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   Theory  of heavy  electron  is reviewed  on  the  basis of  the  Fermi  liquid theory.  The

importance  of the orbital  degeneracy in realizing  the heavy  electrons  is stressed  by using  the

scaling  theory on  the Kondo  temperature. With use  of  the periodic Anderson Hamiltonian,
the expressions  for the physical quantities, such  as  electronic  specific  heat, magnetic  suscepti-

bility, conductivity,  relaxatien  time  of nuclear  spin  and  anomalous  Hall coeMcient  are

derived, These results  explain  the essential  properties oi heavy electrens.  For iurther
development the extension  te the orbital  degenerate case  is essential  and  discussed mainly  on

the specific heat and  the susceptibility,  At the end  the relation  between the Fermi liquid state
and  spin  fiuctuation is discussed with use  of  the orthogonality  theorern.
                                                     '

gl. Introduction

   In this paper  we  discuss the normal  state  properties  of  the heavy  fermion systems.

At  the beginning we  discuss the reason  why  the heavy  electron  system  is realized  at

low temperatures.i)  In usual  rare  earth  metals  the magnetic  long range'order,  such

as  helical structure,  appears  at  a  ternperature  around  50K--300K.  The  magnetic

long range  order  is due to the RKKY  (Ruderman-Kittel-Kasuya-Yosida) interaction,
lkKKySi' Sh which  is proportional to S2, S being the magnitude  of  localized spin.  For
example,  Gd metal  with  localized spin  S==712 orders  in the ferromagnetic state  below
300K. This RKKY  interaction between Ce (Yb) ions with  a  single  f-electron (hole)
is weak  because of  Sg2=:114 compared  with  Sx2=4914 for Gd. If the magnetic

ordering  temperature  is scaled  by S2 from  that  of  Gd, the critical  temperature  for Ce
(Yb) is given  by 6K.  If we  scale  the paramagnetic  Curie temperature by the de
Gennes factor,(th-1)27'(7"+1), we  obtain  3K  for that of  Ce3'. These  values  for the
magnetic  ordering  temperature  of  Ce  system  are  reasonable  compared  with  observed

ones.  Moreover,  if we  take  into account  the  Kondo  effect,  it lowers further the

ordering  temperature estimated  above.

   In addition  to the low ordering  temperature due to small  localized spins,  the

Kondo  temperature  becomes high owing  to the 
'orbital

 degeneracy, even  for the  weak

coupling  of  the exchange  interaction.2)'"`) This is the important fact in realizing  the

heavy electron  in the Ce and  Yb systems.  We  shali  discuss it in the next  section.

The  other  rare  earth  metals  than Ce and  Yb  have  the muitiply  occupied  f-shell. For

the f-shell with  plural electrons  or  holes, ,the Hund's  coupling  is strong  enough  to
reduce  the degree of  freedom  of  angular  momentum  exchanged  by  the s-f  exchange.
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This effect  reduces  remarkably  the Kondo  temperature.

   The  heavy  electrons  are  nothing  but quasi-particles in the Fermi  ISquid. The
Fermi liquid state  in the correlated  systern  can  be obtained  continuously  by starting

with  the non-interacting  state  and  increasing the mutual  interactions, In the heavy

electron  systerns  these heavy electrons  themselves become superconducting  states

and/or  rnagnetically  ordered  statesl  as  shown  by the large jumps of  the specific  heat
at  the transition. Therefore, in order  to describe the physics in the'heavy electron

systems,  it is important to describe them  in the Fermi  liquid states  at  the first stage.

