose value  is determined by the  particle charge  and  the strength  of the flux tube)
is called  the statistics  angle.  If e=z  and  the orig･inal particles were  bosons, the
composite  particles are  fermions since  they  yield a  minus  sign  up  exchange,  There

are  no  quantization  conditions  which  constrain  the strength  of  the fiux tube  and  hence

e is continuously  adjustable,  Systems for which  0!rr is fractional are  said  to obey

fractional statistics. We  shall  be particularly  concerned  here with  the special  case  of
`semions'

 which  have elz==112.

   The  Hamiltonian  for a  system  of  N  non-relativistic  anyons  is

     H=  2SI ,tY.,[pj+-f-(A+aj)]2+
 v, (1)

                                     where  V  is an  arbitrary  scalar  potential

Fig. 1. A  pair oi  particles with their attached  flux

   tubes  exchange  positions in the  2D  plane. The

   Aharanov-Bohn  effect  generates a  phase  fac-

  ter exp(ie)  during this process.

(either external  or  interaction), A  is the

vector  potential associated  with  the
externally  applied  magnetic  field

  7XA=Bext,  (2)

and  the  vector  potential seen  by the f'th

particle due to the  other  ･particles obeys

   7,xa,=a ¢ ,z62(r,-,:,),  (3)
   , , Z  k± i

where  dio=hcle is the flux quantum.

The fact that a,･ is curl-free  
"almost

everywhere"  means  that we  can  remove
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it by means  of  a  singular  gauge  transformation

     ip-(2i,"', 2n)==  ;.!,[ifli2 ]e'"ip(zi,･･･, z.), (4)

where.  4i=xi+iyj  is a complex  numbec  representing  the 2D  coordinate,  di is the
original  boson wave  function and  ge obeys  (assuming V=O)  the free-particle

Schr6dinger equation  with  Hamiltonian

     ,Ei-  2h  
,"=,(p,+-gA)2.

 (s)

This seems  like a  great  simplification  until  we  realize  that ip obeys  very  diMcult

boundary  conditions  due to the fact that it is multiple-valued.  For the special  case  ef

converting  bosons to fermions (e=rr), ip- is single-valued.  However,'to eliminate  the

bad effect  of  the singular  phase factor we  need  a  hard-core repulsien  among  the

bosons to cause  ip and  hence di'V to vanish  when  any  two  particles come  together.

   The  surprising  message  here is that in two  dimensions statistics  are  ambiguous.

Statistics can  be represented  by an  exchange  symmetry  of  the wave  function or  by
long-range vector  potential interactions among  the particles. Of course  free bosons

are  distinguishable from  free fermions because there is no  Pauli exclusion  but we  can

cure  this by adding  a hard-core repulsion.  This hard-core repulsion  also  appears  in
the path-integral  formulation of  the problem  where  one  requires  that the braiding of
the world-lines  of  the particles be well-defined.3)

   In order  to see  that  bosons with  flux tubes  really  act  like fermions let us  examine

the following highly-simplified model.  Consider a  rigid  rotor  with  a  boson fixed at
each  end.  We  ignore the fiux tubes  for the moment.  We  invoke the hard-core

exclusion  by keeping the  particles a fixed distance apart.  This neglect  of  the  radial

degree of  freedom  greatly  simplifies  the  problem  without  affecting  the essential

physics  which  is found in the angular  degree of  freedom.
   The  Hamiltonian is

     H.. #I2 (+ioOep )2, (6)

where  I is the moment  of  inertia and  ep is the angular  coordinate.  The energy
eigenfunctions  are  easily  found

     ge.(p)=eiMP.  (7)

The  corresponding  eigenvalues  are

         h2 2
              ,

 (8)     
6m=2IM

where  m=O,  ± 1, ± 2, ･･･ are  the angular  momentum  eigenvalues.  We  invoke the fact

that the particles are  bosons (that is, the wave  function is exchange  symmetric)  by
requiring  that di be symmetricunder  gp-q+rr.  Thus  mmust  be  even.  For  fermions,
m  would  have to be odd.  This is analogous  to the  symmetry  requirements  in ortho-
and  para-hydrogen.
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     If we  now  add  flux tubes  to each  of  the particles, and  rnake  a  judicious choice  of

 gauge,  the Hamiltonian  becomes

       H==  3J2 (`i aOq 
+#)2･  (9)

