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Theory of heavy electron is reviewed on the basis of the Fermi liquid theory. The
importance of the orbital degeneracy in realizing the heavy electrons is stressed by using the
scaling theory on the Kondo temperature. With use of the periodic Anderson Hamiltonian,
the expressions for the physical quantities, such as electronic specific heat, magnetic suscepti-
bility, conductivity, relaxation time of nuclear spin and anomalous Hall coefficient are
derived. These results explain the essential properties of heavy electrons. For further
development the extension to the orbital degenerate case is essential and discussed mainly on
the specific heat and the susceptibility. At the end the relation between the Fermi liquid state
and spin fluctuation is discussed with use of the orthogonality theorem.

§1. Introduction

In this paper we discuss the normal state properties of the heavy fermion systems.
At the beginning we discuss the reason why the heavy electron system is realized at
low temperatures.” In usual rare earth metals the magnetic long range order, such
as helical structure, appears at a temperature around 50 K~300 K. The magnetic
long range order is due to the RKKY (Ruderman-Kittel-Kasuya-Yosida) interaction,
JrxxvS:+S;, which is proportional to S? S being the magnitude of localized spin. For
example, Gd metal with localized spin S=7/2 orders in the ferromagnetic state below
300 K. This RKKY interaction between Ce (Yb) ions with a single f-electron (hole)
is weak because of S;’=1/4 compared with S.=49/4 for Gd. If the magnetic
ordering temperature is scaled by S? from that of Gd, the critical temperature for Ce
(Yb) is given by 6 K. If we scale the paramagnetic Curie temperature by the de
Gennes factor (g;—1)%/(j+1), we obtain 3 K for that of Ce**. These values for the
magnetic ordering temperature of Ce system are reasonable compared with observed
ones. Moreover, if we take into account the Kondo effect, it lowers further the
ordering temperature estimated above.

In addition to the low ordering temperature due to small localized spins, the
Kondo temperature becomes high owing to the orbital degeneracy, even for the weak
coupling of the exchange interaction.?~* This is the important fact in realizing the
heavy electron in the Ce and Yb systems. We shall discuss it in the next section.
The other rare earth metals than Ce and Yb have the multiply occupied f-shell. For
the f-shell with plural electrons or holes, the Hund’s coupling is strong enough to
reduce the degree of freedom of angular momentum exchanged by the s-f exchange.
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This effect reduces remarkably the Kondo temperature. -

The heavy electrons are nothing but quasi-particles in the Fermi liquid. The
Fermi liquid state in the correlated system can be obtained continuously by starting
with the non-interacting state and increasing the mutual interactions. In the heavy
electron systems these heavy electrons themselves become superconducting states
and/or magnetically ordered states, as shown by the large jumps of the specific heat
at the transition. Therefore, in order to describe the physics in the heavy electron
systems, it is important to describe them in the Fermi liquid states at the first stage.

In this article we explain the analysis of heavy electron systems on the basis of
the Fermi liquid theory. We derive the Kondo temperature in the system with the
orbital degeneracy by using the scaling theory in § 2. In § 3, we derive the expres-
sions for the physical quantities in the case with the non-degenerate f-orbital. In §4,
the T*-term of resistivity due to the electron-electron scattering is discussed. In §5,
the extension to the case with f-orbitdl degeneracy is discussed. In § 6, the relaxation
time of nuclear spin and the Hall coefficient are given. It is shown in § 7 that the
Fermi liquid state behaves as the local singlet state and conserves the local spin by
accompanying the neighboring spin with transfer of the f-electron. In the last
section concluding remarks are given shortly.

§2. Scaling theory in the presence of crystal field

In this section, we consider the Kondo temperature by using the scalmg theory for
the Hamiltonian,”**

élf=k f”“_.mek(c;IMckM—I- ChmCrm)+ IZVI‘,EMaMT am+ %Emam Yam

— 2 ] CkMCk’M’aM’aM mZ"‘nzj;V AT Chm Crrm Ay Am
kk’

2 ZN (CkMCk'mClm CZM‘|" Ckka'MCZM dm) : . (2'1)

l

Here, capital M represents a higher level state in a cubic crystal field, and m stands
for a lower level state. The energy levels, Ex and Ex, are defined so as to satisfy the
condition,

2 ExtZEn=0. | (2-2)

Since we consider the case with one f-electron, we confine ourselves in the subspace,
Dautant+Zan an=1. ’ (2-3)
M m : .

The exchange interactions /o and /1 work in the subspace of lower and higher leveis,
respectively and J: is that between the two subspaces.
Following Poorman’s derivation by Anderson,” we obtain the scaling equations:

djo _ Jo? J2 )
D~ DFE—2 T2 DFEs—7" - @)
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dj: _ J1 J2 .
dD % DTEu—2 ¥ DVEn—2’ | (2-5)
dfz_ '.71_72 fofz ‘ .
dD ¥ Dt En—7 S DtEn—2" (2-6)

- where z is the total energy of the electron system with the impurity in the crystalline
field.

Here, we assume a cubic crystal field and define crystal potential Ep= ——ZA/ 3 for
I7 doublet and Eo=4/3 for I: quartet. Hereafter, we discuss two cases depending on
the sign of 4=FE¢— Ep.

Case 1. Eq—Ep=4>0. The doublet I7 is the ground state and z=—24/ 3
dfo_2Jd | 4T

D TDta ' | | | 2-7)
df1_ 4f12 2]~22, : ' ' .
i DYAT D | 2-8)
dfs _4J1Js , 2J0]2 .
iD= D+a D | (2-9)

If we assume Jo=/i=J,=] and Jo= J1= J.= ], the above equations reduce to

dj _2J? , 4]°? —
db D TDid- , | (2+10)

The isotropic case is realized, when the localized f-level, &y, is low enough from the
Fermi level, Er, and satisfies U >|Er—es|>|4|, U being the intra-Coulomb repulsion
between f-electrons. The solution of (2-10) is given by

1 2N D D+4
—5 +—p—]——-210g~b—+4log( D0+A) (2-11)
Where Do and pJ/2N are given by an initial condition.
For the case with Do>4, J is given by
-1 ‘
J=2 of [ +J"’ log(D/Do)+-—2‘;\',f | 1og((D+A)/Do)] . | (2+12)

Since the Kondo temperature is defined as D giving rise to infinite coupling constant,
Tx is determined by the equation (ks=1),

1+ pL]' 7k.+.sz[ll Tx+4

N -logD N D =0, | (2-13)
(gl Die. (2:14)
If 7Tk 4, we obtain
2 2
Ti=(22) Doe“N“"”=<~DZ°—> Te, (2-15)
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where 7x° is the Kondo temperature for the case without higher quartet level I%.
Thus, we can see that higher states in a crystal field cannot be neglected as far as 4
L Dy, even if 4> Tx°. If we assume Do=10*K and 4=10% K, we obtain (Do/4)*=10*
as the prefactor of 7x® in (2+15). This result shows the importance of the higher
levels in determining the Kondo temperature.

Case 2. Eq—Ep=4<0. The quartet I3 is the ground state and 2= —|4|/3. For this
case the scaling equation is given by

dj _4J* 2] . ,
D D "D+l » , (2-16)

With use of the initial values Dy and vp]/ 2N,
D+|4| ijj

-1

J= 'Of[l—l-pjl\]fllgD_HAI |logD] (2-17)
The Kondo temperéture Tx giving J =co is determined as
Ti=(Do/(Tic+|41))"2Doexpl —N/20lJ]
~(Do/|41)"* Doexpl — N/20|J1] for Ti<l|4]. C(218)

The Kondo temperature takes a large value by the prefactor 2 of olJ| due to the
degeneracy of crystal level.
In the case with general crystal field splittings, 7x is given by

TK:(DO/AI)NI/NO(DO/Az)Nz/No,,,(DO/Am)Nm/A(oDOeXp[_ 2N _1__] o (2-19)
| olJ| No

where 4; and N; are the level splitting between ¢ and 0 levels and the degeneracy of
¢ level. =0 is the ground level. If we include up to the next divergent terms, we
obtain 7k by multiplying 7x in (2:19) by the factor /p|J|/N.