   In this article  we  explain  the analysis  of  heavy electron  systems  on  the basis of
the Fermi liquid theory. We  derive the Kondo  temperature  in the  system  with  the

orbital  degeneracy  by  using  the scaling  theory  in g2. In S3, we  derive the  expres-

sions  for the physical quantities in the'case with  the non-degenerate  f-orbital. In g 4,
the T2-term of  resistivity  due to the electron-electron  scattering  is discussed. In g 5,'
the extension  to the case  with  f-orbital degeneracy is discussed. In g 6, the relaxation
time of  nuclear  spin  and  the Hall coeMcient  are  given. It is shown  in g7 that the
Fermi liquid state  behaves as  the local singlet  state  and  censerves  the local spin  by
accompanying  the  neighboring  spin  with  transfer of  the f-electron. In the last
section  concluding  remarks  are  given  shortly.

             g2. Scaling theory in the presence of  crystal  field

   In this section,  we  consider  the Kondo  temperature by  using  the scaling  theory for

the Hamiltonian,D,`},5}

     {gC=  Z  Ek(chtMckndi+cktmckm)+2EAfaMtara-}-2Emamta.
         le,M,m M  m

         
L.ll-],2"lllv'cinck'M'dita'aM-.III.],21Nb chtmckrmrainra.

           k,kt                              h,kr

         
-  

.Z,.
 2foN' (CXnfCh.mamtanf+ cktmck,Manftam).  , (2.1)

           k,hl

Here, capital  M  represents  a higher level state  in a cubic  crystal field, and  m  stands

for a  lower level state.  The  energy  levels, EM  and  Em, are  defined so  as  to satisfy  the

condition,

     2EM+ZE.==O.  (2･2)
      M m

Since we  consider  the case  with  one  f-electron, we  confine  ourselves  in the subspace,

     ;aMtaM+;;amtam=,1. (2.3)

The  exchange  interactions lb and  11 work  in the  subspace  of  lower and  higher levels,

respectively  and  h  is that between  the two  subspaces.

   Following Poormanis  derivation by  Anderson,4) we  obtain  the scaling  equations:

      
d.!t[]}O

 =;  D+JEO: -.+]iil  D+IE2: -.,  (2'4)
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ddtD'

 =;  D+Jst-.+  ]D+fE2 -.,  (2'5)

     
d,LtD2

 ==  : D  +fi 
1.2m.

 +  ;; D  +JEe 
f.2..,

 (2･6)

where  z  is the total energy  of  the electron  system  with  the impurity in the crystalline

field.

   Here, we  assume  a cubic  crystal  field and  define crystal  potential En =-2d13  for
G  doublet and  EQ=a13  for IE quartet. Hereafter, we  discuss two  cases  depending on
the sign  of  zl=  EQrED･

Case 1. EQ-ED==A>O.  The doublet G  is the ground  state  and  z'=t -2`a13.

     tro=2So2.SJi22, (2･7)

     tri=Sfii2.2S22, (2.s)

     
d.t2=4.ftl.2+21sJ2.

 . (2･g)

If we  assume  fo ==h=fo=f  and  J-e= J'Vi- f'-2== f, the above  equations  reduce  to

     tr =2S2+i+id2  . 
-
 (2･lo)

The  isotropic case  is realized,  when  the localized-f-level, Ef,  is low  enough  frorn the

Fermi  level, EF, and  satisfies U>IEF-efl>ldl,  U  being the intra-Coulornb repulsion

between fLelectrons. The solution  of  (2.10) is given by

     
--;-k+

 
2ofN

 =  21oglS}+41og( DD,++titi), (2'11)

where  Do  and  ni12N are  given by  an  initial condition.

   For  the case  with  Do>a,  f is given  by

     Jny= 2oflv [1+-ei(l log(DiDo)+-ZgY- log((D+A) LDo)]Li. (2･12)

Since the Kondo  temperature is defined as  D  giving rise  to infinite coupling  constant,

7"k is determined by the equation  (feB=:1),

     i+4Y  iog D7k, 
+2gYL  iog 

7ki,Z=o,
 (2･i3)

     nc=(  71g, 
'd

 )2p,e-N/pvl. 
,
 (2･14)

If lk<di, we  obtain

     7'k=: (S' )2D,e-Nipt- ==  (gt )2 n,o, (2.is)
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where  7kO is the  Kondo  temperature  for the case  without  higher quartet level J-k.

