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We analyze the fractional quantum Hall effect by using an anyon field theory defined
perturbatively in terms of a boson field. It is shown explicitly that there exist fractional
quantum Hall (FQH) states which are condensed phases of bosonized electrons at zero
momentum. When the Coulomb interaction is switched off, these states are degenerate with
other states which are obtained by solving a certain self-dual equation. Taking into account
the electron spin degrees of freedom we also show the existence of spin-singlet FQH states at
the half-filling (v=1/2) and find vortex soliton excitations carrying the electric charge e/4.
Furthermore, by using singular gauge transformations, we construct field theories of vortex
solitons and derive the hierarchy of the FQH states.

§1. Introduction

The discovery of the fractional quantum Hall effect (FQHE) revealed that the
two-dimensional electron system has rich ground state structures in a strong magnetic
field.” Depending on filling factor v the system exhibits a beautiful hierarchy of new
quantum states called fractional quantum Hall (FQH) states. . A microscopic theory
has been presented to account for the FQHE and its hierarchy by using Laughlin’s
wave functions” and by exact numerical calculations on system of a feW particles.”’
Landau-Ginsburg models have also been proposed.”~®

However, all these approaches are rather phenomenological and unsatisfactory
from a purely theoretical point of view. The FQHE and its hierarchy indicate the
existence of new phases of the two-dimensional electron system in an external
magnetic field, but their existence and their precise nature are not manifest in these
approaches.

In this paper we present a microscopic formulation of the FQHE and its hierarchy
where the structure of these new phases are shown explicitly.

§ 2. Anyons and planar electrons
We start with a field theory of anyons in a magnetic field. The theory is for-
mulated by using a bosonic field. Later, we regard electrons as anyons, and use the

field theory of anyons for describing electrons. It is well known that such a field
theory of anyons is given by the Hamiltonian

NI | -El ectronic Library Service



Publication O fice, Progress of Theoretical Physics

186 Z. F. Ezawa, M. Hotta and A. Iwazaki

_ 1 / 2504 gi— AN G2
HO—’ 27’}2 d xl(la.?+a.7 eAJ)¢| ’ . (1)
together with a constraint equation on a;,
1 gty | @
2&' wyYileg ’

where ¢ is the charged boson field, a: is the Chern-Simons (CS) gauge field, « is a
statistics parameter of the anyon* and A: is an external electromagnetic potential,

Az'= ’“gé"ijxj (3)

with a magnetic field B. .

By representing the anyon by a boson field, there arises a possibility to analyze
the anyon physics from a new point of view, in particular, by using the semiclassical
approximation. In this approach, we quantize small fluctuations around a classical
solution of the system, where the classical solution is a bosonic object. (In this paper
we only consider the classical solution.) In such a case, in order to reproduce
quantum spectrum of anyons,™'® a modification of the Hamiltonian is necessary.'*
The point of the argument is the following. On one hand, anyon wave functions
vanish with a fractional power of » as

Peanyon(7) = 74", (4)

when two anyons come close. On the other hand, unperturbed boson states (a=0) do
no have this fractional power of 7; their wave functions vanish like »* with / being
angular momentum. Hence, we cannot expand anyon states by using the unpertur-
bed boson states. However, we may expand 7~ *"¢anyon by using the standard partial
waves. Schematically the expansion looks like

Panyon=7*'*(2] partial waves) . ‘ ‘ (5)

This expansion leads to a modification of the perturbation series of a/x. Especially,
in the first order of @/7, we have to add to the naive Hamiltonian a d8-function type
repulsive force with the strength 2|e|/M. '

The J&-function type interaction term with the coupling constant g reads

Hg=%fd2x: CA)E | (6)

where normal ordering has been taken. Therefore, we expect that the second-
quantized Hamiltonian is given by

H=/. dx[z—lﬁl(ié‘j—l—aj—eAj)gblz-i-—‘g—:(ng/J)z:] , (7)

where

*) The parameter ¢ is defined such that a wave function of two anyons changes its phase by e* for the
exchange of the anyons.
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in the first order of perturbation in a/r.