§ 3. Fermi liquid theory on the periodic Anderson Hamiltonian

) Heavy electrons realized at low temperatures have been investigated by several
approaches such as slave boson method, Gutzwiller approximation.” Among them
the Fermi liquid theory seems to be the most general approach to describe the
essential properties of heavy electrons: The other methods also describe the heavy
electrons as the correlated narrow band and give the expressions for the physical
quantities similar to those derived by the Fermi liquid theory. In the present paper,
we describe the Fermi liquid theory on the basis of the periodic Anderson
Hamiltonian.” Here we discuss for simplicity the periodic Anderson Hamiltonian
without orbital degeneracy. The orbital degeneracy is important to discuss the real
heavy electron systems and is taken into account in § 5.

ﬂ=ﬂ0+ﬂ,, i ) (3'1)

ﬂ[o:gf&kciacka‘l'EEkaluaka'l—?_.;( Viealocre+ Vk*Ciﬁaakiy)“l"z]\/—<1’tof>2 , (3-2)
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H = '%aiﬂn a};r_w Ar ARy . (33)
R,k ,q

Creation operator als(cis) is that for f-electron (conduction electron) with energy Ex
(er) and spin 0. Heavy f-electrons in the same atom interact with each other via
- Coulomb repulsion U. The f and conduction éelectrons hybridize through matrix
element Vi Our results derived in the following can be applied also to the transition
and actinide metals as well as rare earth metals, since our Hamiltonian includes the
dispersion of f-electrons. _
The self-energy part of the f-electron due to the Coulomb repulsion, Xx(z), is
introduced to describe the Fermi liquid theory in the general picture. With use of the
self-energy, the Green’s function of f-electron and conduction electron are given by

(zI1-H)G=1, ‘ (3-4)
where

(zi—ﬁ)-:(z_lik;f*k(Z) ;—ZI;) , (3-5)

A Gho(z) Gi5(2) .

G‘(szd(z) Gia(g))' (3-6)

The matrix 1 represents the two-dimensional unit matrix. The diagonal parts of
- Green’s functions, Gfs and Gfs are written, respectively, as

Gto(2)=[2—Ers—2re(2)—| Vil /(z—ero)] T, (3:7)

Gio(2)=[z—ero—| Vil*/(z— Eno—Zrs(2))]" . | - (3+8)
The energy eigenvalue z=FE}%s is given by the pole of G and determined by the
equation, |

(2= Ero—Sro(2))(z—era) = | Vilf=0. o (3:9)

Following Luttinger, we obtain the 7 -linear term of the specific heat, (w+=w+i8)

— 7(2/?32
67t

{2 fin(w.+ 4= Ex— 2 w)~ | Vil (0:+ u-e) e}

o

__271'2sz _1_ LS R 2 . -1
———73)—‘—%* ﬂ_Im(,U'I-Zé\ Er—220)—|Vil?/(u+i0—ew)

[ 854() | | Va2
X<1 ow Iw=0+(/~"’"€k)2>

:—“‘27{;]632 {;Pf(@(l-ﬁz%(w) w=0>+§pkc(0)} y (3-10)

where density of states for f-electron p»”(w) and that for conduction electron ox°(w)
are defined, respectively, as
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pkf(a))# —%Im[,u%— w+—Er—2 " (w)—]| Vklz/'(#“" wr—er)]™, (3-11)

or’(w)= —-%im[p—l— wr—er—|Vil/(w++p—Er—2:"(0))] ™. (3-12)
The coefficient of 7'-linear term can be written by the density of states of quasiparti-
cles as ‘ '

27 2 .
y= ”f‘} > 0(n—E%o) . (3-13)
k0 . .

Here, we introduce the wave-function renormalization factors, zx” and z:°, which are
given by the residues of G+ and G:° at w=0,

Zkf:(l‘ azi(uw,) i* (JQ)) ’ (3:14)
eVl - 03 u(w) | |V A2 ;
= (,U—é‘k)z/(l - dw |w=o+ (,u—sk)2>' , . (3-15)
We put
7r=1— 032 (@) /00)w=0 , . - (316)

1
D'fzk(w)
0.2

0.1

-0 A 3
0 2k kT

Fig. 1. k-dependence of the f-electron self-energy X»*(w) with w as a parameter. The arrow shows
the Fermi wavevector obtained under the condition that the f-electron number per site is unity.
For conduction electrons .= —cosk is assumed:
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Fig. 2. The mass enhancement factor divided by U? aé a function of hybridization V.
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Fig. 3. The mass enhancement factor divided by U? as a function of f-electron number ;.

- and obtain the relation »
Yrzr +z°=1. (3-17)
From (3-13), we derive Eq. (3-10),

_ ks = ¢\, *
7=""3 g(?’de‘Iid+de)a(ﬂ“‘Eko‘)

7Z’2k132 ~ F ¢ |
=3 ;:T[ 7 ropka(0)+ 055(0)] . . (3-18)

This expression means that v is given by the sum of p%s and o%s enhanced by the
factor of .. The large enhancement of y in heavy electron systems originates from
the first term of (3:18), because this term is enhanced by 7. due to the electron
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interaction between f-electrons.

The U?term of 7 has been calculated by Zlatic et al. and Okada et al. for the
one-dimensional case.”'® In Figs. 1~3, we show the numerical results for the
electron mass, namely —02/0w|w-o. These results show that the heavy electron is
realized in the cases with a large density of states for f-electron at the Fermi energy.
Okada et al. confirmed that the U?-term of 7 is well scaled by the square of the bare
f-electron density at Fermi energy, 0”(0)%. This is because the coupling constant is
given by o”(0) U and the second order term is proportional to [0”(0)]>. For the cases
when the total number of f-electrons per site approaches to unity a large electron
mass is obtained. In the nearly half-filled case of f-electrons the Coulomb repulsion
among f-electrons reduces strongly the hybridization and the transfer term and
realizes the extremely heavy electrons. The similar calculation for the d-p model for
high 7: superconducting oxides has been done by Kanki.'? For this case the mass
enhancement is weak owing to a large band width of bare d-electrons.

From the above ‘discussion, we can expect 7 in the heavy electron system is
much larger than unity, 7.>1. For this case we can derive the eigenvalue equation

as follows.
At first, we expand Yrs(w+) as
2rol@4) =2 1s(0)+ 02 rol @) J0w|w=0w — ids ‘ (3-19)
where

dp=—ImXrs(w) . (3-20)
By substituting (3+19) into (3+9), we obtain |

Ek* :—5];"’: (Ekd‘|‘2kd(0)—|'l Vk|2/(,u" Ska))

4 =Ek+|vk|2/(/¢—€kc), » - (3-21)
Ev=(Eno+Zrs(0))/7, | | | (3-22)
| VelP=| Vil /7. (3-23)

Thus, (3-21) shows that the energy of E.* is renormalized by #:™* and constructs a
very narrow band. Inversely, this narrow band gives the large density of states of

~ quasi-particles at the Fermi energy. This may be the simplest explanation of heavy
electrons.

At this point we have to explain the reason why the heavy electron systems with
nearly half-filled f-electrons can stay still in the metallic state even for the large value
of U. The reason can be explained by the existence of conduction band, with which
f-electrons hybridize and can be delocalized through the conduction bands, as far as
the hybridization remains a finite value in spite of the strong reduction.

