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            Vector-Medel  Approach
to Non-Perturbative Theory  of  Random  Filaments

Tamiaki YoNEyA

institute of llhJysic& Uhaiversdy of Tlolvo, Kbmaba, Tbkyo 1'5L3

   It is explained  how  vector  models  can  be used  to describe the physlcs of random  filaments

with  arbitrary  random  branches, The continuum  limit is obtained  in the large-N limit by
taking a  double  scaling  limit which  is analogous  to that in the matrix  models.  The  models

exhibit  various  interesting properties, such  as, nonperturbative  instability, connection  with

the KP  hierarchy, Virasoro structure,  among  others,  which  can  be comparecl  with  the  corre-

sponding  behaviors of  the matrix  models.  When  the target space  is a  continuum,  the critical

theories in the scaling  limit are  equivalent  with  superrenormalizable  local field theo'n'es and

the fractal dimensions of the random  filaments are  given by 2bl(h-1)  (k=]2, 3, ･-･) at the le-th
critical  point,

Sl. Introduction

   The matrix  modeli)  is one  of  the subjects  which  have been the focus of  intensive

study  of  theoretical particle physicists in recent  years. In this lecture, I would  like to

discuss a  slightly  different but related  subject  of  randomly  branching filaments using

vector  models,  based  mainly  on  the works2)'3)  done  ih collaboration  with  Nishigaki.*)

Let me  first explain  motivations  for studying  this problem  and  possible  relation  of  this

sy$tem  to random  surfaces,  described by the inatrix models.

   The  main  motivations  from  particle-physicists' point  of  view  in attacking  the

matrix  models  are  twofold: First, we  hope to learn possible  clues  to non-perturbative

understanding  of  string  theory as  a  unification  theory of  all fundamental  interactions

including gravity; Secondly, we  also  want  to learn how  to describe the quantum

physics  in the regime  where  spacetime  geometry  itself and  even  its topology  are

wildly  fiuctuating. The matrix  models  can  be regarded  as  a toy model  to both  of

these questions. To  the former, it is a toy model  in the sense  that the dimension of
the target spacetime  is assumed  to be small  in order  to be soluble.  To  the latter, it
is in the sense  that  the base spacetime  is 2 climensional. From  both points of  view,

the  structure  of  the models  has now  been fairly well  understood  in the case  where  t]he

dimensions of  the target space  are  less than (or equal  to) 1. The technical diMculty
in going  beyond  1 dirnension  is that one  cannot  then  reduce  the  models  to free fermion

systems.  Furthermore, there are  indications from  the study  of  the  continuum  and

perturbative  Polyakov  strings  that the dimension 
=1

 of  the target space  is not  just a
technical barrier, but that is a  real  physical  boundary  beyond  which  the non-pertur-

 
*) Section 5 includes some  new  results  which  have  not  been  

'mentioned
 in Refs. 2) and  3). For  ether  related

   works,  see  Refs. 4), 5), 6), 10), 14) and  15).
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bative phase  of  the system  is drastically different from  the cases  where  the target

space  dimensions are  less than  or  equal  to one.

   For  example,  the  partition function of  random  surfaces  for fixed area  A  with

sphere  topology in D  dimensional flat target space  is expected  to behave for large A
as,

     Z(A)--e-naA-3"O, (1･1)

according  to the famous formula of  KPZ-DDK,'}-`9) where  the so-called  string

susceptibility  exponent  is 
'

     ?･b=--iltt(D-1- (D-1)(D-2s)). (1･2)

For D<1,  this shows  that 7,b is negative,  while  for D>1  7,b becomes complex  with

Positive real  part. Although this certainly  signals  that the KPZ-DDK  approach  is
invalid for D>1,  it may  be suggestive  to study  the meaning  of  the positive real  part
of  7o. In fact, it might  be interpreted as  a  signal  of  the tendency of  the formatipn of

filamentary bridges between surfaces.  Consider the partition function Z(A)  with

sphere  topology  of  total area  A  under  the condition  that it must  have at  least one

filamentary bridge. In terms  of  the  original  unconditional  partition function Z, Z"V is

glven  as

     2(A)-faAia!A26(At+A2-A)AiA2Z(Ai)Z(A2)

          .vA2rom3emxA.  (1.3)
Thus, as  soon  as  Re7,b>O, the contributions  of  filamentary surfaces  to statistical  sum
                                              '
are  expected  to dominate. '