 where  the 
"offset"

 in the rnechanical  angular  momentum  represents  the extra

 Aharanov-Bohm  phase acquired  by the rotor  as  it turns. .
     It is now  clear  that for ela=1  the  boson  spectrum  maps  into the fermi spectrum

 and  vice-versa.  One cannot  tell whether  a given  spectrum  is due to bosons with  flux

 tubes  or  due to fermions. This is true, not  just for the energy,  but fer all  other

 observables  as  well.  For  example,  the fermions have a  non-zero  current  ("fermi
 velocity")  in the ground  state  (m=1, ela==O). The  bosons have  zero  angular  momen-

 tum  (m=O) but a  finite diamagnetic current  due to the flux tubes  (elrr=1). In either

 case  the mechanical  angular  momentum  (velocity) is the same.

     This  two-particle  example  makes  the case  that statistics  are  ambiguous  in 2D  but

 perhaps  seems  rather  trivial., The  many-body  problem  for anyons  is highly non-

 trivial however. After all, the problem  is equivalent  to bosons with  long-range

 (vector) interactions. One  signature  of  the  complications  can  be seen  by censidering

 the pha.se acquired  by  the system  upon  exchange  of  two  of  the  N  particles along  some

 particular pdth:

       x=eiee2ieNi. (10)

 The  first factor is from  the exchange.  The  second  factor counts  the number  of

 particles Ai} which  are  in the interior of  the region  bounded by the path. Thu's we
- have  the added  complication  that the phase X  depends in detail on  the  particular path.

 This cornplication  makes  it dithcult to estimate  amplitudes  for path  integrals, ring

 exchanges,  and.so  forth. Of course  for the particular  cases  e=O  and  e==rr the

 exchange  phase is independe'nt of  Ai} as  expected  for ordinary  bosons and  fermions.

     While  the N-body  problem  has so  far proved Iargely insoluble, it is generally

 believed that systems  of  anyQns  have  a  very  rich  phase  diagram  with  special  conden-

 sed  states  forming at  rational  fractional values  of  0ke (in a manner  reminiscent  of  the

 dependence of  the fractional quantum  Hall state  on  fi11ing factor v). In particular,
  Laughlin has proposed that  for the case  of  semions  (e===n12) Pai7:s of  particles

 condense  to form  a  new  type  of  superconductor.4}  The  essence  of  the argument  is

 that while  a  semion  is in a  sense,  
`half

 a  fermion ',
 a  pair of  semions  actually  form  a

 boson (which can  then condense).  Exchange of  two  semions  gives a phase e'"!=i,

 while  exchange  of  one  pair  of  semions  with  another  gives, not  e2ie=`1  but rather  e`ie

  
==  +1. The  reason  for this is that each  semion  in one  pair  sees  two  flux tubes  in the

  other.  The  phase  contributed  by one  is thus doubled, but so  is the phase  contributed

 by  the other  member  of  the pair. Hence  the total phase  is quadrupled.

     Since pairs of  semions  are  bosons, they  can  form  a  charge  2e condensate.  The

 proper  description -of ordering  within  this condensate  is non-trivial  and  will  be

 discussed in detail shortly.  One  immediate  observation  is that  the condensate  may,

 depending on  the particular model,  break  time-reversal  symmetry.  This  is because

 counter-clockwise  exchange  of  two  semions  gives exp(ie)==i  while  a  clockwise
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exchange  gives exp(-iO)=-i..  Such  P  and  T  breaking could  in principle be ob-
served  in scattering  experiments  with  circularly  polarized  light. Two  groups5)'6> have
reported  non-trivial  signatures  of  P  andlor  T  breaking, but the experiment  which

appears  to be the "cleanest"
 has found a null  result.7)

   The question naturally  arises  as  to how  anyons  and  anyon  superconductors  could

occur  in nature  since  we  have  been  talking  about  unphysical  particles with

infinitesimal flux tubes attached  to them. It turns otit that in certain  quantum
condensates  of  ordinary'particles,  the elementary  excitations,or  quasiparticles  can

obey  fractional statistics. Anyons  clearly  have  special  topological significance

associated  with  their interactions. Moving one  anyon  in the presence of  another

gives ne  effect  unless  the path of  the one  winds  around  the other.  Thus  we  are  lead

te consider  condensates  whose  elementary  excitations  possess  some  nontrivial

topological feature. This gives us  really  only  one  possible candidate  the vortex.