Thus, we  can  see  that  higher states  in a  crystal  field cannot  be neglected  as  far as  n
<Do, even  if A>7kO.  If we  assume  Do==104K  and.A==102K,  we  obtain  (Po!Er)2:=10`
as  the prefactor  of  1'kO in (2.15). This result  shows  the importance of  the higher
levels in determining the Kondo  ternperature.

Case 2. Ee -  ED =zl  <  O. The quartet  J-k is the ground  state  and  z  !  -  iti113. For  this

case  the scaling  equation  is given by

      dJ  -4J2                  2f2

      clD-D+D+  Al' (2-16)

With  use  of  the initial values  Do and  al12N,

     J-'= 2oflv [i+4G3' log DD,-+t' 
rizlLl
 +'Z![XP- log DD, ]"-i. (2･17)

The  Kondo  temperature  Tk  giving J 
r::co

 is determined as

     Tlc=:(Dol([Tlc+fiAl))i'2Doexp[nAJ12plfl]

        :h:(Do!IA)i'2Doexp[-Al12plll]  for 7k<IAI. (2'18)'

The  Kondo  temperature takes a  large value  by the  prefactor  2 of  plfl due to the

degeneracy of  crystal  level.

   In the case  with  general crystal  field splittings,  7k is given by

     7-i,=(D,ta,)Nit"o(DoZtg2)"2i"D-･-(Do/Z.)"m'"oDoexp[-2gtl ]lit], , (2･19)'

where  li and  AJL are  the level sp]itting  between iandOlevels and  the degeneracY of
ilevel. i=O  is the  ground  level. If we  include up  to the next  divergent terms, we

obtain  7k  by  multiplying  7k in (2'19) by  the factor miplJIZIV.

        g 3. Fermi  liquid theory on  the periodic  Anderson Harriiltonian

   Heavy  electrons  realized  at  low temperatures have been investigated by several

approaches  such  as  slave  boson method,  Gutzwiller approximation.6>  Among  them

the Fermi  iiquid theory  seems  to be the  most  general approac,h  te describe the
essential  properties  of  heavy  electrons:  The  other  methods  also  describe the heavy

electrons  as  the correlated  narrow  band and  give the expressions  for the physical
quantities similar  to those derived by the Fermi liquid theory. In the present paper,
we  describe the Fermi  liquid theory  on  the basis of  the periodic  Anderson

Hamiltonian.7) Here  we  discuss for simplicity  the periodic  Anderson  Hamiltonian

without  orbital  degeneracy. The  orbital  degeneracy is important to discuss the  real

heavy  electron  systems  and  is taken  into account  in g5.

     yc=.stc,+.fft, . (3-1)

     LSrCo"=21,i.EbcXocka+,Z,.EbaZaaha+,Z,.(VbaZticka+Vk"cZcrahcr)+-N4<nof>2,  (3'2)
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     tgC'=,i,',-IUvaX+ata:r-q･ale･,akt･  (3'3)

Creation operator  aZd(cZo)  is that for f-electron (conduction electron)  with  energy  Eh

(Ek) and  spin  o. Heavy  f-electrons in the same,atom  interact with  each  other  via

Coulomb  repulsion  

'U.
 The f and  conduction  electrons hybridize through matrix

element  Vh. Our results  derived in t]he following can･be  applied  also  to the transition

and  a ¢ tinide metals  as  well  as  rare  earth  metals,  since our  Hamiltonian' includes the
dispersion of  f-electrons.
   The  self-energy  part of  the f-electron due  to the Coulomb  repulsion,  Xk(a), is

introduced to describe the Fermi  liquid theory  in. the general  picture. With use  of the
self-energy,  the  Green's function of  f-electron and  conduction  electgon  are  given by
       A  --               A