   Secondly, if we  treat the 2-dimensional cosrnological  constant  to be small,  the

D-dimensional Polyakov string  the6ry suggests  that the lightest mass  of  the system  in

the D-dimensional noncritical  string  theory  is mZ=-(D-1)112,  which  is for D>1  a

tachyon. In other  words,  the usual  perturbative  vacuum  apd  the genetal  world  sheets

are  unstable  against  the formation of  the tachyonic string  bridges and  loops. It is not

unreasonable  to regard  this phenomenon  as  related  to the  instability against  the

formation of  filaments.

   The  existence  of  a  physical  phase  boundary  at  D=1  might  also  be related  to the
fact ,that the cosmological  term  defined perturbatively in this approach  becomes
complex  when  D>1,  suggesting  again  inappropriateness of  the naive  continuum

treatment.  
'

   For these reasons,  it seems  worth  while  to study  models  in which  one  only  takes

into account  the filamentary surfaces.  We  will  in fact see  several  interesting features

which  can  be compared  with  known  D=c<1  random  surface  models.  It would  also

be interesting to see  a possible  connection  of  the scaled  the6ry  of  random  filaments to

the ordinary  local field theory, which  might  be useful  in order  to investigate an

analogous  connection  of  the matrix  model  to the string  field theory.

   Schematically, such  a  simplest  model  can  be described as

NII-Electronic  
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     zN  z  eax(f)-tA(f)' ll eH(Lmatter), (1.4)
        filaments matterconfigurations

where  x(f)=  Euler number,  A(f) ==area  and  U(f, matter)  is the appropriate  action  for
the matter  fields x"  living on  the filaments. The most  natural  form of  the matter

action  will  be  fdT(dubu)2, which  is obtained  from  the Polyakov  action  by  dimensional

reduction.  If we  only  consider  the filaments with  constant  diameter, for simplicity,
A(f)  is replaced  by the length of  the filaments, A(f)=::L(f)==length. Thus, t can  be
regarded  as  the orie-dimensional  cosmological  constant.  The  Euler number  is equal

to 2(1-h(f)) with  h(f) being the number  of  the  independent loops in the random

filaments. Note that we  allow  arbitrary  branching of  the filaments, while  the funda-

mental  statistical  weight  is their total length once  the genus- is fixed, apart  from, of
course,  the difference of  the  matter  configurations.

g 2. Vector model  as  a systern  of  discretized random  filaments

   It is easy  to realize  the  partition function of  the ty'pe (1･4) 6y a  class  of  vector

models  as  given  by

     Z=f.ll"=,dNO.exp[-B(.Z"=,V(di.2) ll.\.g..di.2¢ .2)],  (2･1)

where  the  field diA is an  N-component  real  vector  with  A  being the label Qf sites  in a

discretized target space,  and  OA2 is the  corresponding  O(N) invariant length. Of
course,  when  the  target space  is a  continuum  space  as  we  will  discuss in the  final

section,  the surnmation  in (2･1) is replaced  by integral. We  note  that there is no  usual

kinetic term  of  the form diA･ diB. Suppose that the potential V  takes the form

      V(di2)=:-li-di2-tA(¢
2)2
 (2･2)

and  expand  (2･1) with  respect  to the coupling  constants  A and  gAB. In this Feynman

graph expansion,  the Feynman  rule  is the following (after rescaling  di-(11s/"B)O):

propagator 1

(¢ A)Zvertex
AB

(¢ A)2(OB)2vertex9ABB

                                              .

A  typical diagram  f looks like as  depicted in Fig. 1(a). Figtire 1(b)' is the dual ef
Fig. 1(a) and  is interpreted as  a  configuration  of  the random  filament. This  is
analogous  to the situation  of  matrix  models  where  the random  surfaces  are  dual to the
Feynman  diagrams. The  contribution  of  a  diagram  f to the connected  part  F
==logZ  is

     F(f)=N"if'}(.II,.,gBAB, (sxaA-A) 
･,
 (2･3)
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                     (a) (b)