A  vertex  is a  topological  defect around  which  the phase of  the condensate  has a

non-zero  winding.  A  simple  variational  ansatz  for such  an  object  is

         N

     T=  IIE einwqj  ZPb, (11)
         j'--1

where  gj is the azimuthal  angle  of  the tith particle relative  to the vortex  position, ZP6
is the ground  state  wave  function and  nw  is the topological winding  number,  which

must  be an  integer to preserve  the single-valuedness  of  the wave  function. We  see

that the vortex  does indeed act  like a  flux tube  in the sense  that there is a 

'topologically

non-trivial  Berry's phase for moving  particles around  closed  loops in the presence of
the vortex.  Unfortunately, the vortex  acts  like a  fiux tube containing  an  integer

number  of  flux quanta  since  Berry's phase, ± 2nnw, for dragging a  particle around  the

vortex,  is a  multiple  of  2z. Recall that for the  previous  construction  of  an  anyon  we

used  an  iriteger charge  and  a  fractional flux tube to obtain  a  fractional statistics  angle

eln. Mother  nature  uses  a  different recipe:  an  integer flux tube (a vortex)  and  a

fractional charge.

    The  prototypical  example  occurs  in the fractional quanturn Hall effect  (FQHE),
where  the condensate  has vortex  excitations  which  happen  for dynamical (energetic)
reasons  to carry  fractional charge.8)  These objects  have non-trivial  exchange
'phases9)

 and  for the fractional state  at fi11ing factor v=  11m, carry  charge  e*==  ± e!m

and  statistics  angle  0la==11m. The  sign  of  the charge  is associated  with  the handed-
ness  of  the vortex  and  reflects  the underlying  broken  T  and  P  $ymmetry  due to the
externally  applied  magnetic  field. In anyon  superconductors  one  expects  that the

anyon  physics arises  from  sponlaneously broken  P  and  T  symmetry  at  low  tempera-

tures.

    There  is a deep connection  between  the fact that  vortices  carry  charge  and  the

existence  of  a  quantized  Hall coeMcient.  Consider the  following gedanken  experi-

rnent.iO)  We  have  a  system  on  the  Hall plateau  characterized  by transport  coefiicients

      axx-O,  . (12a)
           e2

     O.=v-71-.  (l2b)
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Since we  have  zero  dissipation, we  may  adiabatically  (reversibly) increase the

magnetic  fleld in some  region  r. Faraday's law gives us  the line integral of  the
electric  field around  the boundary of  this region

     LE･dr=--f 
dd¢
,,

 a3)

where  O(t) is the total added  flux. From  the transport  coefficients  we  see  that there

is a well-defined  current  fiowing at  right  angles  to this electric  field and  hence into or
out  of  the  region  ]. The rate  of  change  of  the charge  obtained  from the continuity

equation  is

      dQ  l ddi
                   . (14)      ctt 

=Orv

 dio nt

For each  quantum  of  fiux that we  add  to the system  an  additional  vortex  is induced

in the state.  But  we  also  see  that  charge  e"==  ye  also  appears  in the  region  I". This

charge  is bound to the vortices  and  can  be seen  explicitly  in the Laughlin variational
wave  function for the quasi-particles.
   This binding of  charge  to vorticity  is the  key to understanding  the ordering  in the

FQHE.,  It irnplies that the  Ginzburg-Landau  description of  the FQHE  must  be q
Chern-Simons  topological  field theory.ii)nyi5) Once we  understand  the nature  of  the
ordering  in the FQHE,  it is a relatively  small  step  to describe the ordering  in anyon

superconductors.