Now we discuss the magnetic susceptibility. Here we assume that the g-values
for f- and conduction electrons are given by ¢” and ¢°, respectively. In this case Ers
and ers are given by :

Ew=Er—H/, (3-24)
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ero=cr—Hs, . (3-25)
HY =3g’omH , | (3-26)
ch*:%gcduBH , (3'27)

us being the Bohr magneton. If ¢+ g°, the magnetic moment, M =(1/2)g"us(n,” — n,”)
+(1/2)g° (4 °— n, ), does not commute with the Hamiltonian and does not conserve.
For this case we discuss in § 5. Here, for simplicity, we assume ¢"=g¢°=2 and Hs
=Hs;=Hs. Total electron number N. and magnetization M are given by

Ne=kZ‘d(9(;z~Ei‘a) , (3-28)
M:ﬂBgde(#—Ezo‘), (3-29)

where E%s is an eigenvalue of the quasi-particle in the presence of the magnetic field
and is defined well near the Fermi energy. From (3-29), the spin susceptibility is
given by

x3=113£%u3§65(ﬂ— E%s)(— 0E%s/0H |1=0)

=213368(pu— E*)(— 9B o /0H |ir=0) . - (3-30)
By using the eigenvalue equation (3-9), we obtain

aE;';dz[l_ 92 () +(EIVkIZ }_1(—ugo)[fs(k)+—lyj|i—], (3-"31)

“OH dw ¥ — )’ (Ex*—es)

where
Ts(kR)=711(R)+%,.(R), | (3-32)
72 (B)=1— 0% 45(0) [0H s|115=0 , . (3-33)
Zri(B)=0%15(0)/0H 5|5 40 . _ | (3-34)

Thus, the spin susceptibility is given by

xs=2ﬂsz{§.okf (0) 7s(k)+ 0°(0)}, (3-35)
where 0,7(0) and 0°(0)=21:02°(0) are given by (3-11) and (3-12), respectively. The
susceptibility xs is enhanced by ¥s due to the electron interaction between f-electrons.

Now, we define the four-point vertex Iy (ki, ks, ks, k) and discuss the relation
between 7(%) and ¥s(k) by using Ward’s identities.” The results are the following,

7(k)= ;zﬂ(k)+§pkrf(o)rdd(k, k;E,B), ' (3-36)
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Ers(R)=Sow’ (O)-oll, k' K ). o . (3-37)

For simplicity we define

=30 (0)7(k), | - (3-38)
Xﬁ?zgpkf(o)fﬁ(k) ) (3‘39)

x5 =%!pkf(o))?f¢(k)=k2k,pkf(0)FN(k, Bk, k)0 (0), (3-40)

67+= 2 0w () ook, s ', k)0’ (0) . (3-41)

With use of these quantities, we obtain the following expressions, -

212 .

=T (S (0)+27), (3-42)
rT=x5 60, | (3-43)
ze=2u 2 +0°(0)], (3-44)

1 =k = 2h =20 O Zr+ (B) = Z1.(B)), (3-45)

where x/ is the charge susceptibility of f-electron and

xe=0°(0)+x . (3-46)

§4. Resistivity

- The T?*term of resistivity in the heavy electron system is very large and its
coefficient is nearly proportional to y.. Now we derive the exact coefficient of the
T2-term in the heavy electron system on the basis of the Kubo formula. Current
operator J in our system is given by

J= eg;_(kaa;;o‘ak0‘+ veclocro)+ eE(Vk Vieatocre+ Ve Vi*cloars) , (4-1)

where
| ka:Vkek, . (4'2)
vi'=FVi1E:. ‘ _ (4-3)

In Ref. 7), J in (4-1) is used to derive the conductivity. Here, we derive the conduc-
tivity with use of the physical quantities expressed by quasi-particles. At finite
temperatures, the eigenvalue of the quasi-particle, z=E*—i["x*(I"+*>0), is deter-
mined by
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(Z—‘Ek)(Z“‘EkO_ZkR(Z))"“IVk'zzd. (4+4)

We confine ourselves to the low temperatures and substitute into (4:4) the expansion
form of the self-energy part,

5 58(2) =5 4%(0)+ 65 5% (2) /02| m0+ 2 — il (4+5)

we obtain the eigenvalue for I':.*<4,<|Ex*| as

Ez% (Exnt| Vil (Ex*—en)),

E.=EL+3:50), (4-6)
[p*= 4 =z Ax | (4-7)
e VP (B —en) ’

where z," =z (Ex*) given by (3:14). The velocity of the quasi-particle is derived
from the eigenvalue equation as -

V=V Er* =204 +22° 7)kc+2k /1 Vk| Vk[z ‘ (4'8)
where ,
rEr=V o(E’+21(0)). ‘ ; _ (4-9)
At T=0 and external frequency w=0, the vertex correction Ax’ is given by
P s | Vel ey 0| Vw/ok }
ho(0)= 2 me r""(k KG (@) [vk + (@ +p—en) 0¥ + (' +p—ew) |’
(4-10)
where _
ook, B)=TsskE; B'R) . | (4-11)

On the 'other hand, the momentum derivative of the f-electron self-energy is given by

P 1Z50(0)= 3 [0 T, B)lim-e G o) Gi? ()]

— ’ f 2 . 7 | VelPve® o Vil?/ok ]
kzo]" 27rz Fw(k RLG ()] [vk +( '+ﬂ—€k')2+ (0 +p—ew)
, -“k%,[’o'o'/(k, k')Zka(ﬂ—Ek'*)Uk'* ’ (4'12)

where vx* is the velocity of the quasi-particle given by (4:8). The last term of (4:12)
is the backflow term and is absent in the expression of o(w) for the finite temperatures
with w<I'k*. The real velocity J giving the conductivity is given by

Jk:Zkf<ka+Ako(O)'|‘ #_lek v Vk'2)+zkcvkc
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1
U—En

=Zkf<ka+ V2 (0)+ V& Vk|2>+2kcvkc

‘l‘Zkf;Fo‘d'(k, k’)Zk’fg(/l_Ek'*)Uk'*-

= 0"+ 3 for (b, B)O(u—Ex*)vs*. (4+13)

The interaction between quasi-particles is given by \
Foor (B, k/):ZkfFo‘o"(kk,; Ek)zy . i (4-14)

In Ref. 7), the expression of the conductivity at low temperatures is derived by
applying Eliashberg’s theory to our case.” The result is

| ; ech (Ex*/2T)
ol w) =\ 2w

' 1 —C21T h™*(Ex*/2T) Tw(k, k'; ©)
> 5 ST, .
HFE - A N R T o) (TEw Y v R (4-15)

The reciprocal life-time of quasiparticle, I'+*, is given by (4:7). The imaginary part
of the self-energy, —ids, is given at low temperatures as”

dp=—Im2 " (¢)

| (S T2 S oh-o0)ow’ (D0k+l0)
AT%uk b K40, k=T ST K K g k—0)}.  (4:16)

The term with 73 is important in order to recover the momentum conservation.
This correction is related to the imaginary part of the self-energy and essential to
obtain the correct result in the thermodynamic limit, w—0. The backflow-term .
conserving the total current at 7 =0 is replaced by the Ti-term at finite temperatures.
By treating this vertex correction in a consistent way with the self-energy correction,
we can show that the resistivity due to the electron interaction vanishes in a free
electron'system without any crystal potential. We show the diagrams for the general

0 < g a 4 0 €orn?
%, % 1%
, . w w
ay Ao agA VYo L g Ao @
7 278D v
ag B>// ag CI’, // a.' g > %U'
1al (b1 (C]

Fig. 4. Three types of vertex corrections giving rise to the 7T%term.
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vertex corrections giving rise to the 7*term in Fig. 4. The three-point vertex part

Ar(e) is determined by the equation,
Ap(e)=Tr+ A () + A" () + A1 (e)
Ak—q(s)

=Jp+ kZAo(k, k; k' +q, k—q){
q

where

Ak, k' B+ q, B— q)=10%-4(0) 0%+4(0) 027 (0)

Awig(e)  Ax(—e) }
ZAk—q(E) 2Ak'+q(€) def(—s) ’

4-17)

x| %0k, B B+ a, k= @)+ Tk, B B+ @, k=) [(xT)+ €], (4-18)

The imaginary part of the self-energy, 4s, in (4+16) is given by

A= 2k, B K+ 0, k= ).
. k'q

We put here
Dr(e)=An(e)/241(e)=Du(—¢).

