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   We  ana]yze ,the fractional quanturn  Hall effect  by using  an  anyon  field theory defined

perturbatively  in terms  of  a  boson field, It is shown  explicitly  that there exist  fractional

quantum  Hall (FQH) states  which  are  condensed  phases  of  bosonized electrons  at  zero

momentum.  When  the Coulornb interaction is switched  off, these states  are  degenerate with
other  states  which  are  obtained  by solving  a  certain  self-clual  equation.  Taking  into aecount

the  electron  spin  degrees of  freedom  we  also  show  the existence  of  spin-singlet  FQH  states  at

the  half-fiIIing (y=1!2) and  find vortex  soliton  excitations  carrying  the  electric  charge  ef4.

Furthermore, by using  singular  gauge  transferrnations,  we  construct  field theories  of  vortex

solitons  and  derive the hierarchy of  the FQH  states.

                            gl. Introduction

   The  discovery of  the fractional quanturn Hall effect  (FQHE) revealed  that the
two-dimensional  electron  systern  has rich  ground  state  structures  in a strong  magnetic

field.i) Depending on  fi11ing factor y  the system  exhibits  a beautiful hierarchy of  new

quantum  states  called  fractional quantum  Hall (FQH) states.  , A  microscopic  theory

has been presented to account  for the FQHE  and  its hierarchy by  using  Laughlin's

wave  functions2) and  by exact  numerical  calculations  on  system  of  a few particles.S)
Landau-Ginsburg  models  have  also  been proposedS)w8)
   However,  all  these approaches  are  rather  phenomenological  and  unsatisfactory

from a  purely  theoretical point  of  view.  The  FQHE  and･.its  hierarchy indicate the

existence  of  new  phases  of  the two-dimensional electren  system  in an  external

magnetic  field, but their existence  and  their precise nature  are  not  manifest  in these

approaches.

   In this paper  we  present  a  microscopic  formulation of  the FQHE  and  its hierarchy

where  the structure  of  these new  phases  are  shown  explicitly.

                     g 2. Anyons and  planar  electrons

   We  start  with  a field theory of  anyons  in a  magnetic  field. The  theory  is for-
mulated  by  using  a bosonic field. Later, we  regard  electrons  as  anyons,  and  use  the
field. theory  of  anyons  

'for
 describing electrons.  It is well  known  that such  a  field

theory  of  anyons  is given  by  the Hamiltonian



Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOffice,Progress  of  Theoretical  Physics

186 Z. F, Ezawa, M. Hotta and  A. Iwazaki

     Hh=21.fd2xKiol+aj-eAj)ip12, (1)

together  with  a constraint  equation  on  ai,

      1
        eab-Oiaj=ipW,  (2)
      2a

where  ip is the charged  boson  field, ai  is the Chern-Simons (CS) gauge  field, a  is a

statistics  parameter  of the anyon*)  and  Ai i's an  external  electromagnetic  potential,

     A,=--Sl.,., (3)

with  a  magnetic  field B.

   By representing  the anyon  by a boson field, there arises  a  possibility to,analyze

the anyon  physics from a  new  point of  view,  in particular, by using  the,semiclassical

approximation.  In this approach,  we  quantize small  fluctuations around  a  qlassical

solution  of  the system,  where  the classical  solution  is a  bosonic object.  (In this paper
we  only  consider  the classical  solution.)  In such  a case,  in order  to reprodu.ce

quanturn spectrurn  of anyons,9)'iO> a  modification  of  the Hamiltonian  is necessary.ii)

The  point of  the argument  is the following. On one  hand, anyon  wave  functions
vanish  with  a fractional power  of  r  as

     ipanyon(r)-L>rat", (4)

when  two  anyons  come  close.  On  the  other  hand, unperturbed  boson  states  (a=O) do
no  have  this fractional power  of  r;  their wave  functions vanish  like rt  with  l being
angular  momentum.  Hence, we  cannot  expand  anyon  states  by using  the unpertur-

bed boson  states.  However,  we  may  expand  rTai"ipanyon  by  using  the standard  partial

waves.  Schematically the expansion  looks like

     ipanyon=rai"(2 partial waves).  (5)
This expansion  leads to a  modification  of the  perturbation series  of a7n.  Especially,
in the first order  of  alrr, we  have  to add  to the naive  Hamiltonian a 8-function type

repulsive  force with  the strength  21alM4.