   One  diMculty with  the  
`anyons

 as  vortices'  model  is that the votices  exist  within

a  background  condensate  of  particles which  cause  the vortex  to see  a  uniform

background magnetic  field.9) This is just what  is needed  fer the FQHE  but must  be

neglected  to achieve  anyonic  superconductivity,  a  point which  has been largely

ignored in the literature. It rnay  be possible  that lattice effects  

'(such
 as  species

doublingi6)) can  be used  to elimipate  the background magnetic  field, but this has not
as  yet been clearly  demonstrated.

g 2. Soluble model  of  semion  superconduetiyity

   We  turn now  to a  discussion of  a  soluble  model  of  semion  superconductivity.i7)

The  model  differs from  the usual  one  with  hard-core repulsion  in that it has an

attractive  short-range  interaction. The  model  is soluble  only  for a  special  value  of  the

strength  of  the attraction  and  hence unfortunately  is not  adiabatically  deformable
into the model  we  really  want  to solve,  in which  the world  lines of  the  particles can

never  interact. Nevertheless it is of  interest because there exist  very  few soluble

many-body  problems  in two  dimensions and  because the nature  of  the solutions

suggests  a  good  variational  wave  function for the problem  with  repulsive  interactions.

The  present  model  qlso teaches  us  a  gre.at deal about  the  mean-field  theory  of

statistics  and  was  inspired by  notions  of  supersymrnetry  and  the  Atiyah-Singer index

theorem  which  has been  applied  to the problem  of  a  single  2D  electron  in an  arbitrary

position-dependent magnetic  field.i8} Jackiw and  Pii9) have  recently  investigated

soliton  solutions  at  the classical  level in this same  model.  Interesting related  work
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has also  been carried  out  by  Greiter and  Wilczek.20)

   Let us  modify  the Hamiltonian  in Eq. (1) by giving the flux tube  a finite diameter
so  that Eq. (3) becomes

     bj- -== 7j･ × aj  
--
 # dio,Z.,F(rk 

-
 r:i), (ls)

where  F  is the flux tube  
`form

 factor' which  is a  smooth,  circularly  symmetric  function
obeying

     fd2 rF(  r) -=1.  (16)

Now  let us  invoke a  special  scalar  interaction among  the particles of the form

Vlt =  1: Zg"B(bi+ Bext) ,

      i
(17)

where  g==2  and  ptBEieh12Mc  is the Bohr  magneton.  This  pot.ential corresponds  to the

Zeeman energy  of  a  Dirac particle in the local magnetic  field. [The sign  choice  in

Eq. (17) will.ultimately  determine whether  we  are  considering  attractive  or  repulsive

scalar  interactions among  the anyons  and  is not  intended to represent  the Zeeman
energy.]  With this special  choice  of  interaction, the Hamiltonian factorizes into the
`supersymmetric'

 (SUSY) form

     H ± -Z(Q, ±)t(Q,±), (18)
          i

where

     Qi±
EIIiX  l: ill}Y, (19)

and

     n)!pj+-e-(A+aj).  (2o)
             c

   If we  can  find a  normalizable  function which  obeys,  for every  7', the first-order

differential.equation

     Qli± T ±[r]=O, (21)

where  [r]ii(ri, r2, ･-･, rN),  then we  have ah  exact,  zero-energy  eigenfunction  of  the
Hamiltonian. This result  is a generalization  of  the supersymmetry  of  a  single

electron  in an  arbitrary  magnetic  fieldi8) to the non-trivial  Ai-body case  in which  the
flux is not  .tZxed in time  but is cam'ed  on  the Particles themselves. In order  to find the
appropriate  solution,  it is useful  to define the function S  by

     A+  aj=-  z- × 7jS[r], , (22)

and  impose the gauge  choice  V･(A+a)=O.  Equation (15) now  yields

               2rr
                  (Bext+bj')･ (23)     7j2S[r] ==  

-
               die
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                                                             t

We  may  interpret this as  Poisson's equation  for the electrostatic  potential of  a  plasma

with  charge  density,

           1
     p(r)== di, (Bext+\. b,'). (24)

A  little algebra  shows  that the state

      ep' =-  f[ z-]e'S,  

'
 (25)

where  f is any  entire  function of  the z7's (With g-,･ being the 2D complex  coordinate  zW,･

iix,--i)Li)  is annihilated  by (?j' for every  i Likewise the state

      ur--f[z]e-S - (26)

is annihilated  by Qj- for every  i The  solution  of  Eq. (23) is readily  obtained  from
the 2D  Coulomb  Green's function '
                                                                  '

     72(-lnlrl)--2n62(r).  (27)
Using this we  obtain

     s[ r]  ==  
-2z  

Bdi',Xt
 :i.]-il-l&l2+I., v(ri-  T:i), (28)

where

     v(r,-h)ii-gfd2rF(ri-r)lnlr-ilil.  (29)
                                                          '