           Fig. 1. (a) An  example  of  the  Feynman  diagrarn for the potential (2･2).
                 (b) The  dual diagram  corresppnding  to (a),

where  the product is over  all bends and  v(f)  is the  number  of  vertices,  in the dual

diagram, which  is equal  to the number  of  index loops in the original  Feynman  diagra'rn
picture. Note  that the nurriber  of  index loops is not  in general equal  to the number

of  loops in the sense  of  the usual  Feynman  diagrams. The  genus of  the filament f is

given by the topological  relation  h(f) =1-v(f)+b(f),  with  b(f) being the number  of

bonds  in the dual diagram. In the  Feynman  diagram, b(f) is nothing  but the number

of  4-point vertices.  For the exarnples  of  Fig. 1, it is a  16-loop diagram  in terms  of  the

original  Feynman  diagram, while,  in the dual picture, b(f)==15, v(f)=::14,  h(f)==1-14

+15=2.  Thus, (2･3) is rewritten  as

     F(f)=Ni-hCf)(l\)b{f){.lll).fgAB. (2'4)

The  model  (1･4) is realized  by identifying as  ev==(112)logN,  t== -(111)log(AllB),  with  l
being the one-dimensional  lattice constant,  and  H== 

mXAB)EfloggAe.

g 3. Deuble  scaling  limit of  vector  models

   Now  let us  consider  the possibility of  the scaling  limit. For  simplicity,  we  first

consider  the case  n=1,  narnely,  
"pure

 O+1  dimensi6nal gravity".

     Z=fd" ¢ exp{-B(-l!-di2+-ll-(diZ)2)l.  (3･1)

3.1. ReTturbative analysis

   The surn  of  connected  diagrams in the perturbative  expansion  takes  the form,

     F=,2.rm,F(h)=:il]:I;NiLh(-IDb(-A)eLfb,,, (3･2)

where  f(b, h) is the number  of  inequivalent dual diagrams  with  b bonds and  h loops.

For h==O, the saddle  point approximation  gives

     F(e)..-}l.g-1+!(IiAF81IIStzllv[B+1-,lgtIesSileAlvlBAL(B--t. (3･3)

From  this expression,  the  asymptotic  behavior of  fb,o is determined to be

     h,o n- b'5'24b, (3 '4)

which  amounts  to 7'o=ll2.  Equivalently, the singularity  of  the h=O  f.ree energy  is

glven as,
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     F(o) .v  Ar irLiiS)3'2, 
'

 (3･s)            (
where  we  have chosen  A==-114 such  that the singularity  occurs  at  IVIrs==1. This

result  is obtained  with  th6 ¢
`
 potential.

   By  extending  the above  analysis  to general  polynomial potentials, we  find singu-
larities of  the type,

     F(o)pwlv(1 
'})i'itk,

 (3･6)

     ?･o -1-  
-X,

 (k -=  (1), 2, 3, ･･･) (3･7)

corresponding  to the critical  potentials determined by 1-2x2V'(x2)=(le-x2)hdek.

Note  that the susceptibility  exponent  7o is always  positive (or zero  when  k=1,

gaussian model),  It is not  diMcult to go  to higher orders  with  respect  to 1iC2V. We
find F(i-h)t-IVi-h(1-IV7B)(i'itk){i"h). Thus, as  in the case  of  the matrix  model,

nontrivial  double scaling  limit N--, oo,  A71B-1-,  keeping N(1-- ArlB)i'iih fixed, exists.

The 
"renormalized"

 cosmological  constant  t can  be defined by  1-IVIB=lt  with  N
--ILi-itk

 in the limit l->O. The genus=O  free energy  therefore behaves  as

     F(O).ti+Uh, 
'(3･8)

in contrast  with  the behavior F(e)oc t2"i/k in the one-matrix  model.

   The  saddle  point analysis  can  be easily  extended  to multi-vector  models.  In

particular, at  least fer translationally  invariant systems,  the saddle  point equations

always  take  the  same  form  as  that of  the one-vector  model:

     N
       :==2wV'(w)+gw2･  , (3'9)
      B

with  g==ZBgAB.  This indicates a universal  nature  of  the critical  behaviors of  the

one-vector  model.

   If we  generalize  the rnodel  such  that the number  of  the  components  of  different

vectors  are  independently varied,  then  the target space  carinot  be translation  invar-

iant and  the model  can  describe spins  coupled  with  external  fields, as  mentioned  in
Ref. 2) and  studied  recently  in ReL  10).