   The  6-function type interaction term  with  the coupling  constant  g reads

     Hb -=gfd2x:  (et ¢)2:, (6)

where  normal  ordering  has been  taken. Therefore, we  expect  that the  second-

quantized Hamiltonian  is given by

     H=fdu[21.i(iol+aj-eA,)dil2+-g-:(ditdi)2:], 
'

 (7)

where

 *) The  parameter  a  is defined such  that a wave  function of  two  anyons  changes  its phase by ei" fbr the

   exchange  of the anyons.

NII-Electronic  



Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOffice,Progress  of  Theoretical  Physics

           A7ayon Eield 7"7zeo7o, and  lVactional Quantzam Hlzll Slates 187

     g=W  (s)

in the  first order  of  perturbation in ake.  
'
 ,

   We  have  shown  that'anyons  are  described by the Harniltonian (7) with  (8) for
small  parameter  evlz. Now, electrons  may  be regarded  as  anyons  with  a!7v being an
odd  integer. Although evX7[ is not  a  small  quantity  in this case,  we  assurne  that the

Hamiltonian  (7) with  (8) describes electrons  in the  external  magnetic  field. The

success  of  this description will  justify this assumption.  The  boson field di is identified
with  the electron  bound to statistical  flux, which  we  call  bosondeed electrons.  The
Coulomb  interaction between electrons  reads.

     CV[gb]-  2e,2 fd2xd2:y: {gb'ge(x)-p}wh{gti'gO(y)-p}:, (9)

where  s  is the dielectric constant.  Here, we  have  added  a  uniform  background

charge  ep  to the Coulomb term  
CV

 for charge  neutrality.  Thus, our  Hamiltonian  is

     Heiectron=H+CV (10)

with  the constraint  equation  (2).
   It ts convenient  to rewrite  (10) as

     Heiectron=fd2x[tm-l(D,-iD2)ipl2+S-to,lip12+CV] (11)

with  iPi=r:i&+aj-et4j and  toev=eBha  being the cyclotron  frequency; This is easiiy
derived by  using  the Bogomol'nyi  decomposition:

     IDkdil2==1(Di-iD2)ip12Lejkol(ip'Mkdi)-E,･k:a･(ak-eAk)1ipl2:. (12)

It should  be noted  that the term  gl ip1` in the Hamiltonian  (7) is cancelled  with  the third
term  in (12) because of  our  choice  of  g==2Ievilm, 

'

                g 3. FQH  states  at  odd-denominator  fi11ing

   We  consider  a system  of  Ai electrons  in the presence of  an  external  uniform

magnetic  field B  perpendicular  to the plane. We  assume  that  the spin  degrees of

freedom  can  be ignored. In the next  section  we  take  account  of  the spin  degrees of
freedom.

    In order  to find the ground  state  of  our  system,  we  make  a  mean  field approxima-

tion. First,weexpand  

'
 

'

     ¢ =

 71V= [ao+.Z.,a.ept] (13)

with  V  being the  volume  of  the  system,  and

     [a., al]=6.,,  [a., a.]=[a;,ae]=O.  (14)

We  define the state
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     IIV>- th7f(ao' )"10> (15)

with  IV being the number  of  the electrons  in the system,  which  is assumed  to be
surnciently  large; le> is the vacuum  such  that a.10>:=O  for all p. When  the  fi11ing

factor v=2rrpleB  is given  by  ic!ev, we  can  solve  the  constraint  equation  (2) as

     ai-eAi=  
a.Ei,･fa2y(X.Ji::yY)j2(gbtge-p).

 (16)

Taking the expectation  value  with  11V>, we  find that <IVI(ai-eAi)IN>=O, which

implies that in this approximation

     <NIHeiectronllv'>=-li-to,N. (17)

Therefore, the state  11V> has the same  energy  as  that of  a  state  in which  all of N

electrons  occupy  the lowest Landau level. Furthermore, it follows that this state  has

the uniform  number  density:

     <NIdi'ipllv>-=-tl);=-p. 

'

 (1s)

This is the ground  state  in this appreximation.  
･

   Let us  see  this problem  from a  slightly  different way.  We  introduce a  coherent

state  lf>, which  is defined by

     If>==e-Nt2efd2"q'(X)f(X)iO>, (19)

where  Jd2xlf(x)I2=N. This  implies that tlie average  number  of  electrons  of  the state

lf> is equal  to N.  Note  that

     ipjf>-flf>, <flf>-:1. (2o)'
Then, we  find that

     E(f)i<flHeiectron f>

         ==  fd2x[21. (Di-iD2)f12+Swc AT+CY(f)],  (21)

where  ah  in Dk  is a e-number  function given  by (16) with  ip = f. It follews that

     E(f) >tto.  Ar, ･
 (22)

             '

because the Coulomb  interaction contributes  a  positive energy.