   While  the above  results  are  valid  for arbitrary  form  factors it is convenient  for
the moment  to consider  the limit of  point charges

     F( r).  62(r), (30)

although  one  has to be careful  with  questions of  the self-adjointness  of  H  in this
limit.2i) Equation  (28) then becomes

     S[r]=-4112:l.]l4IZ :,1.,lnlri-r:il, (31)

where

     7, =2Zi$l,ext:  (32)

The  ground  state  of  H'  may  now  be written

     W'=f[  z-]exp(-  4112 
:i,] k･IZ),I. I.,lgi-kLTe'X, (33)

and  that of  H-  is

      q-=f[x]exp(+  4!l2 :i.]iaj 
2)
 
,I.
 I.,lzi-41+eix. 

-
 (34)

                                                              '
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In the limit of  Eq, (30), llL corresponds  to hard-core repulsively  interacting anyons
and  er- is normalizable  only  in the presence  of  an  external  magnetic  field (l2, Bext< O).
These  solutions  were  known  previously.22)

   We  see  from  Eq. (33) that Ur" has a  cusp  (possibly regularized  by the form  factor

F) when  two  particles approach  each  other.  This is imposed  by the short-range

scalar  attraction  in ff'. In the absence  of  an  external  field, the degree of  homogene-

ity of  the polynomial F  cannot  be made  large enough  to give  zeros  whenever  any  two

particles approach.  Hence  the cusp  is unavoidable.  If F  is appropriately  chosen

however, T'  is normalizable  even  in the absence  of  an  external  field.

   We  are  interested here inaspecific extension  of  W' to the case  of  semions  (ela
=:112)  which  carry  a  spin  quantum  number,  or  a fiavor quantum  number  related  to

species  doubling on  the  latti6e.'7)"6)'23)'2`) We  choose  (at first) a singular  gauge  in

which  every  particle carries  the same  gauge  charge  and  a  flux tube corresponding  to

statistics  angle  0X7v=112. The Hamiltonian is then spin-independent  and  we  seek  the

spin-singlet-pairjng  superconducting  ground  state.  In the fermion representation  (¢
antisymmetric)  we  have

di-1pm()L.rz T[z](a, a,  
t-･,

 a,  B, B, -･･, B) , (35)

where  a, B are  the `up'
 and  

`down'
 spinors  respectively  and  viZ  is the antisymmetrizer.

Let us  take the spatial  part  of  the wave  function to be

T[2] =  "  ( 2ri-  zr,-)( 2[i] -  z-[j])eS  
,

     i<j
(36)

where  i=1, 2, ･･･, N  and  [i]=IV+1, IV+2, ･･･,  21V refer  to spin  up  and  down  respective-

ly. Using Eq. (33) the  plasma  factor is

eS=:lllzi-zil-ii21z[i]-z[j]l-it2IIIzh-z[t]1-ii2.
   i<:'                       k,l

(37)

Notice that the polynomial  factor F  in Eq. (36) is precisely the one  that appears  in the
mean-field  approximation  in which  the statistical  flux tubes  are  replaced  by a uniform

magnetic  field and  for e!7r ==112,  both spin  states  of  the lowest Landau  level are  fully

occupied.  This guarantees  that  in the present  case  O  obeys  the  Fock  cyclic  condition25)

and  is a  spin  singlet.  From  the generalized  i'ndex theorem, ,O is an  exact  zero-

energy  eigenfunction  of  the semion  Hamiltonian with  appropriate  attractive  scalar

interactions arnong  the particles. [We will  comment  on  the normalizability  of  ¢

further below.]

   The antisymmetrizer  in Eq. (35) is rather  inconvenient to deal with.  Fortunately,

provided that  we  are  interested only  in matrix  elements  of  operators  which  do not  flip
spins,  we  can  ignore the antisymmetrization  and  deal only  with  T, the spatial  part of

the wave  function. [This is because nontrivial  permutations of  the spinors  yield
orthogonal  states.]  Combining Eqs. (36) and  (37) we  have  the remarkable  result  that

            2rv

1 epl2=exp(-B2.(qiqj)ln12i -kl)  ,
           i<J

(38)

where  the sum  runs  over  all 21V particles, B=1, and  qiu-± 1 for up  and  down  spins,
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respectively.  As  for Laughlin's FQHE  state26) we  have a plasma  analogy  but in this
case  it is to the two-dimensional two-component  (neutral) Coulomb  gas, with  spin

playing  the role  of  Coulonib charge.  The  statistical  mechanics  here is quite different
from that of  Laughlin's one-component  incompressible plasma. The  two-component
neutral  Coulornb gas  undergoes  the Kosterlitz-Thouless transition at  coupling  con-

stant  r==4  (where I'i!!flq2). For 1">4 the charges  (here spins)  are  bound  together  in

(real-space) pairs and  one  has a  spin  
`insulator'.