     (zl-H)G-1, '
 (3･4)

where

     (.iTfi)..(
Z-E-kV,X.k(Z)

 g-V.k,), (3･s)

     c-(g/S(,:l gfgE:]) (3･6)

          A

The matrix  1 represents  the  two-dimensional  unit  matrix.  The  diagonal parts  of

Green's functions, G{o and  GScr are  written,  respectively,  as

     Gid(2)=[g-Eka-Xko(z)-1Vh121(2-Eka)]Hi, (3･7)
                                                '

     GSo(z)± [z-Eka-1Vh121(2-Ekcr-Xho(z))]-'. (3･8)
                                       '

The  energy  eigenvalue  z=E:if  is given by the pole of  C and  determined by the
    +equatlon,

     (zmEkamXhcr(z))(z"ekd)-IVk2=O. . (3.9)

Following Luttinger,8) we  obtain  the T-linear term of  the specific  heat, (w+==tw+i6)

     7:=: 
ZtZ.k;2

 :i]( aO,v [ln(ca++pt,-Eh-XkR(to+)-I Vkl21(w++pt-ek))-c･c-]1.=,
             cr

･
 .,,  

2rtgk]2
 i]rrrl;Im(#+i6-Ek-xhR(e)-i vk12f(pt+i6-Ek))-i

        .(1.  
ax3n.(w)

 
.z,+(l.Vltei),)

      =2rrgkB2(:i]p,f(o)(1.  
a2
 3R.,(`e) 

...,)+?p,c(o)),
 (3･10)

where  density of  states  for f-electron phf(w)  and  that for conduction  electron  pkC(w)

are  defined, respectively,  as
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                                        '              '

     pk'(to)=-:;IFIm[pt+to+-Ek-Xkn(ca)-IVh121(pt+w+-ek)]=i,  (3･11)
                '

     p,C(to)=::-ilm[pt+w.-E,-IV,121(to.+"-E,-X･,R(to))]-i.  (3･12)

The coecacient  of  T-linear term  can  be written  by the densitY of  states  of  quasiparti-
cles  as

     7=  
"23feB2

 
,Z,,6(pt-Eia).

 , 
'

 (3･13)

Here, we  introduce the wave-function  renormalization  factors, flhf and  zh", which  are

given  by the residues  of  Gkf and  GkC at  w=O,

     z,f..(i-  
a2E7fiw)

 
.=,+es)-i,

 (3･i4)

     zkc=(ILVtgi),/(i'upt  
.=,+-(2ttlll;tlBi--e,)z)-

 (3･is)

We  put

     7k=(1-OXk(ca)10a}).=o, , (3･16)

1Ii2

   

               

               

Fig. 1. k-dependence  of  the f-electron self-energy  Xk.(Z)(to) with  w  as  a  parameter,  The  arrow  shows

  the Fermi wavevector  obtained  under  ttie condition  that the f-electron number  per site is unity.
  For  conduction  electrons  Elt ==  

-cosk
 is assumedl

NII-Electronic  
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     Fig. 3, The  mass  enhancement  factor divided by U2 as q function of  f-electron number  nf.
           '

and  obtain.  the relation  .

      r'" hzhf+ghC  :=:1.  (3･17)
From  (3･13), we  derive Eq. (3･le),

         rr2leB2

     7== 3 ,Z,.(7NkcsZia+2Sd)6("-Eicr)

         rr2kB2

      
±
 3 ,Z,.[ 

rA'haP{a(O)+PZct(O)]. . , (3･18)

This expression  means  that r is given  by the $um  of  pSa  and  pth  enhanced  by the
factor of  7'-k. The  large enhancement  of  7 in heavy  electron  systems  originates  from
the first term  of  (3･18), because Yhis term is enhanced  by r-k due to the  electron
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interaction between.f-eleqtrons.