   Let us  neglect  the Cbulomb  term  Cl7 temporally.  Then, any  states  lf> satisfying
the self-dual  equation

     (e-iEj,,D,)f-O (23)

are  degenerate with  each  other  since  all  these states  have the same  energy  (wcf2)N.
In particular, we  can  see  that  only  at  the fi11ing factor v=  rrke there exists  the constant
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'solution,
 f=di5', in this self-dual  equation.  (This constant  solution  remains  to be a

solution  with  the minimum  energy  even  if the Coulomb interaction is ,switched  on.)

This  solution  describes a condensed  state  of  the bosonized electron  with  a  uniform

density .

     <f=  s4Ell  ip'ip lf= JJ> ==  p, , (24)

while  all other  solutions  describe the states  with  non-uniform  densities. Obviously,
these  non-uniform  states  are  degenerate with  the uniform  state  only  if the Coulomb
interaction is switched  off. Once the interaction operates  among  electrons,  the

degeneracy is removed,  and  the uniform  state  lf= J15-> becomes the real  ground  state

of  the system.  This is because the state  possesses the srnallest  Coulomb  energy  due
to its uniform  electric  charge  distribution. Furthermore, it is gtraightforward to

show  that the Hall conductance  in the state  is given by cbu=y(e2f2rr).  Thus, this
state  is a FQH  state.

   In the condensed･  phase  of  the bosonized electrons  there are  vortex  solitons

carrying  the statistical  flux.i2) Such soliton  solutions  are  obtained  numerically  by
solving  the self-dual  equation  (23). A  soliton  solution  behaves as

     di--,vlEJerie, (2s)

at  large distances, where  0 is the azimuthal  angle.  It is shown  that the electric

charge  and  the mass  of the soliton  are  (7t7ev)e and  (7tfa)m, respectively.  They  are

Laughlin's quasiholes. States lf> satisfying  the condition  Jd2xlf(x)i2=IV and

containing  some  vortic'es  are  excited  states  above  the ground  state  lf:=,th>. As  an

example  we  have estimatedi3)  an  excitqtion.  energy  of  the state  containing  three

vortex  solitons  at  v=113,

     diE tO.13e2lelv,  (26)

where  la is the magnetic  length, lfJEB-. Obviously, this is not  a state  with  the
mmlmum  gap  energy.  ,

    We  emphasize  that  the state  lf==Ji5-> we  have found'at v =  nla  represenbs  a  new

phase  of  the planar electron system  in the magnetic  field.. As we  have seen,  the

existence  and  the nature  of  such  a  new  phase  is manifest  in our  microscopic  formal-

ism.

g 4. FQH  states  at  even-denominator  filling

   So  far we  have taken into account  only  one  spin  component  of  electrons.  It is

easy  to generalize  our  scheme  to include the  two  spin  degrees o'f freedom  of  the

electron.'`>  The  relevant  bosonized Hamiltonian reads

     Ilbeiectron ==  21m fd2xl(Di 
,
 
-
 iDzt) di tl2+-i-w.Ait

                '

              +  21m fd2xl(Di 
･
 
L
 iDz') ip ･l2  +Sca  cA[･
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              +Coulomb  interactions (27)

with  Mj"=iai+a,･"-eAi,  where  the indices t and  J denote quantities associated

with  spin  up  and  down  components,  respectively.  CS  gauge  fields aj"  satisfy  the

constraint  equations

     Eth'Oia"  :=:  2ev1 di 'IZ+2rl  ip ' IZ ,

     eijOia,･･=2evlgb･l2+27,lgb'l2,  (28)

where  ev=nXodd  integer, and  7=nX  integer; the statistics  parameter  a  describes
commutativity  between electrons  with  the same  spin  component,  while  r describes the

one  between electrons  with  the different spin  component.

   We  examine  diagonal matrix  elements  of  the Hamiltonian (27) by introducing
coherent  states  lf', f･>,

     dit･ift,f,>=ft,lft,f･>, fa2xlft･(x)[Z==Art･. (29)

wnen  the Coulomb interaction is neglected,  the ground  state  configurations  are  found
by  solving  the self-dual  equations

     (D,t･-iD,t･)ft･=O, (30)

together  with  the constraint  equations  (28) by setting  di"=::f'･. When  the Coulomb
interaction is included, the ground  state  becomes  unique  with  constant  fN=,EpJi'l' at

the fi11ing factor

        2rr(p'+p･)-  2rr '
                         '

 (31)     
Y='

 eB  
-a+7

where  pt- are  the densities of  each  spin  components.  The  ground  state.describes

uniform  condensations  of  both up  and  down  spin  components.  It follows from  the

constraint  equations  (28) that p'==p･,  which  indicates that the ground  state  is spin

singlet.  When  a=3nn  and  r=:rrn, n  =integer,  the fi11ing factor becomes v=  112n.