Then we obtain from (4-17) the equation

0=Jk+k2qdo(k, B E+q kb—q) @y ,+ Dyig— Dr— Dy .

The conductivity is given by |

0u(0)=e?3] ]k,,< —M> Aw

ax I=E1¢*2Fk*
— 2 _M> 1
—€ ‘?jk”< 0x  Ja=Ew 2K Dn

Here, if we assume

- Pr=kF ,

(4-19)
(4-20)

(4-21)

(4-22)

(4-23)

the second term of (4:21) vanishes because of the momentum conservation. To
satisfy the equality of (4-21), F tends to infinity. Thus o given by (4:22) tends to
infinity. Therefore, we have no resistivity due to the electron interaction in the free

electron systems.

On the other hand, in the periodic system there exist Umklapp processes in

f-electron scattering and (4:21) can be written as
Tv= 3ol k, B’ k+q, k—q)KF=0.
q . i

Here we have put

@k—q+ mk’+q_ Qk"—' ¢k= ‘—ZK;F ,‘

(4-24)

(4-25)
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where K; is a reciprocal lattice vector and we have assumed that 4, with a reciprocal
lattice vector in its argument can be replaced by the corresponding value in the
reduced zone. For this case ‘

k. _Jrk
de ;Ki‘k

D= and Jrxk (4-26)
and the conductivity is given by

2

O'/uy(O) 8228(,& Ek )]k,uZI-v Z(K k)]ku. ' (4‘27)

In this expression, Jr and I'x* are renormalized by 2" and density of states of
quasiparticles 0:*(0)=08(x«— E»*) is enhanced by 1/z+". As the result all factors due
to the renormalization cancel out with each other and the resistivity is proportional
to 4w, which is given by the T2 term with a strongly enhanced coefficient.

The factor 24 is glven by

245 '_v_§ (7[T)2k2q?z'p]1;—q(0)Pk’f(0)0£'+q(0)

x| T4k, b 40, =)+ Fﬁ%(k Kik+a, k—a). (4-28)

4.(k, B'; '+ q, k—q) is the antisymmetrized vertex for the electrons with parallel
spins and vanishes for g=0. If we neglect the momentum dependence in I'4,, I'4,=0.
Further, if the large Coulomb repulsion between f-electrons suppresses the charge
fluctuation of f-electrons or xJ =0, the following relations hold

Tio(B) =7 (R)=7(R). - | (4-29)

Here,
T (B)=Z0x’ O, (k, K B B) . (4-30)

Comparing (4-28) with (3:36) for ¥, we can see that the coefficient of 7%-term of the
resistivity, A, is proportional to 7* when the momentum dependence in s is weak.
Thus, A can be strongly enhanced as observed in experiments in Ce and U systems.

Here we stress that the large 7T 2-dependence of the resistivity at low temperatures
is an important common feature in heavy electrons. We think that the logarithmic
dependence on T at high temperatures is not indispensable for heavy fermion systems.
The large T3dependence of the resistivity means that the coherent heavy electron
band is broken .at a comparatively low temperature, because the 7%-dependence
reflects that of the reciprocal life-time of quasi-particles. If we define 7* (kz=1) as
the temperature equal to the inverse life-time of quasi-particle, we obtain

T*=Fk*=.2kfdk= 72T*pr(0) , (4'31)

-
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U S SR § , .
=570~ (4-32)

Thus, T* is the order of band width of heavy electrons. The rapid increase of the
resistivity ceases at the temperature around 7*. The behavior of the resistivity at
the temperatures higher than 7* cannot be confined to the logarithmic dependence,
because there exist various intersite couplings.

For the actinide system we need another explanation than the Kondo effect for
the reason why the heavy electron is realized. For example in the uranium system
there exist two or three f-electrons at each U atom. These f-electrons construct
narrow coherent bands at low temperatures. The actinide system can be described
on the basis of the periodic Anderson Hamiltonian with the orbital degeneracy. The
uranium system with two f-electrons has larger degree of freedoms than Ce (YD)
system with one f-electron (hole). The weak Hund’s coupling and orbital degeneracy
give rise to large entropy and large specific heat at low temperatures. Though the
5f-band in U systems is not so narrow as 4f-band in Ce systems, higher density of
f-electrons makes more effective the Coulomb repulsion among f-electrons, which is

- determined by coupling constant ¢”(0)U.

If the static pressure is applied, the heavy electron system becomes light in the
general case, because the bare f-electron density at the Fermi energy decreases
‘through the increased hybridization. Thus, the pressure reduces the 7 -linear term of
the specific heat and the 7T%term of the resistivity.

In the low frequency limit, (4-22) or (4:27) can be generalized as

| _a _ (@) te ,

o= ) i v
where

Fz,a):Zkf[Ak(Ek*‘{‘60/2)+Ak(Ek»*_”(l)/z)] . | (4-34)

The result (4-33) explains the temperature and freQuen‘cy dependence of the observed
optical conductivity. At low temperatures o(w) is given by

o(w)c[A{(xT)*+ o},

A being proportional to 2

§5. Extension to the periodic Anderson model with degenerate f-orbitals

We have developed so far the Fermi liquid theory on the basis of the periodic
Anderson model in which localized orbitals are assumed to have no orbital degene-
racy. In this section, we remove this assumption and introduce the spin-orbit cou-
pling and the crystalline field splittings. "

1. The periodic Anderson Hamiltonian for degenevate f-orbitals

For this case, our Hamiltonian can be written down as
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H= %’_ EroC iac ko + Z_1§[,EMM']£ Jvzf M’ +%M§M,f Jv_rf z'Mf i}\wf im’
+ﬁi£d( Vimce " Ficlofir+ Vince ™ Biflicrs) . ' (5:1)
The wave function of the conduction electron | ko) is approximated by the plane wave
as
kod>=—F=¢' , 52
I qu' Xd ( )

where xs represents the spin function for spin ¢(#1) and £ is the total volume of the
crystal. In the presence of the magnetic field H, its energy consists of the kinetic
energy and the Zeeman energy as

ero=¢cr—ousH , (5-3)

where ¢ represents the Pauli spin matrix o, which takes =1. The plane wave given
by (5-2) can be expanded around site 7 as

5 x o] . l
ko> =Ec* * B Hlr—Ri) 2, Y (Ba, o) Y Orry Gr-nro- (5°4)

Here, j.(k7) is the spherical Bessel function and Y,*(d, ¢) the spherical harmonic.

f& and fur represent creation and annihilation operators of f-electron at site 7 in
the eigenstate denoted by M under the spin-orbit coupling and the crystalline field.
Such eigenstates can be expressed as an appropriate linear combination of the states
specified by j=[/=*s, j;=m and 6==x1. Namely, the eigenstate |M> can be expre-
ssed by

liM>=R.(|r— Ri|) 2 alne Yi"(Or-r,, $r-r) 2o , - (5+5)

where Rn is the radial part in which #=4 and /=3 for Ce®" ion and al.s is the
Clebsch-Gordan coefficient. The f-electron energy with the Zeeman term, which has
now off-diagonal elements, is given by

Evir=EnSumr— M| Lo+ 25\ M"> pis H . | (5-6)

Here it is noted that z-axis differs generally from the principal axes of the crystalline
field. .
The third term of (5-1) represents the on-site Coulomb repulsion between f-
electrons, U >0, and the fourth term represents the mixing between f and conduction
electrons. The mixing matrix element can be calculated with the use of (5-4) and

(5-5) as
VkMd':\/E;d%na Yzm(ﬁk, ¢k) Vint (5'7)
Viu= (=04 25 [C5Ger) V(O Ru ) r2dr (5-8)
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where V(7) is the effective potential for electrons, assumed spherically symmetric for
simplicity.