3.2. IVbntertuthative analysis

   The  above  structure  can  be demonstrated much  more  elegantly  by developing an
exact  recursion-equation  approach  to the vector  models.  It is an  analog  of  the

orthogonal  polynomial method  in the matrix  niodels. The  partition function  (3-1)
can  be rewritten  as  a single  integral,

     Z}"==.(codux"-iexp(-B(tx2+tAx4)].  (3･10)

From  the identity (equation of  
"motion"),
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     o==Ica£ [x"exp{-3(tx2+tAx`))], (3'11)

we  obtain  a recursion  equation,

     
-IBVth-zA,.,-Az,,.,==o.

 (3･12)

In this equation,  we  analytically  continue  A>O  to A== -1!4.'}  Then,  by redefining  ZN
=2'"'2ZN,  (3･12) is reduced.to

     [1--NIE? 
-(1-A)2]

 2. ==:O,  , (3･13)

where  Z  is a step  translation operator  ztlZN=ZN+2.  In this form, we  can  take the

continuum  lirnit B-O directly by using  the scaling  variables  1-iVIB =2B-Pt,  provided

O<P<1.  Then  (3･13) reduces  to the form

     (2B-pt-B2(p-i)IIIII)z(t)=o, (2.=z(t)) (3･14)

which  Ieads to P=2!3  and  to the differential equation

     (2t- iil: )z(t) :-o.  (3.Is)

The perturbative behavior with  respect  to 111V of  the free energy  can  be easily

rederived  from  this equation.  Define v(t)==(ccrdt)logZ(t).  Equation (3･15) then  is

equivalent  to a  Riccati-type equation,

     2t-(v'+v2)=o,  (3･16)
from which  the following asymptotic  expansion  with  respect  to tu3i2 can  be derived."")

     logZ(t)=::2get3'2-{I-logt+2iste3'2+-8it7tw3+"'. 

'

 (3'17)

   The derivation of  the differential equations,  at  the higher critical  points is com-

pletely in parallel with  the  above.  The  result  is P==fe1(fe+1), and

     (2t- iZI; )Z(t)-O, (3･18)

     (S; +v)k･i=2t.  (3･ig)

   Extension of  the  above  analyses  to multi-vector  models  of  our  type  is straight-

forward. Instead of  a  single  partition function of  the one-vector  case,  we  have  to

consider  a  set  of  correlation  functions. Let us  regard  the set of  the correlation

 
*)

 This  in turn requires  to deform the  integration contour  in the  integral (3.10).
**)  After the conference,I  was  informed  that a  similar  Riccati-type equation  has been used  in order  to

   investigate the large-order behavior of the 11N-expansion of vecter  rnodels  by Hikami  aFd  Brezin.i6> I

   would  like to thank  S. Hikami  for bringing this work  to my  attention.
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functions as  an  element  of  a vector  space,  and  express  it by eJ]v. Then the exact

recursion  equation  can  always  be expressed  as  a  linear condition  of  the following

generic form,

              N

     
v4(A)  gp}, 

--?i-

 gpx, (3-2o)

where  u4(Z)  is a matrix  operator  and  depends on  n  polynomially.  - The critical  points

arise  when  one  (or more)  eigenvalue  bf the matrix  J4(A) behaves as  (1-A)k as  A.1.
This shows  that at  least when  the dimension of  the vector  space  of  er is finite, the

critical  behaviors of  multi-vector  models  are  classified  by the same  universality

classes  of  the one-vector  model,  independently of  the structure  of  the target spaces.

   Here, as  such  a  simplest  example,  we  demonstrate the case  of  two-vector  model

(namely, an  Ising model  on  the random  filaments) with  a quartic  potential of  coupling

constant  A and  the hopping  coupling  constant  gAB=-tt.  The  vector  {if can  be chosen

to be

      Lp}vr=2-"(7A.r'ivl), (3 2i)

and  the matrix  operator  v4  is given  by

         l4(A+pt)A 4Z  ON

     u4-t  1 4ptA ZJ.  (3･22)
         N 4zl 16Azd2 4ptA/

Three  eigenvalues  are  2v'Z-(2(A+pa)VZN+1), 2J2i-(2(a+pa)VZiT-1) and  
-4Z(Z-pt),

 the

first of  which  leads to the le=2 critical  behavior when  A+  pt=  -114,  and  the remaining
two  ¢ ases  to the trivial critical  behavior k==1 when  A+st=3!4 and  A-pt==-114,
respectively.