   The U2-term of  7""h has been calculated  by Zlatic et  al. and  Okada  et  al. for the
one-dimensienal  case.9)'iO)  In Figs. IA-3, we  show  the numerical  results  fot the

electron.mass,  namely  -0LS75toLto=o. These  results  show  that the heavy  electron  is

realized  in the cases  with  a large･density of  states  for f-electron at  the Fermi energy.

Okada et al. confirmed  that  the U2-term of  r-k is well  scaled  by the square  of  the bare

f-electron density at  Fermi  energy,  pf(O)2. This is because the cQupling  constant  is

given  by pf(O)U  and  the seconcl  order  term is proportional  to [pf(O)]2. For the cases
when  the total number  of  f-electrons per site approaches  to unity  a  large electron

mass  is obtained.  In the nearly  half-fi11ed case  of  f-electrons the Coulomb repulsion

among  f-electrons reduces  strongly  the hybridization and  the transfer  term  and

realizes  the extremely  heavy  electrons.  The  similar  calculation  for the d-P model  for
high CTI] superconducting  oxides  has beeh done by  Kanki.ii) For this case  the mass

enhancement  is weak  owing  to a  large band width  of  bare d-electrons.

   From  the  above  
'discussion,

 we  can  expect  7'-k in the  heavy  electron  system  is

much  larger than  unity,  7nyk>1. For  this case  we  can  derive the eigenvalue  equation

as  follows.

   At first, we  expand  Xka(to+) as

     Xkcr(a)+)'f"Xkd(O)+O"Xka(cv)10tolw-oto-idk, (3･19)                                                 '

where

     z,=-Imx,.(w).  (3･2e)
By substituting  (3･'19) into (3･9), we  obtain

     Ek"=  -1. (Ekcr+Xbo(O)+fVhl21("-eha))
           rh

         =TEk+IVk121(y-ekd),  (3-21)

     Ek=(Eho+Eha(O))17-Vh, 
-
 (3'22)

     lV,l2± lV,[2!7N,,. (3･23)

Thus, (3･21) shows  that the energy  of Eb" is renormalized  by 7Ailt-i and  constructs  a

very  narrow  band. InyerSely, this narrow  band  gives the large density of  states  of

quasi-particles at  the Fermi  energy.  This may  be the simplest  explanation  of  heavy

electrons.

   At  this point  we  have to explain  the reason  why  the heavy electron  systems  with

nearly  half-filled f-electrons can  stay  still  in the metallic  state  even  for the large value

of  U. The  reason  can  be explained  by  the existence  oi  conduction  band, with  which

f-electrons hybridize and  can  be delocalized through  the conduction  bands, as  far as

the  hybridization remains  a  finite value  in spite  of  the strong  reduction.

   
'Now

 we  discuss the magnetic  susceptibility.  Here we  assume  that the g-values
for f- and  conduction  electrons are  given  by gf and  gC, respectively.  In this case  Ebo

and  Ekif  are  given  by

  ･
 E,.=E,-Hbf,  .(3･24)
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eha=eh-  HltC ,

     1nv  
='2Tg'op,H

 ,

(3･25)

(3･26)

ILiC ==tgCop,H  , (3･27)

pB being the Bohr  magneton.  If gf =#gC,  the rnagnetic  moment,  M=(112)gj]ctB(ntf- n･f)

+(112)gCyB(n, 
C-

 n,  
C),

 does not  commute  with  the Hamiltonian and  does not  consetve.