The Fermi liquid theory is developed by taking U=0 case as the unperturbed
state. For that purpose, it is convenient to rewrite the Hamiltonian (5-1) as

ﬂzEEde%Clzd‘F 2 EMM'szko"l_ 2 (VimoChof e+ VinsfhucCrs)

5 N ka Sh-anf };r+qu wmrf e _ (5-9)
where fru is
::__l_. ~ikB; £, | .
ko [N—Ze sz- | (5 10)

2. Consideration for the non-interacting system

The main purpose in this section is to derive the expressions for the 7 -linear
coefficient of the specific heat and the magnetic susceptibility on the basis of this
Hamiltonian. For that purpose, we begin with the consideration for U=0 case. In

- the absence of magnetic field (H=0), the Green’s functions of conduction and f-
electrons are given by -

Gio‘o‘((t))zAké’(Cl))/[Ako‘(Ct))Akc?(a))"‘Bko‘((l)jBkE(a))] , ‘ (5-11)

Gioo(0)=Buo()/[ Aro( ) Ars(w) — Bro(0) Brs(w)] , | (5-12)

Ghanw) =208+ 21 Gl B (513)
where 6 =-—o¢ and

Arc(w)=w—epr— —Q)Kk—”;;"—l; _ (5-14)

Buolw)=3V Bue Yo 1)

In this U=0 and H =0 case, the Hamiltonian (5-9) is diagonal with respect to & and
M. '

In the case that the localized f-electron states have Kramers degeneracy as for
Ce®**, Brs always vanishes. The reason for this is as follows. The time reversal
operation denoted by K on the state |{M> gives its counterpart |/M> with a phase
factor which has no physical significance. Using the relations that K(¢x,)=¢*x,
and K(¢x,)=—¢*x, and Y™*=(—1)"Y,"™, we obtain

a£m¢:e(*1)m+la%z¢ s
alm, =e(—1)"ak, . (e=1or —1) » (5-16)

Note that the Clebsch-Gordan coefficients are taken to be real. From (5:7), (5:16)
and EM—_—“Eﬁ, B (w) of (5-15) is calculated as
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E3 k _ _
B (@) :_%% Vins Vk.(n;f); j‘EII‘/{kMT V wiz,

M r i it - —my
YY" Y almaaln, YORYTT)

M L
— @yl ) Y™ Y =0 .

In the same way we obtain also Bx,(w)=0. Therefore, in this case

Giw(a))=1/Aka(a)) s . | (5'17)

GiMM(a))— +2 (L)@}{gf)z Gioo(w) . | (5-18)

On the other hand, since we can show that
NV emof?+| Veiao?=|V eus*+ |V ema? =21 1 (5-19)

is independent of o, (5:17) and (5:18) can be written as

Ghos(w)=1/An®), : (5-20)
1 21 em ‘
GiMM(CU)z o — (a) EMSZZAk(a)) (5'21)
‘where
Ak(w)=w—ek—§w1}1§” ,. \ (5-22)

which is also independent of 6. The Green’s functions of (5:20) and (5-21) have the
same pole at w=E%. which is an eigenvalue of the hybridized band and determined by

A(Edn)=Eti—er— EE* —Ea 0, 7 ’ (5-23)

where the subscript # is assigned to the different eigenvalues. The corresponding
eigenstates are given by

1 VkMo‘
Eno* =———[ + ]0> 5.4
ono*s = s | ot B g 5| G2
where |0> is the vacuum state and A% is given by
’ dAk(G)) _ Iem _ dep .
Ak(Ezn)— |w Efn= 1+2 (Ek EM)Z = dE %, ; ‘ (5 25)

Furthermore, Gium(w) has another pole at w=FEy. Residues of Giso(w) and Ghum(w)
at these poles are, respectively, given by

2bo(E¥n)= Wj_ [1+Z(E+MEM)2]—I’ (5-26)
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5 %) 2L ku ¢ * ’
ZkM(Ekn)_mZko‘(Ekn) , (5-27)
CN_ 21 ke
ZiM(EM)—l— 7 for Teu=+0 (5'28)
M’'e(Em=Em) kM’
=1 for Iw=0. - (5-29)

Here, it should be noted that zis(E%.) is independent of ¢ and
o B+ Sehu( ER)=1. - (5-30)

Introducing the Green function of the electron in the hybridized band state by

Ghi(@)=1/(0—E%), : (5-31)
we can rewrite the Green functions of ¢- and f-electrons as v

G%w(w)=§ziu(E7§n)G7‘:m(w) s (5'32)

GiMM(w)=§z£M(E§n)G?§na(a))+Z£M(EM)/(w—EM) : N (5-33)

Now, we discuss how are the electronic band structures. We consider the case [ru
#+(. If there are no degeneracies except Kramers one, the residues at any Ex for k
vanish because of (5:28), and (5:23) gives the whole band energies. The number of
E#, is equal to Ny/2+1. Here, Ny denotes the number of the local f-electron states,
then N;/2 corresponds to the number of the Kramers doublets. In such a case, the
whole bands have dispersion. : '

If some f-levels including the state M has further degeneracy besides Kramers
one, a fraction of the state M mixes with the conduction electron states to construct
‘the hybridized bands but the remaining parts stay at the original energy Ex with the
weight of (5-28). The total weight of these unhybridized parts of the f-level (denoted
by 1) is calculated from (5:28) as Xwei-tn teveribu(Ex)=Ny—2, where Ny is the
degeneracy of that f-level. These remaining parts, of course, form dispersionless
bands at the original energy Ewu.

The exceptional case Irx=0 occurs, for example, for & parallel to one of the
crystal axes for cubic I7 doublet. In such a case, I7 state is outside of the mixing
problem solved by (5+23) but joins the band formation by connecting continuously to
a solution of (5:23) for Irx=0.

Next, we consider a simple case with spherical symmetry in which the crystalline
field splitting are not taken into account. Using Clebsch-Gordan coefficients given by

a%m=—a\/<z+%—jlza)/(2z+1)am,m_a/z for M: j1=l——%—, e, (5-34)

o= (1424 i0) [ @UA D Omron Tor Mijo=i4S, e, (5:39)

and relations 25-—i| Y7(8, $)P=Q2I1+1) /47, Zhem| Y7™(6, $)P=0, we obtain
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;_Jl-[kM— ll anllz 2]1 +1 | anzlz _ : (5 ‘36)
M:Z‘.z_jzlm=(l+1)| Vint*= 2]2+1| Viendl® . (5-37)

Thus, (5-23) is written as

! Vind|? (l+1)| anz|

lzzn_'Ek_"
E;l;n '— E.n Ekn EJZ ’

(5-38)

which does not depend on the direction of &, thereby leading to an expected result that
the whole bands are spherical. (We approximated conduction electrons as free.)
The degree of (5-38) is three, giving three hybridized bands with two-fold degeneracy..
The prefactors of | Vinl® are equal to a half of the degeneracy of the corresponding
spin-orbit levels. Effective mixing matrices are enhanced by the square root of half
a degeneracy.