g4. Non-perturbative  properties of  the solutions

   Now,  let us  discuss several  non-perturbative  properties  of  the  solutions  described
by  the differential equations  (3･18) (or (3･19)). The  infinite number  of  t]he critical

points can  be treated at  once  by J'ntroducing a  
"universal

 filament equation"  which

interpolates all the different critical  points,

     (t-,zO=P,.Ldt`,)z(l)-=o. (4.o

The  new  infinite number  of  the parameters  xt  can  be  regarded  as  the coupling

constants  corresponding  to the scaling  operators,

     O,=rB(i-k>'(h'i)li'2ep2{:E[(1-u12)`-1]. (4'2)

The  k-th critical  point is described by setting  xh==1,  xi=:O  (l# k).
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4.1. Geneval solution

   Since (4･1) is,linear, it is easy  to write  down  the general solution  in integral

representatlon.

     Z(t) =  :i.lwi.JC, (is exp[ts  
-
 
,2on=,xis

 
`'i],

 (4･3)

where  Ci's are  integration contours  in the complex  s-plane  such  that the integral is
convergent,  and  wi's  are  arbitrary  constants.  wnen  xi==O  for l>fe (xk>O), there are

k independent countours.  The  
"effective

 action"  on  the exponential  in this eXpres-

sion  coincides,  in the scaling  limits, with  the effective  action  for the IXZV-expansion
around  the.saddle  point in the original  vector  models.

   The  first general  property  of  the solution  is that Z(t) is always  an  entire  function

in the cornplex  t-plane, and  hence only  possible singularities  with  respect  to t of  the
spedific  heat v'(t)=(d2!dtZ)logZ(t)  are  double poles at  the zeroes  of  Z(t). Secondly,

for k==even, the contour  which  coincides  with  the real  axis  is not  allowed.  Thus,

every  independent solution  in (4,3) with  even  le is complex  and  has infinite oscillation

for large negative  t. For example,  for k=2, the asymptotic  behavior is ltl-it`exp
{-i((213)lti3'2+n14)}. As a consequence,  in particular, every  real  solution  has an
infinite number  of  zeroes  on  the real  axis.  All solutions  without  such  singularities･  are

complex.  These behaviors are  caused  by the instabilities of  the critical  potential for
even  fe. On  the other  hand, when  k==odd, the real  axis  is always  an  allowed  contour.

The  corresponding  solution  does not  have  zero  for real  t corresponding  to the stable

critical  potential.

   In terms of  the perturbative expansion,  the difference of  even  and  odd  k can  be
rephrased  as  the Bo.rel non-summability  (even k) and  summability  (odd k), respective-
ly. The  Borel-transformed amplitudes  in the forrner cas.es, contain  branch-point,
singularities  on  the finite positive real  axis.  Most of  thesebehaviors are  strikingly  in

parallel to those  in' the c<1  matrix  models.

4.2. ii7ow and  Vivasoro stndcimre

   From  the point of  view  of  finding possible new  directions tow'ards the formulation
of  the non-pertutbative  string  theory, it is of  some  interest to seek  for general
mathematical  framework  in which  the universal  behaviors of  various  models  can  be
unifiedly  described. I would  like to make  two  cornments  related,  possibly, to this

question. The first is that a  Virasoro-algebra structure  is naturally  contained  in
Eq. (4･1).
   The  change  of  the partition function (4 ･1)  under  the flow of  the coupling  constants

xi  is described by

      OZ  Oi+i
     ax, 

J=`
 oti+iZ･ (4･4)

This allows  us  to rewrite  a single  ordinary  differential equation  (4･1) into an  infinite

number  of  partial differential equations  LnZ(t;  {xi})=O (n2 -1)  with

     Ln=an,o-xoan,-i-(n+1) oxO.n, +,2co=,(l+1)xi ax9.., (xo='t) (4'5)

NII-Electronic  
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satisfying  the  Virasoro algebra  [Ln, Lm]==(n-m)Ln+m.
   The  origin  of  the Virasoro condition  is the analyticity  at  s==O  of  the effective
action  in the integral representation  (4･1) with  respect  to the complex  vatiable's,

whose  iorm  is invariant under  the conformal  transforrnation  s-s+  E}:s"'i.  A  similar

$tructure  has been pointed  out  in matrix  models.i')  It should  also  be interesting to

remark  that the partition function is a  coherent  state  of  the Virasoro algebra,

expressed  as

     Z(t)=2wiY:,cls exp(sL-i)-1.  (4･6)

4.3. Connection with  the KP  hierartrlty

   The next  point is that the system  of  the filament equations  can  be neatly  embed-

ded  in the well-known  KP  hierarchy of  integrable non-iinear  differential equations.