Fbr this case  we  discuss in S 5. Here, for simplicity,  we  assume  gf=gC==2  and  Hcrf
:==lllrC:=Hff.  Total electron  number  M  and  magnetization  A4 are  given'by

Arb-20(p-EX.)  
,

    kO
(3･28)

M  =:=  ptBZoe(p-E:a)  
,

     lad
(3･29)

where  E:a is an  eigenvalue  of  the quasi-particle in the presence  of  the magnetic  field
and  is defined well  near  the Fermi  energy.  From  (3'29), the  spin  susceptibility  is

given' by .

xs=limptB2otS(u-E:ct)(-OEXff10HIH.e)
   H-O  k,a

=2fi,2  otS(li -  E,*)( -  OE:.raHl..,,) .
     k

By  using  the eigenvalue  equation  (3･9),

      OE:.-  Cl.X,(to) IV,12
oH  -[1- +(E

we  obtain

0to k*-Ek),Ii(-ptBo)[x--s(h)+(EIV,2

 1
k*-eh)2J'

(3･30)

(3･31)

where

x'v.(h)- zr,,(h)+  x-t,(k) ,

x-'tt(k) :1mE)Erba(O)raHbIHa==o,

x-t;(le)=61Xka(O)raHL-alHmc-o.

Thus, the spin  susceptibility  is given  by

     xs =  2ptB2{Zpk'(O) xA".(k) +  pC(O)} ,

             k

(3･32)

(3･33)

(3t34)

(3･35)

where  pk'(O)  and  pC(O)==2kphC(O)  are  given  by  (3･11) and  (3･12), respectively.  The

susceptibility  xs  is enhanced  by  x"-s due to the electron  interaction between  f-electrons.
Now,  we  define the  four-point vertex  llrdr(hi, k2; k3, h4) and  discuss the relation

between 7'-(k) and  x-'di'r(h) by using  Watd's  identities.') The results  are  the following,

7(k):== 2,,(h)+Zp,･f(O)I-k.(k, ki; kt, k) ,
             h'

(3･36)
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          '                  '

     x-,,(k)-2pk･'(O)J-3mif(k,  h'; k', h). ･ (3･37)
             k,

For  sirnplicity  we  define

     7f -=  2pkf(O) 7'-(h), , (3･38)
         le

     x{r=7pk'(O)  x-,T(k), (3･3g)
          k

     x{･=Zpk'(O)xNt･(k)=Zph'(O)I:,,(k,  k'; le', h)phf(O), (3･4e)
          h                        hh.

     6{tr=Zpk'(O)I-tra(k, k'; le', k)pkf(O). (3'41)
          k,k,

With use  of  these quantities, we  obtain  the following expressions,

     r=  
rr23leB2

 (:I;pac(o)+2r'), (3'42)

     f:=x{t+6{t, (3･43)

     xs=2ptB2[xs'+pC(O)], (3･44)
                 '

     xc'=x{t-xi･=Zpk'(O)(xNtt(h)-x-t,(k)),  

'
 (3･4s)

                   k･

where  xcf is the charge  susceptibility'of  f-electron and

     xc ==  pC(O)+xc'.  (3 ･46)

                            S4. Resistivity

   The  T2-term  of  resistivity  in the heavy  electron  system  is very  large and  its

coeMcient  is nearly  proportional to r2. Now  we  derive the exact  coefiicient  of  the

T2-term in the heavy  electron  system  on  the basis of  the Kubo  formula. Current
operator  J in our  system  is given  by
                                                    '

     f=e2(vhfaXaabo+vkCcZcrcha)+eZ(7kVhaXtickcr+7bVk*cXaahff), (4･1)
          hd  kO

where
                         '  '          '
-
 vkC=l7bE,,.  (4･2)

     vhf=  7,E,.  (4･3)                        '
                                                    t t
In Ref. 7), f- in (4･1) is used  to derive the conductivity.  Here, we  derive the conduc-
tivity with  use  of  the physical quantities expressed  by  quasi-particles. At finite
temperatures, the eigenvalue  of  the quasi-particle, 2=Ek'-il"h'(rh*>O),  is deter-

mined  by
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     (2-e,)(z-E,e-X,R(z))LIV,i2=:O. (4･4)