We have shown that anyons are described by the Hamiltonian (7) with (8) for
small parameter a/r. Now, electrons may be regarded as anyons with e/ being an
odd integer. Although a/r is not a small quantity in this case, we assume that the
Hamiltonian (7) with (8) describes electrons in the external magnetic field. The
success of this description will justify this assumption. The boson field ¢ is identified
with the electron bound to statistical flux, which we call bosonized electrons. The
Coulomb interaction between electrons reads

oy ——fdzxdzy {¢" ¢(z)— o} (6" 9(v)— o), | (9)

lx yl

where e is the dielectric constant. Here, we have added a uniform background
charge ep to the Coulomb term ¢V for charge neutrality. Thus, our Hamiltonian is

Helectron =H+ cy (10)

with the constraint equation (2).
It is convenient to rewrite (10) as

electron . ].
Jyetectron — fdzx[flh—](lh*ZD2)¢|2+—2~CUCI¢IZ+CV] (11)

with iD;=10;+ a;— eA; and w.=eB/m being the cyclotron frequency: This is easily
derived by using the Bogomol'nyi decomposition:

|Drg|?=|(D1—iD2) |*— €205(¢ T iDrp) — a:05( an— eAn)| S % . (12)

It should be noted that the term g|¢|* in the Hamiltonian (7) is cancelled w1th the third
term in (12) because of our choice of g=2|a|/m.

§3. FQH states at odd-denominator filling

We consider a system of N electrons in the presence of an external uniform
magnetic field B perpendicular to the plane. We assume that the spin degrees of
freedom can be ignored. In the next section we take account of the spin degrees of
freedom.

In order to find the ground state of our system, we make a mean field approxima-
tion. First, we expand

— 1 ipx
$= W[aﬁgo%e ] (13)

with ¥V being the volume of the system, and
[@p, af]1= 00y, lap ad=l[a}, al]l=0. (14)
We define the state
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IN>=—2—(ad)"|0> - (15)

1
Vv N!
with N being the number of the electrons in the system, which is assumed to be

sufficiently large; |0> is the vacuum such that a,|0>=0 for all p. When the filling
factor v=2mp/eB is given by /e, we can solve the constraint equation (2) as_

—eA=—Ley [y EZI5 (0 =) | (16)

Taking the expectation value with |[N>, we find that <N |(al——eA JN>=0, which
implies that in this approximation

(NHO Ny =F-0eN . | (17)

Therefore, the state |[N> has the same energy as that of a state in which all of N
electrons occupy the lowest Landau level. Furthermore, it follows that this state has
the uniform number density:

(N|g1 ¢|N>—~ =0 | o (18)

This is the ground state in this approximation.
Let us see this problem from a slightly different way. We introduce a coherent
state |f>, which is defined by

|fo=eNrelamr@r@|gy (19)

where fd?z|f(x)?=N. Thisimplies that the average number of electrons of the state
|/> is equal to N. Note that

SE=£F, p=1. (20)
Then, we find that
E(f) = <leelectron|f>

— [@*2| 5= (D1 =D P+ 0o N+, (21)
where a. in D, is a c-number function given by (16) with ¢=f. It follows that
E(f)25w. N, | (22)

because the Coulomb interaction contributes a positive energy.
Let us neglect the Coulomb term &’ temporally. Then, any states |f> satisfying
the self-dual equation

(Dj - Z'€jka)f =0 (23.)

are degenerate with each other since all these states have the same energy (w:/2)N.
In particular, we can see that only at the filling factor v= r/a there exists the constant
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solution, f=/p, in this self-dual equation. (This constant solution remains to be a
solution with the minimum energy even if the Coulomb interaction is switched on.)
This solution describes a condensed state of the bosonized electron with a uniform
density

f=Vol¢tdlf=Vo>=0, S | (24)

while all other solutions describe the states with non-uniform densities. Obviously,
these non-uniform states are degenerate with the uniform state only if the Coulomb
interaction is switched off. Once the interaction operates among electrons, the
degeneracy is removed, and the uniform state |f=,/0> becomes the real ground state
of the system. This is because the state possesses the smallest Coulomb energy due
to its uniform electric charge distribution. Furthermore, it is straightforward to
show that the Hall conductance in the state is given by om=1v(e?/2x). Thus, this
state is a FQH state.

In the condensed phase of the bosonized electrons there are vortex solitons
carrying the statistical flux.'”? Such soliton solutions are obtained numerically by
solving the self-dual equation (23). A soliton solution behaves as

g—Joe (25)

at large distances, where 6@ is the azimuthal angle. It is shown that the electric
charge and the mass of the soliton are (7/@)e and (x/a)m, respectively. They are
Laughlin’s quasiholes. States |f> satisfying the condition fd%x|f(x)?=N and
containing some vortices are excited states above the ground state |[f=,p>. As an
example we have estimated'® an excitation. energy of the state containing three
vortex solitons at v=1/3,

AE ~0.13¢%/els , (26)

where /5 is the magnetic length, 1/ /E]_S’_ . Obviously, this is not a state with the
minimum gap energy. o

We emphasize that the state |f=4,/p> we have found at v=r/a represents a new
phase of the planar electron system in the magnetic field. As we have seen, the
existence and the nature of such a new phase is manifest in our microscopic formal-
ism.