Namely,  these states  are  FQH  states  at  the fi11ing factors of  even  denominator.

   Associated with  these FQH  states  there are  also  vortex  solitons.  For  instance,

we  may  consider  solitOn  solutions  characterized  by the asymptotic  behaviors such  as

     et->Vi5iF-enie, ip･-M  (32a)

or

     ¢
t.fi,  di･.v"fiI-e-ie, (32b)

at  large distances. Their electric  charges  are  f6und to be

     
-eQ

 
=r

 .f,e==  Se (33)
        '

for both cases  (32a) and  (32b), where



Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOffice,Progress  of  Theoretical  Physics

           Aeq),on liVeld 77zeoiy and  fractional Qztantzam Hizll Slates 191

     QEfd2x(ldi'12+1ip･l2-p). (34)

This is the half of  the electric  charge  of, the soliton  in the previous  case  oi  the
odd-denominator  fi11ing factor. Thus, the result  (33) shows  a  clear  distinction of  the
singlet  half-fi11ing states.

             g 5. Meld theory  of  vortex  solitons  and  hierarchy

   We  now  wish  to construct  a  local field theory of  vortex  solitons  and  derive a

hierarchy of  the FQH  states.  We  consider  local (point-like) vortices  by regarding

them  as  point-particles, Such vortices  are  easily  introducecl by considering  a  singu-

lar gauge  transformation $uch  thati5)

     ip.eifip, du-,a"tadC, (35)

where  f(x):=:Zgegie(x-zr), and  e(x-zr)  is the azimuthal  angle.  Local vortices  are

assumed  to be located at  xk=zrk(t)  in the 2-dimensional space  at  time t, where  r

==1,
 2, ･･-, Nb, IVb=total number  of  vortices.

   Let us  recall  that  the Lagrangian  density which  leads to the Hamiltonian  (7)
together with  the constraint  equation  (2) is given  by

     X== ip' iDo diJ'21J/EIDkdil2-Lg'( ip' ip)2- 41a e""AaptOuaA . (36)
                                 '

Performing  this singular  gauge  tran$formation to the Lagrangian  density, we  obtain

                                              '

     f.I+tixvortex  (37)
With

     Ae[]vD"`ex :r  -2La,,K"+  aAoG,  (38)
                a

where  aApt is given by the  reciprocal  relation  in terms of  a,

           -2
              . (39)     ev-e=-
            cr               '

Here,

               Nv

     K"==(112rr)Ze""AOuORe(x-zr)
               r=],

          Nv

        ===Z2r"62(XLgr),  (40)
         r==1

which  represents  world-lines  ef  the lecal vortices;  z"==(t,  zh). On  the other  hand,

     G;(114z2)Ze""aOpte(v-z.)OvOAe(x-zb)
              r,s

       =:(112rr)2K"&0(x-2s).  
'
 (41)

              s
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This quantity in not  well  defined when  two  vortices  coincide,  i.e., for r=!s.  However,
with  a careful  analysis  it is showni3)  that this coincidence  can  be neglected,  and  that
the quantity  ev-e is only  defined mod  2rr. Therefore, we  can  replace  aAe in formula (40)
with  aep which  obeys  the generalized  reciplocal  

'relationi5)

     ae=:-  rr2 +2np  (42)
           a

with  P being an  integer.

   Integrating over  the 2-dimensional

     fd2ndf- ftrv.,a. 
dent'"

 +  
a."
 
.2.,

space  we  get

d
  e(gr -  2s)  

,dt (43)

which  describes how  local vortices  interact with  the background CS field ah  and

among  thernselves. It turns out  that after  quantization the statistic  parameter  of  the

vortices  is given  by  ae.

   So far we  have  treated  the vortex  solitons  as  point particles, and  have  analyzed

their interaction terms, i.e., potential terms. In order  to find their kinetic terms  we

have  to carefully  analyze  so-called  collective  coordinates  of  the solitons.i6) But, it is

natural  to guess that the terms are  given  by (112)M22 in our  nonrelativistic  formula-

tion, where  M  is the mass  of  the soliton;  M=(zla)m.  Hereafter, we  assume  this

kinetic term.  Then, the  classical  mechanics  of  vQrtex  solitons  is described by

xvortex..] ][=2;!1( 
ald2t:'h

 )2--iiLapt 
dent'g

 ]+ arre .2..
 ddt 

e(z.L2s) ･ (44)

It is straightforward  to second-quantize  this systern  by  introducing the vortex  field ¢ .