We consider the case that the total number of /- and c-electrons per f-site is less
than two, and the lowest band is a hybridized one denoted by E% and that this is
partially filled and other bands are vacant. In this case, the linear coefficient of the
specific heat is given by

._.271'2 2 * . |
— 22158~ 1), (5-39)

where p is the Fermi energy. This is proportional to the density of states at the
Fermi energy, which is rewritten with the use of (5-30) as

%8(#-E§o)=%:[ng(Ei‘o)+—%°%Z£M(E?§o)]3(#“Efo). ' | | - (5-40)

By denoting the density of states of the original conduction band per spin by o(ex) and
replacing the summation over wavevector by integration,

S0(u—Et)= [ S22 0(ci)+ 3 A2 o(enty L1 - G
where
w s Len . (s,
= %ﬂ_”EM : | (5-42)

The first term of the right-hand side of (5-41) corresponds to the density of states of
conduction electrons, which does not change from that of the original conduction band
for a constant density of states and the second to that of f-electrons.

"~ Next, we turn to the derivation of the magnetic susceptibility. For this, we must
solve the equation for H =0,

’Ako‘(CU')Akﬁ(Cl))—Bko‘(a))Bké’(a))=0 , (5-43)

to obtain the eigenvalues up to the order of H% Here, Ars(w) and Brs(w) are
obtained as ' :
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Ars(w)=w—er—arlw)+o[1+bulw)h— clw)h®+ O(H?) , . (5-44)
Buo(w)=—dro(w)h+O(K?), (5-45)

where A=usH and

— < Veusl : .
ak(a))——%‘. o—FE o (5-46)

_ Vel M| L+25\M"> V i .
bk(w)*dn% (0—Eu)w—Ew) ’ (5-47)

_ V batoS M| L+ 252 MM | L4 25| M7 Viewrs ,
Ck(w)_MMZ’M” (a)“‘EM)(CU—EM')(O)—EM") ’ (5 48)

. VzMo‘<M|lz+232|M,> Vius .
dko‘(Cl))—M%, ) (CO—'EM)(CU—EM') . . (5 49)

It is easily shown that ax(w), br(w), cx(w) and dko‘(CU)dkc?(Cl))—|dko‘(a))|2—ek(a)) are all
independent of 0. Thus, (5:43) is reduced to

cw=cnrtalw)—o/[1+b(w)P+ew)h+ cilw)?+ O(R®) . | (5-50)

We define the solution of (5:50) for o by E%s and consider the case that only the
lowest band #»=0 is occupied. From the expressions for the total number of electrons
and the energy of the ground state,

=§0(u—E2‘Uo), | ’ - (5-51)
Eongtdoﬁ(#*Ezdo) ) , (5-52)
the susceptibility is obtained as
=Xt xv, 7 ’ (5-53a)
_ <[ 0E}c0 ]2 _ | :
xp—g[ 35 |y, 0(e—El), | - (5-53b)
2 1Mk .
w=-2LLE  p(u—Et). (5-53¢)

The first term x» may be called the Pauli term which gives rise to a usual Pauli
susceptibility and the second yv the Van Vleck term. The contribution from yv is
crucial when orbital degeneracy is considered. Differentiating (5-50) by %, we obtain

%C;ZL == x/[1+1{k(621](($ ek((!)) (5-50)
’w 1 9 ([14+bx(@)?+ er(w) ”
oh® Eh =0 T 1—ain(w) Il: ow | [[ 1_6(21(0))6 @ }-I—ZCk(a))] , (5-55)

where a%(a))=8ak(a))/8a). - Noting that 1—ak(w) is equal to A%(E%.) of (5-25) and
replacing the summation over & by integration, we obtain
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=2 92 () LD en), 6w
e [t L) )
PP dgk 2% (e #\[1+bk1(42(];;f ex()
+2,usf4“Q” (e oy L0k AP(*)]S;fk(—D*)

+2ﬂ52/—%%&_/:;*dEto dg,(se) le=ermso{[1— bk(Ezo)‘]z*l— er(E%)}

i
—tp? [BE " aERo(ex ) enER), 6D
where — D* is the lowest value of E%, and

e =FE%— (5+58)

kM

% E%—Ewn -
The Pauli term is entirely canceled by the first term of (5-57). If we assume that the
conduction band width is much larger than the mixing matrix elements, we can safely
put Ax(—D*)=1 and bx(—D*)=er(—D*)=0. Further, if we assume that the density
of states p(e) is constant we can drop the third term of (5:57). Then, denoting the
constant state density by eo and the mixing integral by V which is assumed to be
constant also, we have as the susceptibility

KM |25\ M

—9,,2 2, 172 l.
x=2us* 00+ 100 V' ﬂ%’(,ﬂ_EM)(ﬂ_EM') , (5 59)
where ‘
<M| lz+2sz|M’>=§(m+ 0) Ao o . : (5-60)

The second term of (5-59) comes from the upper limit of the integration of the fourth
term of (5-57) which includes cx(E%). To derive this second term, we have used
(5-48), (5-5) and (5-7) and the orthonormalities of |iM> and Y. The simple expres-
sion for the susceptibility given by (5:59) results mainly from the assumption of
constant den51ty of states and constant m1X1ng It is noted here that the anisotropy
of the susceptibility is included in (5-60). ‘

Now, we calculate the susceptibility in the spherically symmetric case in which
the crystalline field splittings are ignored, retaining only the spin-orbit coupling.

Using (5-34) and (5-35), we have !

=9 12 2 z{gazxfl(fl—Fl) 21+1
x=2ps 00t 3 tte 1% G—EY 3

+ng]2(]2+1) 2]2+1+21(z+1)/(21+1)}

E”) 2 (/“mEjl)(ﬂ_Ejz) (5.61)
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where j1=l—(1/2); 91 =21/Q21+1); jo=1+(1/2), g»=21+2)/(2{+1). If E;=E,=E,
we have ,

. 2 ) (2[+1)V2 _2_ 2 (2[_1_1)‘[/2 .
x=2us" 00+ 2z Po_——(#_E)z -+ 3 MB Pol(l’f‘l) (#_E)"z" . 5 62)

These results for U=0 and no crystalline field splittings are derived in Ref. 12).

3. Consideration for jfull Hamiltonian

For general cases in which the Coulomb repulsion is taken into consideration
between f-electrons, we have to introduce the self-energy of f-electrons by X sumr(w)
and determine the Green’s function by

PuGr=1n,+2, | : ' (5+63a)

wln,~E—3+ TN Ve,
P.= vk W— Eky 0 , (5-63b)
vk, 0 W—Er, '
G  GE GE, | -
Ge=| G% Ghirr(0) Gir(0) . (5-63c)
GA% Giu(a)) Giu(w)

P, and G are (N;+2) X (Ny+2) matrices. 1n,+: and 1w, denote the unit matrices of

rank Ny-+2 and Ny, respectively. These are simply written by 1 in the following. £,

3 . and G are Ny X N; matrices whose MM’-elements are given by Emr, 2 eae @)

and Glur(®), respectively. 7 re and G4 are Ny-dimensional column vectors whose

M component is given by Ve and Gus(w), and 7 }s and G¥% are the row vectors.
The determinant of P, is expressed as

_ I _F—5 _ Daolle .
|Pk|: @ | k W — Ero Vg (w—Skd)
Vs ' W— ErG
- wi—E‘-z‘k—g}—gf_ﬂ%(w—ek,xw—eh), (5-64)

where 7107 ko is the Ny XNy matrix whose MM’ element is given by Viwme Vewo.
Therefore, if we define the Ny X Ny matrix by

= oA A & o Ukille ‘ .
Fr=ol-E-5,-3-2tr0e, (5-65)

the Green’s functions of f- and c-electrons are given by

G{;MM’(CU):(FI@-‘I)MM’ ) ‘ _ . (5+66)
N e~ 5o -1 . =t
Giw(a))=[a)—$kd— E Vchr([Col“E—Zk—l}%_g‘yh} ) VkM’o‘:]
) 77744 W—ErG MM’
L 1 S Uk Gl (@) Vi (5-67)
W—Ers | W— Epo darr | MMM RS ) — ke
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By introducing the unitary matrix U, P is diagonalized as UnPrU k*1=@é to
give eigenvalues E%,, where n=1, 2, -:-N;+2. If we follow Luttinger derivation,® the
| coefficient of the T -linear term of the specific heat is obtained as

Nsg+2

2 .
y="5hi & 8(u—Etn). (5-68)

We calculate this as

Ns+2

ngl 6((0_Ezn) .