 For  1-<4  there is spin
`deconfinement'

 into a 
Cmetallic'

 phase.  The present  model  has r=1  and  so  the

quantum  ground  state  is in the high-temperature metallic  phase. The  spins  are  not

bound together ,and hence spin  currents  are  free to flow. As  in an  ordinary  metal,

however, there is perfect metallic  screening  of  isolatecl charges  (spins) with  a screen-

ing wave  vector  given  in the Debye approximation  
'by2T)

     K2:=2znoBq2,  (39)

where  no  is the mean  particle density. The implications of  this screening  will  be
discussed further below.

   We  return  for a  mornent  to the  question of  the normalizability  of  <ff. Clearly

there is a  cusp  in 1T12 of  the form r,-iljl-i  when  opposite  spin  particles approach.

This  is integrable in two  dimensions so  there are  no  
`ultraviolet'

 problerns  with  the

wave  function. The infra-r'ed behavior is more  subtle.i') Clearly the norm  of  the

wave  function is equivalent  to the partition function of  the corresponding  plasma.
This  is ill-defined unless  we  impose  a  characteristic  scale  through periodic  boundary
conditions.  To  see  this assume  the plasma  is self-bound  and  move  particle 1' off

towards  infinity. IT]2 vanishes  only  like lrlilrri which  gives a divergent infra-red

contribution.  This is readily  cured  by the imposition of  periodicboundary  conditions

which  effectively  places  the system  on  a  torus. [There is a technical subtlety  in

dealing with  semion  flux tubes on  compact  surfaces  which  requires  the introduction of

a global two-state  degree of  freedom.28)]

   The  perfect screening  of  spin  discussed above  implies that  this state  is not  merely

a  singlet  but a  local singlet  in a  precise sense  which  we  now  discuss. 
'
 Let us  start  with

what  a local singlet  is not.  Imagine a  magnet  divided into two  halves each  cotaining

Ai spins  (s=112). Couple the spins  in each  half ferromagnetically to a state  of  total
spin  S=Ai12: Now  couple  these two  large spins  into a singlet.  This is a  global
singlet  but not  a  local singlet  since  the spins  in any  small  neighborhood  tend to'be

parallel. ･ A  local singlet  is defined as  a  state  in which  the coarse-grained  spin  density

tends to zero.  We  define this coarse-graining  by

         N

     si=2wijSj,  (40)
        j=1

where  Sj is the spin  operator  at  lattice site  i and  wij is a  non-negative  weight  factor

which  falls of  smoothly  with  the separation  of  sites t' and  7', and  obeys  the normaliza-

tion condition

     Zwij ==1.  (41)
      j
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The  rnean  square  value  of  the coarse-grained  spin  is measured  by
                                                                 '
              N

     <si･s,･>=Zw,,･w,,G,,, (42)
             J',k=1

whe;e  G  is the spin  correlation  function

     Gj,i<Sj･S,>.  . (43)

Thus  the coarse-grained  spin  will  tend  to zero  only  if the spin-spin  correlation

function has certain  properties. Any  liquid (i.e., translationally invariant) singlet

state  will  automatically  satisfy

   '

     2G,,=O. (44)
      j

However  local singlets  obey  the more  stringent  condition  that the coarse-grained  spin

decays rapidly  to zero  as  the length scale  of  the  smoothing  is increased. This
requires  that we  be able  to define a characteristic  (finite) size  of  the spin  screening

cloud  by

     ZGij1ri-,liI2== R2  
--

 K-2<  oo.  (45)
      j '
                                                                   t.

We  see  here in Eqs. (44) and  (45) the analogs  for the spin  problem  of  the 
`charge

neutrality'  and  
`perfect

 screening'  sum  rules  for the Coulomb  plasma.29)N3i] The

two-component  neutral  plasma  obeys  these sum  rules  and  hence the quantum  state  we

have  found is a local spin  singlet.