- §4. FQH states at even-denominator filling

So far we have taken into account only one spin component of electrons. It is
easy to generalize our scheme to include the two spin degrees of freedom of the
electron.' The relevant bosonized Hamiltonian reads

Hzelectronz_z_ln;fdle(Dﬂ‘ _ Z'DZT)g[,TlZ_'__%_wCNT

| +—2-1-”? f dsz(Dﬁ—iDz*)gb*!z-i——%—ch*
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-+Coulomb interactions (27)

with iD;** =10+ a;** —eA,, where the indices T and ! denote quantities associated
with spin up and down components, respectively. CS gauge fields a;"* satisfy the
constraint equations

Gﬁaidfzza‘{ﬁflz'l”z?’qu ’
6ij8iaj*=2al¢*|2+2y|¢ﬂz, (28)

where a¢=nXodd integer, and y=x X integer; the statistics parameter « describes
commutativity between electrons with the same spin component, while y describes the
one between electrons with the different spin component.

We examine diagonal matrix elements of the Hamiltonian (27) by introducing
coherent states |f*, /*>,

PRI Y=L 1Y, [dalf @ =N (29)
When the Coulomb interaction is neglected, the ground state configurations are found
by solving the self-dual equations

(Dy™—iDy")f =0, | (30)

together with the constraint equations (28) by setting ¢**=#%*. When the Coulomb
interaction is included, the ground state becomes unique with constant f**=,/p** at
the filling factor

_2n(p*+pY) _ 2m o
V= eB T aty’ (31)

where o't are the densities of each spin components. The ground state describes
uniform condensations of both up and down spin components. It follows from the
constraint equations (28) that o*=p", which indicates that the ground state is spin
singlet. When a=37n and y=7an, n=integer, the filling factor becomes v=1/2n.
Namely, these states are FQH states at the filling factors of even denominator.
Associated with these FQH states there are also vortex solitons. For instance,
we may consider soliton solutions characterized by the asymptotic behaviors such as

Pr-vote ™, oyl | (32a)
or
groVpt, ¢iodpte™, (32b)
- at large distances. Their electric charges are found to be
— = VY
eQ - e=5e (33)

for both cases (32a) and (32b), where
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Q= [@a(|¢*P+Ip*P—0). (30)

This is the half of the electric charge of the soliton in the previous case of the
odd-denominator filling factor. Thus, the result (33) shows a clear distinction of the
singlet half-filling states.

§5. Field theory of vortex solitons and hierarchy

We now wish to construct a local field theory of vortex solitons and derive a

. hierarchy of the FQH states. We consider local (point-like) vortices by regarding

them as point-particles. Such vortices are easily introduced by considering a singu-
lar gauge transformation such that'

g-e¥d, ap—autouf, v (35)

where f(x)=>"2,0(x—2z,), and §(x—2z,) is the azimuthal angle. Local vortices are
assumed to be located at x*=2z%(¢) in the 2-dimensional space at time #, where »
=1, 2, --*, N», Ny=total number of vortices. ‘

Let us recall that the Lagrangian density which leads to the Hamiltonian (7)
together with the constraint equation (2) is given by

L=9"iDop—5ADI —HP Y~ arboas : (36)
Performing this singular gauge transformation to the Lagrangian density, we obtain
| L~ L+ gLvortex (37)
with

AL ==, K+ 3G (38)

where @, is given by the reciprocal relation in terms of «,

7[2

ﬁ¢= ——"a“ . (39)
Here,
K*=(1/27) X} e"8,0:8(z —2)
Ny )
:ElérFSZ(x_ZT) , (40)

which represents world-lines of the local vortices; z“=(¢#, 2*). On the other hand,
G= (1/471-2);;8"“8#6’(30 —27)00000(x — 25)

—(1/20)2K 0z —2). (D)
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This quantity in not well defined when two vortices coincide, i.e., for »=s. However,
with a careful analysis it is shown'® that this coincidence can be neglected, and that
the quantity @, is only defined mod 2x. Therefore, we can replace @, in formula (40)
with a» which obeys the generalized reciplocal relation'®

>
Up= —7+27rp (42)

with p being an integer.
Integrating over the 2-dimensional space we get

d> . _N” er Ay

[arzar=~E5a, L f(z—2), (43)
T r<s .

which describes how local vortices interact with the background CS field . and

among themselves. It turns out that after quantization the statistic parameter of the

vortices is given by ay.