In essence,  the KP  hierarchy is summarized  by the following infinite number  of

differential equations,  oiten  called  the Sato equation,

      on
      a..="(KD"K-i)-K,  (n>1,D=:aydt) (4'7)

where  .K  is a  Pseudo-differential operator  of  the  form K==1+k-i(t, x)D-i+k-z(t,
x.)Dr2+･･･,  and  the  notation  (.)- indicates the negative  power  part  of  a  general

pseudo-differential operator.  For example,  the famous KdV  equation  is obtained
from the Sato equation  by imposing a condition  (KD2Kmi)-==O.
   The  universal  filarnent equation  (4 ･1)  can  be  expressed  in t]he form,

        co

     1+2ke,(KDi-iK-i)h,=O,  (4･8)
         t

under  the condition,

     (KD)--O. (4･9)

The T function T(t, n) of  the KP  hierarchy which  can  be, in the present  situation,

defined by h-i=-Dlogr, is identified with  the partition function Z(t). The  flow

equation  (4･4) is then reduced  to the  Sato equation.  (For more  details, refer  to

Ref. 3).)

   It is now  well  known  that  the mathematical  structure  of  the matrix  models

corresponding  to (P, q)-minimal  conformal  models  can  be most  ethciently  described by

the KP  hierarchy with  a  reduction  condition  (KD9KHi)-=O. See, for example,  Refs.
12), 13) and  11). The above  observation  implies that the matrix  models  and  our

vector  models  can  be interpr6ted as  different elements  of  one  and  the same  Universal

Grassmann Manifold, which  is the solution  space  of  the general  KP  hierarchy.

          , g5. Continuum  target space

   In the case  of  continuum  target space,  the eigenvalue  spectrum  of  the matrix

operator  ue  can  accumulate  at  1 in the Iimit d-1.  Therefore, the analysis  becomes
more  complicated.  In this case,  it is more  convenient  to directly derive the integral
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representation  from  the original  path  integral for the partition function, although  this
method  is less rigorous  than  the recursion  equation  approach.

   Let us  consider  the model  of  the  following type,

     Zbi=f4[d"O(t)]exp[-3(f  2d.D)i,, v(o2(t))

         +-[l-f(2d.D)t.i,, 
./:(2d.D)t.2,,

 o2( t,)¢
2(
 t2)eniti-tz]2'2)] (s･1)

with  D  dimensional flat target space  whose  coordinates  are  t" (pt=1, 2, ･･･, D). This

model  corresponds  to assuming  that the action  of  the embedded  filaments is propor-
tional to fdr(Ot"/OT)2+cosmological term, which  is the natural  1 dimensional approxi-

mation  of  the Polyakov  action.  For  example,  let us  first 6ortsider the simplest

nontrivial  case  where  the potential is V( ¢
2)==(112)

¢
2.
 Then, performing  the expan-

sion  with  respect  to A, we  find the system  of  random  filaments as  defined in E 3. The

expansion  takes  the form,

     (lv6"(o))i-h("( 
'11VISiS(O)

 )b('}fn (2dnD)i. rl enit'Tt']2'2. (s･2)

'The
 singular  factor SD(O) is originated  from  the 6-function factor 6P(t) in the propa-

gator, since  the free terrn in the present Feynman  graph  expansion  is ultra  local,
¢

2(t)!2.
 HoWever,  thisi is harmless because it appears  only  in the  combination

AJkSD(O). The  double scaling  limit can  be defined as  in the discrete case,  provided  that
N  i-s replaced  by  IVkSD(O).