   The classical  Coulomb plasma  exhibits  a  finite frequency plasmon  oscMation

mode  due to the long-range Coulomb  interaction. The  quantum  semion  model  consid-

ered  here has an  analogous'  spin  vave  excitation  gap. Within the single-mode

approximation32)  (SMA) one  has a triplet of  spin  wave  excited  states  defined by

      IP;,pt=p,"O, (46)

where  di is the ground  state,  pt=x,  y, z  are  the three spin  components  and

          2N

     ph"iXSi"eih'ts  (47)
         j=l

is the Fourier transform of  the ptth component  of  the spin  density. Taking  advantage

of  the spin  rotational  invariance, the variational  energy  estimate  for these three
degenerate modes  may  be  written  as  ･ -

         -f(k)
     Z(k)
    ,

 
-s(k)'

 (48)

where  f(le)!(314)h2le2!2M is the oscillator  strength  and

           1
     s(fe)=-NZ.  <¢ lp"-kph" di> . (4g)

js the spin  structure  factor which  is the Fourier transforrn of  the correlation  function

G  given  in Eq. (43). Within the Debye  screening  approximation

                                                       NII-Electronic  
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           kz
s(fe)=(3/4)  k2+K2  ' (50)

we  see  that the  spin  structure  function vanishes  at  small  wave  vectors  due to the
long-range Coulomb forces and  from Eq. (48) we  have a finite 

`spin-plasmon'
 gap  given

by  ･ -

            h2
     d(k)- 2M  (k2+K2). (sl)

   
'The

 spin  wave  mode  consists  of  out-of-phase  density oscillations  of  the up  and

down  spin  fluids. The in-phase or  density mode  produces no  long-range `electric

fields' and  hence is gapless.33) This, is the Goldstone mode  associated  with  the

superconductivity.  Superconductivity ordinarily  manifests  itself as  (algebraic in 2D)

off-diagonal  long-range order  (ODLRO) in the two-body  density matrix.  In second

quantized  language this means  that there is a  significant  amplitude  to destroy a  single

pair at  one  location and  create  a  pair far away  without  perturbing  the state  of  the
system

     p(r, r')t<c;(r')c:(il)c"(r)ct(r)>.-1r-r'7V,  (52)

where  the exponent  u vanishes  in the limit of  zero  ternperature, In the language of
first quantization using  the ground  state  wave  function we  may  write

p(r, r')=Ar2fd27le  -･･fd2rNfd2r[2]  ･･-fd2r[Ni

× T"(r, h,  
･･･,

 by; r,

× T(r', h･･･, rN; rt,

r[2],.･., r[N])

rl2],'", r[N]). (53)

The  analogous  objects  for. anyons  are  slightly  more  complicated.  When  we  create  an

anyon  we  create  both a fermion (say) and  an  associated  flux tube. We  have  learned

from the  theory  of  ODLRO  in the FQHEi2)'3`) that the analog  of  Eq. (53) for anyons  is

 
･ p(r, r')==N2fa2r2  ･･･fd2zNfd2rE2]  `"fd2r[N]

× T'(r, h,  ･-･T:N; r, r[2], ･･･, r{N])･

x exp  [ +  i he. J)" cffl 
･
 (ai(R) +  aii] (R))]

× ler(rt h,  
･-.,

 r:N; r', r[2], -", r[N])E (54)

It is straightforward  to show  that, in contrast  to the FQHE,  this correlation  function
exhibits  tnte (not just algebraic)  ODLRO.  To  see  this consider  what  happens  to the

wave  function in Eq. (36) when  particle 1 and  particle [1] are  brought  close  together35)

as  shown  in Fig. 2. The  phase  factor does not  depend  on  the relative  orientation  of

the pair so  they  form  an  S-wave  singlet  as  expected.  Furthermore, the  pair is `charge

neutral'  according  to our  plasma  analogy.  Hence  the ampliimde  of T  is indenendent

of the location of'the Pair relative  to the other  particles. Note  however  that as  any
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Fig. 2. 0ff-diagonal long-range order  of singlet'

   pairs in the superconductor.  Particles 1 and

   [1] are  brought close  together and  then dragged

   irom position r  to r', The  amplitude  of  the

   wave  iunction is independent of the position of

   the pair. The  phase  fluctuaYes wildly  because

   the pair looks like a  vortex  to the other  parti-

   cles, However  this is precisely cancelled  by

   the vector  potential phase factor.

that if the path  of  the pair. circles  a  thir

contributes

     .fLIR

 ･ ( cri(R)  +  a2(R))  ==40=  +2rr  .