We  confine  ourselves  to the low temperatures and  substitute  into (4 ･4) the expansion
form  of  the  self-eriergy  part,

     Xb"(z)==XkR(O)+a,XkR(z)lag.-o･z-idlk, (4･5)

we  obtain  the eigenvalue  for rb*Kdh<IEk"l  as

     Ek'=  .1. (Ek+ Vle21(Eh'-eh)),
          rh

     E,=  E,O+E,R(O),'  (4･6)
                                      tt     '

     rk* 
=t

 7, +1v,f2A! (kE,*7E,)2 
==zk'Zlh,

 (4･7)

where  zh'==:zk'(Ek")  given by  (3･14). The  velocity  of  the quasi-particle is derived
from  the eigenvalue  equation as

     vk*=7kEh*=zbfvNhf+zkCvkCtzlef  
1
 7klvbl2, (4.s)

                                pt-eh

where

     v-",f=7,E,==7,(E,O+X,(O)).  (4･9)

At  T=::O and  external  frequency to=O,  the vertex  correction  AkO is given by

     AOkd(o) ==:  ,;i.l ,fgi.lz'･  I'1ptdr(h, k')[Gkf(ca')]2[vk･' +-(i.J7-4SlelslJy, +"-  
.,.)2

 vk･c+  (gl,V+hi2-/O.k,1) ] ,
                                                             (4･10)

where

     1'Uat(k, k') E!  ILkct･(hk'; h'h). (4'11)

On  the other  hand, the momentum  derivative of  the  f-electron self-energy  is given by

     7haSka(O) =::  ,pu..f2do.,I llrtr'(k, h')1,j.M, 
"lli'[

 Gi'+q( of) fu Ghf(w')]

             =  
,ll.;.fg}.Il,'･

 1-lraf(k, k')[GhJ'(of)]2[vhf -i- (.,V+khi 
2.VZC,,),

 +  (21,V+hhl2-/O.k,1) ]
             ,-,;..IUIfa'(h, h')zkf6(pt-Ek'*)vk･", (4･12)

where  vb･* is the velocity  of  the quasi-particle given by (4･8). The last term  of  (4･I2)
is the  backflow term  and  is absent  in the expression  of  d(ca) for the finite temperatures
with  ev<rh*.  The  real  velocity  Jh  giving  the conductivity  is given  by 

'

     Jk=2kf(vkf+AhO(O)+  pslek  7kl Vk12)+zkCvkC
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=akf(vkf+7  le;k(O)+  
ptleh

 7kl Vh12)+zleCvhC

+xk'ZI'har(k, k')zh･'6(u-Eh･")vu"-
    k,

       
==

 Vh'+,X.,.fu･(k,  k') 6(p-Ek･*)vb･*. (4.13)

The  interaction between quasi-particles is given  by

     fhor(k, k') ==zhtl-Uar(kk';  h'h)2kf. 
'
 (4'14)

In Ref. 7), the expression  of  the conductivity  at low  temperatures is derived by
applying  Eliashberg's theory  to our  case.7)  The  result  is

     o,.(w)=.s.2I\k.  21T 
C.h+

-2

SEal.k,
",12T)k.

            +tF.f,,z,flij'IT:
-

.

2(,Eiilf,?( T.).7>,Zi(.hi..le';W)zk-･.l.
 (4'is)

The  reciprocal  life-time of  quasiparticle, rb', is given by (4.7). The imaginary  part
of.the  self-energy,  

-illk,
 is given  at  low  temperatures as7}

     zfhi==-ImXhR(e)

     
'
 =(e2+(zT)2)!2'Zmpi-q(O)phf(O)Pi'+q(O)

                    h'q

         ×(P2,,(k, k'; k'+q, k-q)+S-TtZ, (k, h'; k'+q, k-q)l. (4'16)

The term  with  7-li2 is important in order  to recover  the momentum  conservatibn.