= A9 10e T (w+is—EL)
=—lm g log [ (o +-i0—Et,

T
1 = 1 =
= ——EIm—éQw—logI Qxl= -?Im~a%log|Pk|

= ——}T—Im%{logm‘kl + Z‘log(a) +i0—€ro)}

_ 1 0w v VieuoViwo )
- ﬂlm{M%’(aMM ’ ow ; (0—ens)?

. 1
X Ghuru(w+18)+ %m}

= —Lim{ = S1a0 — L) Gl (04 8) + Gl 0+ 0} (5+69)

MM’

Generally, the imaginary part of the self-energy vanishes at the Fermi surface, so that
the T-linear coefficient of the specific heat is obtained as '

2
y="r kS Tr 7 2s () + Snkow)], (5-70)
where
S N_s_ 03 )
Pro)=1—=5, (5:71),

£

and 7+"(w) and #%+(w) are defined by

ﬁkf(w)=——}r—1m@kf(w+i3) , . - (5-72)

n5o(@) = —1mGharlw+i5) - (5-73)

Thus, the T -linear term of the specific heat is proportional to the density of states of
quasi-particles at the Fermi energy in which the f-electron part is enhanced by 7 #(x),
while the c-electron part has no such enhancement.

Next, we turn to the susceptibility. As Luttinger® has derived, the magnetization
is obtained by differentiating the thermodynamic potential with respect to the
magnetic field and by keeping in mind its stationary properties to variations of the
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self-energy, as

M= 3 [ dof ()] Z<MILA25) M7

X(=L1m) Ghus(w+ i)+ So( —Lim)Gisolw+ )}, (5-74)
where f(w) is the Fermi distribution function. Introducing the NyX Ny matrix M

whose MM’ element is given by <M|(l:+2s2)|M">, making use of (5 66) and (5 67), we
can rewrite (5-74) as

M=u3§/::dwf((u)<—%Im){Tr(MFk"l)

+2 g (Cl)+ 260; ekd)z Tr( ako‘ﬁidﬁk—l)} . (5'75)

T 0+ 16 Ero
If we follow Luttinger’s procedure, the next step will be to rewrite (5:75) in the
following form,

M=3 [ dof(w)( ~—=Im|-2-Fso-+id)+] | (5-76)

If it is possible and J is shown to vanish, then we have the expression for the
susceptibility which is described in terms of the quantities at the Fermi surface.
However, it is generally impossible to obtain such an expression in the cases including
the trace of product of matrices in (5-75), since commutators of F' with M, ¥ sed }o
do not vanish. In connection with this, in the previous paper'® in which orbital
degeneracy has been taken into consideration for. localized f-electrons, non-
commutability between these operators was not correctly treated and therefore the
final expression given there for the susceptibility is not correct.

Generally, in such cases as here, the expression for the susceptibility is composed
of a part expressible in terms of the quantities at the Fermi surface and the other parts

~ given by the integrals over the band. The first part is proper to the Fermi liquid
theory and the others can be regarded as correction terms to the first. Here, if we
assume that the conduction electron band width is large enough compared with
mixing matrix Vewms, perturbations which the electronic states undergo by the
magnetic field will be limited to the neighbourhood of the Fermi energy. Therefore,
in this case, the second correction terms are expected to be small compared with the
normal part. :

That this is actually the case has been shown by Hanzawa et al.'® and Yamada
and Nakano' for a simple special case although we have no space to describe here
their detailed calculations. The simple case is that in which the spin-orbit coupling
and crystalline field are so strong that we can safely be restricted to the lowest
Kramers doublet labeled by M and M. For this two-dimensional case, it can be
shown that (M)ww= g, (M)iziz=— 1 and (M)uiz=0. The result for the susceptibility is
expressed as
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[1 0 e
o upsH)

2=20 "> H=o] 1k €r)

k
+ 2/132%: n%o(er)+correction term . ‘ (5-77)

4. Summary of this section

In this section, we developed the Fermi liquid theory on the basis of the real
periodic Anderson model applicable to Ce metallic compounds, in which the spin-orbit
coupling and the crystalline field splittings are introduced. FEigenstates for localized
f-electron at site 7 is denoted by |ZM> and mixing between this state and the wavefunc-
tion of the conduction electron |ko> is taken into account. The direction of the
external field is taken as z-axis and |iM is described by a linear combination of Y™y«
referring to z-axis. '

First of all, the electronic states for this Hamiltonian have been investigated
when U=0. Then, Fermi liquid theory has been developed for non-zero U. In this
case, the self-energy and Green’s function for f-electrons become matrices whose
off-diagonal elements are non-zero. This makes the situations complicated. Under
these situations, the specific heat has a normal form to the Fermi liquid, but the
magnetic susceptibility has, besides the normal part, anomalous correction terms
which cannot be expressed by the quantities at the Fermi level. However, this
anomalous terms are expected not to play an important role when the width of the
conduction band is large compared with the mixing matrix.

§6. Ti of NMR and anomalous Hall effect

1. Nuclear spin-lattice velaxation time Ti

Here, we consider the nuclear spin relaxation due to hyperfine interactions with
f-electrons.'® In this case, relaxation time 7 is given by'”

= Tt S Stz (@, 0+i0)| 6

w=

where A(q) is a hyperfine coupling constant and x*(q, w+:0) is the transverse
susceptibility of f-electrons. x* (q, w) is given by

(@, 0+ i)=i [ dre" @ ONLS (1), SO, (62)

Sq+:§fz¢fk+qt . ; (6-3)

The general discussion was done by Kohno et al.'® Here, we discuss the case at low
temperatures. At zero temperature we can derive the equation,

[%Imx*(q',wﬂO)] 0=7r§zkfé‘(/z—Ek*)z%§+q6(/x—Ei‘+q)[/1k,k+q(0)]z-A (6°'4)

w=

The three-point vertex Az r+4(0) is given by using the four-point vertex, I;,, as
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Arpia(0)=1— T;%‘.Fﬂ(k—l—q, Bk B+ q)Ghig,(iew)Gh (iew) . (6-5)

- This result can be directly obtained in the imaginary frequency representation, as
shown by Shiba for the magnetic impurity.'® The factor Agz+q is expected to be
enhanced owing to the electron interaction U, leading to the enhancement of the
Korringd constant, i.e., (717)7! at 7°=0.

If we neglect the &, e-dependence of A r+q(e),

1@ = =2 [ Ny lie) G (i) Ghili)

~ @) 7(a), | (6-6)

where x(q) is the exact susceptibility and 7(q) is defined as that without the vertex
correction. Therefore, /A(q) can be regarded as an enhancement factor of x(q) due
to vertex corrections. In this case, (71 7)™ is enhanced by the factor

1 F()12 ‘2( 2(q) )2 ' .
7l OFSlA@ (2% ) , (6-7)

If we neglect the momentum dependence of FN(q) in (6+5) and assume a uniform
enhancement, we obtain

(TiT)tocy?. L (6-8)

This is the similar relation to the 7T2-term of the resistivity. From (6-4) we can
consider also in the picture of the heavy electrons by using the density of states of
quasi-particles, 0*(0), which is enhanced by #. In this picture the vertex correction

 is given by z&"Arn+e2h+qAr+qr, which is of the order of unity without enhancement.
The factor [Ar,z+4(0)]? is important in understanding of temperature dependence of 7}
in the superconducting state, since it decreases with increasing superconducting gap.
Therefore, in order to explain the full temperature dependence of 717! for the systems
such as UPts, CeCuzSiz and UBe1s, we should estimate the temperature dependence of
Arriq, as well as the life time of heavy electrons.