Taking  into account  the contact  terms  similar  to (6), we  get'the second-quantized

vortex  Hamiltonian HYOrteX. The  Hamiltenian which  describes the combined  system

of  the electrons  and  the vortices  is given by H"eliE=Heiectron+Hvortex, i.e.,

     HiS6hE=fa2x [21. i(Di- iD2) ip 2+  2eB. 
N+CI7]  -

            +fd2x[2hl(Di(i'-iD2`i')ip12] (45)

with  iDk(i)= iOh+ck-(rrla)ak. Here, ah  and  ch  are  determined by  the constraint

equatlons

     ¢
'
 di -'li' ip'ip= 21. eijoia,･, (46a)

            I
     ip'ip 

==

 2a, 
eijO'Ci'  

'
 (46b)

   In order  to obtain  the ground  state  of  the new  Hamiltonian  (45), we  may  repeat

the same  procedure as  we  did for H"ghE-HeieCt"e". When  the Coulomb interaction is

neglected,  the ground  state  configurations  are  obtained  by solving  the self-dual
    .equatlens
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(D, -  iD,) di =O  
,(D,Ci)-

 iD,(i)) ip =O  . (47)

When  the Coulomb  interaction is inglud

two  classical  solutions  with  constant  ip
and

ecl, there are  two  ground  states  described by
and  ip at  y=y(O>  and  v=y(i),  where  y(e)=njev

y(1)==:(1+  
arra2,

 )=1   -1'
k+
   2P

(48)

Here, k=-rrke, and  P  is the parameter  which  appears  is the generalized reciprocal

relation  (42). The  both energies  of  these two  states  are  given  by  E"(112)tuc2V, as

should  be the case.

   The  solution  at  y=.:v{O) corresponds  to the condensed  phase of  only  bosonized
electrons,  while  the solution  at  v--y(i}  corresponds  to the condensed  phase  ef  both

bosonized electrons  and  vortices,  and  given by

di--vis, ipz-v[Jpll･

a, =:g  c-"k =  e,4, .
    z

(49)

They  represent  the FQH  states  of  the Oth stage  and  the lst stage  in the hierarchy of

the FQHE,  respectively.  There  exist  again  vortex  solitons  in this FQH  state,  which

can  be second-quantized.

   Precisely in the same  manner  we  can  construct  the Hamiltonian HssfiE at  the nth
stage,  by second-quantizing  the local vortices  at  the (n-1)th stage;  it involves the field
operators  di{i), the CS  gauge  fields ck(i) together  with  the statistics  pararneters a<`) for
i=::1, 

･i･,
 n  in addition  to ip, ak  and  ev. The  statistics  parameters  are  determined by the

reciplocal  relations  similar  to (42), i.e.,

ev(i)=-  
a(ni)

 +2np(i) (50)

with  P(`) integers. The  mass  M(i) and

given  by M(i)= mlO(i)i  and  e<i)=eQ<i),

 the electric  charge  e(i) of  the vortex  ip{i) are

respectively,  with

Q(i)==(Pi 
afk)

 ) (51)

with  a(O)=a.  It is found that the ground  state  of  the Hamiltonian  H"a2IE describing a

condensed  phase  of  all  ip and  diCi) exists  uniquely  if and  only  if the fi11ing factor v takes

a particular  value,  i.e., y;v(")  with

y(n)=:[1+ana2(o[1+ev(1)anZ  (,) [1+'" 
ev(.-nlia{n)]''']
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1

k+
-1 . (52)

2pm+
-1

      
-1

2bC2)+...-l2p{n)

The ground
conductancestate

 is the FQH  state  at  the

is found to be o.=v{")(e2!2rr).nthstageof

 the hierarchy.TheHall

g6. D-
-

lscusslon

   We  have shown  in our  microscopic  formulation that the two-dimensional electron

system  possesses distinct phases of  the FQHE,  which  are  characterized  by condensa-
tions of  the bosonized electrons  and  vortices.  Our formulatien consistently  repro-

duces the energy  and  the degeneracy of  the electron  system  when  the Coulomb
interaction is switched  off. Using  our  formulation we  can  analyze  various  aspect  of

the FQHE  (e.g., effects  of  spatial  variation  of  external  magnetic  field, etc.)  which  are

beyond  the scope  of  the standard  approach  based on  the variational  wave  functions.
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