   The critigal  behavior can  be studied  first in the sphere  approximation,  which

corresponds  to the saddle  point approximation  with  respect  to the integral over  the

invariant length x(t)=Vlbi((ZJ).  The  saddle  point equation  is

     
IVISii(O)

 
r2

 vt(x(t))x2(t)-Ax2(t)f(2drrD)t6,, x2(t,)eai2)itimti2 [=  o . (s･3)

The first singular  term is the contribution  of the ifitegration measure.  The transla-

tion invariant solution  x(t)=x  becomes critical  such  that

        IVLSD(O)-(h-x2)k 
,

     1-  B-  kh,  (5･4)

when  the  pptential V(x2(t)) is adjusted  so  that the right-hand  side  of  the (5･4) is equal
to 1-2  V'(x2)x2-Ax`. Then, the critical  points  are  classified  in the  same  universality

classes  as  those for the discretized target space.  In particular, for'the present

gaussian  potential, this requires  A=-114,  leading to the  fe=2 critical  point.

   The  higher order  terms  are  generated  by making  the expansion  around  the saddle

point solution  by  setting  x(t)=x+  x-(t). We  then  arrive  at  the  following integral for

the critical  region  1-(IVDD(O))IB --O,

     ZN ly  frr [dx""(t)]exp[-f(2d.D)i. g (1 m  1va2(O) )3'2

NII-Electronic  
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-f,,d.D,S,,

 (g( %"7 )2. B(ih 
iVa2(O)

 )it2,,)
         

-f(2d.D)i,2
 
3(ll,g(xer3+o(x-'4))

         +higher order  terms in i-  
A]kS2(O)].

 (s.s)

Here, the kinetic term (OxNIOt)2 in the second  term in the effective  actiQn  is obtained
from  the nonlocal  interaction term  of  the original  action  by making  a Taylor  expan-

sion:

     4ABt2 x f(2d.D)tB,, 
./:(2d.D)t.2,,

 e-("2'i'i-tsi2 x- ( ti) x-" ( t2')

       
--
 
-BJ:(2dn")2,,

 (xN2(t)-X 
6oX;

 )2+higher derivative terms) . (s･6)

The higher derivative terms can  be neglected  by the scaling  argument,  which  we  will

explain  soon.

   Now  to obtain  a nontrivial  finite result  in the critical  limit 1-(ATISD(O)) 11e -O,  B-  O,

we  scale  the variables.  as

     1- 
IV6X(O)

 =(..)4,  
･
 , (s･7)

     t.aAit,  (5'8)

     xAv(t)t.a2xA-(t), ･ (5'9)

     B=(apt)D-6, (5'10)

where  m  and  pt are  free rnass  parameters which  have  the dimension of  mass  in the

target space.  The  one-dimensienal  lattice and  cosmological  constants  are  a4  and  m`,

respectively.  The  effective  action  then  reduces  to a  finite form  in the continuum  limit

a-･O.*)

     s.,,= LtD-61:(2drrD)S,, [-il-( 
Oo;t

 )2- 3tz} 
blg+ eli m4hi],  (s･n)

where  we  have  made  a field translation  xN -, hi +constant  after  the scaling,  such  that

the constant  term, namely,  t]he first term  on  the 
'exponential

 in (5.5) of  the action

disappears from  the action.  The  effective  a,ction  reduces  to the one  for the discret-
ized target space  if the field is assumed  to be constant.

   Neglecting the higher derivative terrns in the kinetic term  and  the higher power
terms  than  3 (and the terms  containing  derivatives) in the  potential are  justified by  the

appearance  of  the positive powers  with  respect  to a  in the scaling  limit. This

explicitly  shows  that the exact  form of  the nonlocal  interaction term  in (5･1) is not
important in the scaling  limit, as  long as'the  kernel o,f the potential decreases fast

 
*)

 Here  the continuum  limit is in the  sense  of  the  discretized filament. Note, however,  that we  have

   introduced the cutoff  parameter  a  such  that it has'the dimension  of  length in the external  target space.
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enough  such  that the integrals of  the higher Taylor-expansion terms are  finite. The
form  of  the  effective  action  (5･11) is therefore  universal.  Similar results  have been

obtainedZ`)'i5)  for different vector  models,  i.e., linear o-rnodels  with  the kinetic term  of

the iorm  ¢ A･diB.

   Viewed as  a  local field theory, the action  (5･11) is superrenormalizable  for D<6.
This condition  coincides  with  that  for the possibility of  the double scaling  limit BL> co,
a-O,  as  follows from  (5･10). The  superrenormalizability  assures  that the  system  can

be rendered  to be completely  finite by a redefinition  of  a  few coupling  constants  in the

potential.