Thus  while  the line integral in Eq. (54)
defined and  unambiguous.

   other  particle,(either spin  up  or  spin

   down)  circles  the pair counterclockwise

   there is a phase winding  of  
-2z.

 Thus

   each  pair  looks like an  antivortex  to the

   other  particles. Conversely, the pair

   sees  antivortices  at  the position  oi  the

   other  particles as  it moves  among  them.

   Normally this would  cause  wild  phase

   fluctuations which  would  destroy the

   ODLRO.  However,  as  we  show  below,

   these are  precisely compensated  by the

   vector  potential term  in Eq. (54), in a

   manner  similar  to that  which  occurs  in

   the FQHE.i2)･s4]

      Notice that the curl  of  ai  and  a[i]

   vanish  
`almost

 everywhere'  but neverthe-
   less the  delta-function fiuxes make  the

   line integral in Eq. (54) path-dependent
   and  hence ill-defined. Note  however

d particle, the vector  potential line integral

(55)

                                  is path-dependent, the expopential  is well-

                       Furthermore, the +2fl  in Eq. (55) exactly  cancels  the 
-2n

that  would  be obtained  from the  gradient of  the phase along  the same  path

     YLIR･7Im In T=:-2z.  (56)

Hence  the vector  potential term  in Eq. (54) exactly  cancels  the effects  of  the  antivor-

tices.

   The upshot  of  all this is that a pair of  seMions  is completely  
`gauge

 neutral'  and

the amplitude  and  phase of  the  integral in Eq. (54) is independent of  rand  r'. Hence

     p(r, r')-constant  (57)

and  this state  exhibits  true S-wave  singlet-pair  ODLRO.

   This result  is in contrast  to similar  manipulations  in the FQHE  which  yielcl only

algebraic  ODLRO  because of  the incompressibility of  the one-component  Laughlin

plasma.  Further note  that in the FQHE,  it is not  the electrons  which  condense,  but
`artificial

 bosons' constructed  by a  singular  gauge  transformation  which  attaches  an

odd  number  of  flux quanta to .each  electron.i2)'3`) ,dere  it is the semions  themselves

which  condense  and  no  singuinr  gazrge changes  need  be made.36}  The  point has been
emphasized  by  Fisher, Lee and  Kane3') and  by Jain and  Read.38) The  latter authors
considered  spinless  semions  at  the  mean-field  level which  gives fermions fi11ing the
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two-lowest Landau levels. They demonstrated an  algebraic  ODLRO  for this integer

QHE  state  using  an  expression  equivalent  to Eq. (54) using  a  gauge  in which  the

statistical  vector  potential is zero  but T  is multiple-valued.  The  Stanford group  has

done an  RPA  calculation  which  demonstrates t]hat the spinless  model  has a  gapless,

linearly dispersing collective  mode  and  exhibits  -the Meissner effect.39)  Curiously,
these standard  indicators of  supercenductivity  appeared  in calculatiohs  without  any

need  to invoke ODLRO.  The  present resultsi7)  and  those of  Jain and  Read3S) indicate
that semions  exhibit  

`reasonably
 standard'  superconducting  pairing ODLRO.

   The  ideas presented  here cari  be readily  extended  to study  fluctuations beyond  the

mean-field  theory of  statistics  and  suggest  a good  variational  wave  function for the
spinless  case.  Lack  of  space  prevents  discussion of  these points  here and  the reader

interested in these points  is directed to ReL  17).

   The  soluble  model  ideas presented here are  based on  Ref. 17) which  was  a

collaborative  effert  with  A. H. MacDonald, M. P. A. Fisher, S.-J. Rey  and  J. P. Sethna.
The  author  is also  grateful to C. Kane, C. Kallin, N. Read, C. B. Hanna,  F. D. M.

Haldane, D. P. Arovas and  R. Jackiw for numerous  useful  discussions. This work
was  supported  by NSF  DMR8802383.
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