So far we have treated the vortex solitons as point particles, and have analyzed
their interaction terms, i.e., potential terms. In order to find their kinetic terms we
have to carefully analyze so-called collective coordinates of the solitons.'® But, it is
natural to guess that the terms are given by (1/2)M2? in our nonrelativistic formula-
tion, where M is the mass of the soliton; M=(x/a)m. Hereafter, we assume this
kinetic term. Then, the classical mechanics of vortex solitons is described by

IVOF*GK:E[%(%)Z— T ,,d;f }F Moy L p(zr—2s). (44)

It is straightforward to second-quantize this system by introducing the vortex field ¢.
Taking into account the contact terms similar to (6), we get the second-quantized

- vortex Hamiltonian H¥"***. The Hamiltonian which describes the combined system
of the electrons and the vortices is given by Hibhe=Hewon fFVortex j o

Hifhe= [d% [ SAD— D) g +-EE N+ V|

+ fdzx[ﬁl(Dl(”—z'Dz(”)qSIZ] (45)
with iD,Y=1:0s+cr—(n/a)a.. Here, ar and c. are determined by the constraint
equations

tog T gt zi sy s
¢] ¢ a,¢ ¢ 2a eljala.), (46&)
96T¢““ ewa(% . . (46b)

In order to obtain the ground state of the new Hamiltonian (45), we may repeat
the same procedure as we did for Hf¢e=H**"". When the Coulomb interaction is
neglected, the ground state configurations are obtained by solving the self-dual
equations '
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(D1—iDx)¢=0, (D:P—iD,V)¢p=0. (47)

When the Coulomb interaction is inéluded, there are two ground states described by
two classical solutions with constant ¢ and ¢ at v=v and v=v"Y, where v¥=r/a
and .

T ”\__ 1 |
VO—Z(1+ m)— = (48)
o

Here, £=r/a, and p is the parameter which appears is the generalized reciprocal
relation (42). The both energies of these two states are given by E=(1/2)w.N, as
should be the case.

The solution at v=y corresponds to the condensed phase of only bosonized
electrons, while the solution at v=v® corresponds to the condensed phase of both
bosonized electrons and vortices, and given by

L =

Ek = eAk . . (49)

J]
N

ﬁkz

SRS

They represent the FQH states of the Oth stage and the 1st stage in the hierarchy of
the FQHE, respectively. There exist again vortex solitons in this FQH state, which
can be second-quantized.

Precisely in the same manner we can construct the Hamiltonian Hi8 at the nth
stage, by second-quantizing the local vortices at the (z—1)th stage; it involves the field
operators ¢'“, the CS gauge fields c¢:‘? together with the statistics parameters a‘® for
1=1, -+, min addition to ¢, a» and @. The statistics parameters are determined by the
reciplocal relations similar to (42), i.e.,

. Vi . ‘
a/(l):_‘ a(z'_l) "I"Zﬂ'j)(z) (50)

with p® integers. The mass M® and the electric charge e¢'” of the vortex ¢ are
given by MP=m|Q®| and e'?=eQ'?, respectively, with

i-1 '
() — T
Q=1 | (51)
with ¢®=a. It is found that the ground state of the Hamiltonian H{§ describing a
condensed phase of all ¢ and ¢* exists uniquely if and only if the filling factor v takes
a particular value, i.e.,, v=v" with

T Vs n 7
v :_a'—[l T 2a® [1 a0 [1 * W]]
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= = . (52)
ket =

2pP+

(¢H]
2p%+ —

—1

The ground state is the FQH state at the nth stage of the hierarchy. The Hall
conductance is found to be o=yv"(e*/2n).

§ 6. Discussion

We have shown in our microscopic formulation that the two-dimensional electron
system possesses distinct phases of the FQHE, which are characterized by condensa-
tions of the bosonized electrons and vortices. Our formulation consistently repro-
duces the energy and the degeneracy of the electron system when the Coulomb
interaction is switched off. Using our formulation we can analyze various aspect of
the FQHE (e.g., effects of spatial variation of external magnetic field, etc.) which are
beyond the scope of the standard approach based on the variational wave functions.
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