   On the other  hand, the  relation  (5･7) suggests  that the fractal dimension of  the

random  filaments at  this critical  point is 4. The  argument  goes  as  follows: If we
rescale  the mass  parameters (m, pt) by  factor two, m-,2m,  ".2pt,  the relation  (5･7)
indicates that the average  length of  the random  filaments decreases by factor 2-4,

while  in the  target  space  this rescaling  means  that the correlation  length will  decrease
by factor 2'i. Then, by definition, Hausdorff dim.==log2`!log2==4.

   The  higher critical  points  can  also  be reached  similarly  by introducing the higher
order  terms  in the potential. In general, we  find the effective  action  of  the  iorm  in the

scaling  limit,

S.,, -.  ptD-(2(k+O)/(k-1)J:(2drrD)lt2 [-liH( 
OoX;

 )2+ x4rk'1+m2kl(k-1)  xw] . (k=2, 3, 4, ...)

                                                           (5･12)

Again, this action  is superrenormalizable  when  D<2(k+1)1(k-1)  which  coincides

with  the condition  for the possibility of  the double scaling  limit, since  B
=(a")D-2(h'i)i{k-i).  The  corresponding  fractal dimesion  is 2k!(k-1), since

1-(IV6D(O)L8)==(ma)2k'(k-i). Thus  the fractal dimension decreases as  we  go  to higher

critical  points.. In particular, it reduces  to the value,  2, of  the ordinary  random  walk

in the limit k-oo.") '

   The same  remarks,  as  in the case  of  discrete target space,  apply  for the

differences of  non-perturbative  behaviors between the odd  and  even  criticalities.  We
note  that  the effective  actions  for general k in the centinuum  target space  reduce  to

those  in the discrete target space  when  only  the  constant  mode  of  the  field x"" is

retained.

g6. Conelusien

   There are  of  course  many  new  questions  arising  from our  study.  In the Introduc-
tion, we  have explained  a  motivation  for studying  the vector  models  that it might

provide some  suggestions  about  the nature  of  the  random  surfaces  with  higher target

space  dimensions. However,  we  de net  yet  have any  concrete  connections  of  the

present  models  to random  surface  models,  although  we  have  found  many  interesting

parallelisms  in the properties  of  the solutions  in the scaling  limit. In the following,

we  mention  a  few speculative  remarks  which  seem  to be worth  for future study.

 
*)

 The  same  observation  has been made  in Ref, 4) by a  different method.
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LAt  the  trivial critical  point k==1, the susceptibility  exponent  7'o equals  zero,

which  coincides  with'  the value  ef  the c=1  matrix  model  apart  from  the

logarithmic eorrection.  As is well  known, the universal  critical  properties  of

the c=1  medel  is derived from studying  the upside-down  harmonic  potential.
It is tempting  to speculate  a  possibility, due to this property, that the c=1

matrix  model  can  somehow  be regarded  as  a  special  vector  model  with  N2

components.

2.

3.

As was  shown  in g 5, the vector  models  in the scaling  limit are  equivalent  with

superrenormalizable  local field theories, and  hence the  dimensions of  tzhe target

space  are  restricted,  depending upon  the criticalities, such  that the highest

possible dimension is less than  6 for nontrivial  criticalities. Is there anything
corresponding  to this property in the case  of  matrix  models?

Different vector  models  such  as  studied  in Refs. 5) and  6) give  identical results
'as

 thQse  of  the present rnodels,  which  are  very  natural  as  a  model  for random

filaments but in fact are  rather  unconventional  as  vector  models,  in the double
scaling  lirnit. It is desirable to understand  this universality  in a more  rigorous
                                                 ,
way.  Fdr that purpose,  it may  be useful  to further study  the properties  of  our

matrix  recursion  equations  (3･20) for the case  of  infinite dimensional vector
space  of  ZP'.

4.In  Refs. 12) and  13), we  have  formulated a  very  simple  action  principle from
which  the whole  structure  of  the c<1  matrix  models  can  be derived, in terms

of  the framework  of  the  KP  hierarchy. It will  be helpful for studying  the

general iramework for the theory of  random  surfaces  with  higher dimensional

target space,  if one  can  extend  the action  principle such  that it encompasses  the

vector  model.
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