2. Awmomalous Hall effect in the coherent regime

The ordinary Hall effect in the system with the electron interaction is developed
by Kohno et al.,'” extending the theory done by Fukuyama®” to the system with the
T?terms of resistivity. The normal Hall coefficient Ru has no temperature depen-
dence at low temperatures. On the other hand, typical heavy fermion systems exhibit
anomalous Hall effect. The Ry increases rapidly with increasing temperature from
a constant value at. 7=0 in the low temperature regime, while it decreases at high
temperatures, resulting in a peak structure between the two regimes. The behavior
at high temperatures was explained by Coleman et al*® and Fert et al.?® by the

‘mechanism of the single impurity skew scattering.

In Ref. 23) it is shown that the anomalous Hall coefficient in the coherent regime

is given by

Ru=cR?*~ c(Ro+A T?)?, (6-9)
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where ¢ is a constant proportional to the susceptibility of /-electrons and R is the true
resistivity including the residual resistivity, Fo. The above expression was derived
for the case with only the orbital degeneracy.?® The extension to the case with the
spin-orbit coupling is possible to give the same expression (6:9). Equation (6:9)
explains the rapid increase of the Hall coefficient at low temperatures. The detail of
the derivation for the general case will be given in a future publication.

§ 7. Fermi liquid and spin fluctuations

In this section we would like to stress that the Fermi liquid is a general state
including the singlet state as a local structure.? The nature of the ground state of
a single magnetic impurity is well known as the singlet bound state. The similar

- nature can be seen also in the periodic Anderson Hamiltonian. For the periodic
Anderson Hamiltonian we choose arbitrarily one atomic site of f-electron and call it
0 site. The wavefunction of the ground state can be expanded in the following way,
depending on the state of f-electron at 0 site, -

wg:A0¢0+ATfTT¢T +A;f¢T¢¢ +A2f¢Tf¢T¢2, (7'1)

where fs', A. and ¢. denote f-electron with ¢ spin, coefficient and neighbouring
electron wavefunction associated to each f state, respectively. For ¥, to be the
ground state, the matrix element of the hybridization term should exist. If it van-
ishes there is no energy gain, because only the hybridization term reduces the energy
in the periodic Anderson Hamiltonian. Thus, the system described by the periodic
Anderson Hamiltonian gains the energy by constructing the coherent band of heavy
electrons through the hybridization term,

ﬂmlng‘}( Vaflochs+ Vi*clofre)

:g( Vifcree™ Bt Vi*clofive %)
k

=§_(‘Vfi2‘0id+ V*Cz’dfid) , v (7‘2)

where
Cid=§uk0koeik'R" , ‘ (7-3)
cz~%=§ukc£ae‘”‘"‘f , : (7-4)

and V5= Vur is assumed. :
Thus, the necessary condition to be the ground state is the following,

<O\ Ioin| 0> =Z Vs ciot clofiol B> +0. (7-5)

For simplicity, we consider the hybridization at site 0 as 'an example,
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= Z‘ V{<Aaf¢;r ¢dlde CG|AM/’0> v

+<Asfy 1. ol ot col Amof to v +c.c}
= ; V{Ao‘Ao( ¢’o‘| Cdl ¢o> ‘|‘A2A—«o'< ¢2| Co‘| ¢—o‘>
'|‘A0'A0<¢'0|CGT|¢a>+A2A-o'<¢'—d|Cojl¢z>} . ; (7‘6)

By defining #ss- as the number of local electron with ¢” spin associated to f-electron
with ¢ spin, the necessary condition is given on account of the Anderson orthogonality

theorem by*
nor=n0s—1, | (7-7)
No-o=MNo-0c , , - (7-9)
N2c=nN-06—1, o | (7-9)
N2—c=MN—c-0c . (7-10)

Thus, we obtain from (7-7) and (7-8), and the symmetry relation,
Noo+1=Ne—6=N-05 . (7-11)
There is no local chafge associated to fo' state, |
N+ 1o-s=0. (7-12)
From (7-11) and (7-12), we obtain

%60‘2—‘%‘,' : (7'13)

n=~%— (7-14)

Thus, we can see that the component of f-electron with ¢ spin has 1/2 local electron
with — o spin and 1/2 local hole with ¢ spin. This structure is nothing but the singlet
ground state for the single impurity. In our case, the number of local electron around
a fixed site includes the number of f-electrons at other sites than the fixed site. Thus,
in the periodic system, the local singlet state is constructed by both of conduction and
f-electrons. The weight of each component, f and conduction electron, depends on
the parameters in the Hamiltonian. Therefore, the construction of the singlet in the
Fermi liquid is free from the lack of conduction electrons. The same consideration
can be applied also to the normal state of the d-p Hamiltonian for the copper-oxide
superconductor. In the normal ground state, the d- and p- electrons are combined to
construct the quasi-particles in a Fermi liquid state. The local spins due to d-
electrons construct a local singlet combined with neighbouring p- and d-electrons.

§ 8. Concluding remarks

Heavy fermion systems are formed at low temperatures in rare earth metallic
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compounds, particularly in Ce(Yb) compounds. At high temperatures, these com-
pounds show Kondo like behaviors characterized by the logarithmic increase of the
resistivity with lowering temperature although the density of local spins is high.
Such a change from the high temperature regime to the low temperature heavy
fermion regime resembles the transition observed in dilute alloys including magnetic
impurities. ‘

The reason why such a change is possible even for high density of magnetic ions
lies in that the characteristic Kondo temperature 7x in magnetically dilute alloys is
larger than the characteristic temperature 7w at which the magnetic ordering of the
rare earth spins occurs by RKKY interaction. In order that the relation 7x> 7x may

- hold, 7x must be much larger than that for iron group dilute alloys represented by
CuMn. For 4f-electrons in Ce(YDb) occupying degenerate f-orbitals, 7k can take very
large values estimated as 7x~10 K. - This is the main reason for such a change from
the Kondo regime to the heavy fermion regime. In this sense, the degeneracy of
f-orbitals has essential importance for formation of the heavy fermion systems.

For the low temperature heavy fermion regime, the electron system including
conduction and 4f-electrons can be described by the Landau Fermi liquid theory. In
the main part of this paper the Fermi liquid theory is reviewed which has been
developed on the basis of the periodic Anderson model. Here, Anderson model is
used for simplicity in which the orbital degeneracy of f-electrons is not taken into
account. Considerations on the Anderson model with orbital degeneracy are given in
§ 5 in which only electronic specific heat and magnetic susceptibility are treated.

We have derived expressions for the electronic specific heat, the susceptibility, the
resistivity, the relaxation time of nuclear spins and the normal and anomalous Hall
coefficients. We obtain at least qualitative understanding for various experimental
results as stated in this paper in terms of the results obtained by the present Fermi
liquid theory. ‘

Main results obtained by this theory are as follows. The resistivity due to
electron interaction shows 7 2%temperature dependence. This resistivity becomes
finite only through Umklapp processes and the coefficient A of TZresistivity is
proportional to the square of the coefficient y of the 7-linear specific heat. The large
enhancement of (71 7)* for NMR, the temperature dependence of the Hall coefficient
at low temperatures and so on are also derived.

v For quantitative discussion, however, the various kinds of vertex functions
introduced should be calculated explicitly. This is very difficult task and at present
low order (2nd) perturbations in one-dimensional system have only been calculated.
The other problem is that the periodic Anderson model we have used for the Fermi
liquid theory is simple and this should be extended to more realistic ones.

Nevertheless, the Fermi liquid theory has common features for itinerant electrons
with strong correlation, irrespective of special models used as the basic Hamiltonian,
Anderson model or Hubbard model. Thus, the Fermi liquid theory described here
can also be used for high 7t cuprate superconductors and actinide metallic compounds
with slight modifications as well. :
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