This correction  is related  to the imaginary  part  of  the self-energy  and  essential  to

obtain  the correct  result  in the thermodynamic  limit, w-)O.  The  backflow-term-
conserving  the total current  at  T=O  is replaced  by the n2-term at  finite temperatures.

By treating this vertex  correction  in a consistent  way  with  the self-energy  correction,

we  can  show  that the resistivity  due to the electro'n  ipteraction vanishes  in a  free

electron,sYstem.vwithout any  crystal  potential. We  show  the diagrams  forthegeneral

                                 '
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                                       '

vertex  corrections  giving rise  to the T2-term in Fig. 4. The three-point vertex  part
Ak(E) is determined by the equation,

     Ak(E)=:=Jk+Ak(a>(e)+Ah(b)(s)+Ah(C)(e)

          -Jh+

 :.,zfo(k, le'; le'+ q, k-  q)[ 2AAk,'-qf(S.)) +  2Ati"i;.q,((e.)) 
-
 ,"Al 

kiSi-e.))
 } ,

                                                             (4･17)

where  ･

     A,(k, h'; h'+q, h-  cr)f= rrp{-,(O)p{･+q(O)pkf(O)

       × [r2,,(h, k'; k'+q, k-q)+  S ]42,(k, k'; h'+q, k-q)][(nT)2+E2] . (4･18)
     '

The  imaginary part  of  the self-energy,  tik, in (4･16) is given by
           '

     Zk=S:,,zfo(k, h'; le'+q, k-q).  (4･19)

We  put  here

     ¢ k(e)!LAh(E)12zfk(E)- ¢ de(-e).  (4･20)
                                                               '

Then  we  obtain  from  (4･17) the  equation  
'

     O=Jk+24(h,  le'; h'+q,  k-  q)[ ¢ k-,+  ¢ b･+6-  ¢ h･ r.  ¢ k] . (4'2!)
           k'q

The  conductivity  is given by

     opu(o)=e2:l]Jkpt(- 
ofo(xX)

 )...... 2Arh,"*

          =e2\h,(-  
aiZ'EfX)

 ).=.., Skf ¢ ,..  (4･22)

Here, if we  assume

     ¢ , 
==

 hF,  (4･23)
the  second  term  of  (4･21) vanishes  because of  the  momentum  conservation.  To
satisfy  the equality  of  (4-21), F  tends  to infinity. Thus  opp given by (4･22) tends to
infipity. Therefore, we  have  no  resistivity  due to the electron  interaction in the  free
electron  systems.

   On  the  other  hand, in the periodic system  there exist  Umklapp processes  in
f-electron s.cattering  and  (4'21) can  be written  as

     Jk-2`tfo(k, k'; k'+q,  h-  q)ZK}F  -:O.  (4･24)
         UQ  t                                              '
                                                                  '
Here  we  have  put

     ¢ k-q+ ¢ k'+q- ¢ h'- ¢ k=-\KiF,  (4.25)
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where  K} is a  reciprocal  lattice vector  and  we  have  assumed  that zlt} with  a reciprocal

lattice vector  in its argument  can  be replaced  by the corresponding  value  in the
reduced  zone.  For this case

¢ k=kJ,･k2d,. ZK,･h
     i

andJkoch (4･26)

and  the conductivity  is given  by

o..(O)=e2Za(pt-Ek")Jk.
        k

1 k2
2r,* Z(K
     ii'

 k)fhy･ (4･27)

In this expression,  Jk and  rk*  are  renormalized  by  2kf  and  density of  states  of

quasiparticles pk*(O)=S("-Eh')  is enhanced  by 1!zhf. As the result  all factors due
to the renormalization  cancel  out  with each  other  and  the resistivity  is proportional
to Ak, whieh  is given  by  the T2-term with  a  strongly  enhanced  coeficient.

   The  factor 2nh is given by

2Ab !-II"  (rrT)2;,rrP{-q(O)Pkf(O)Pi'+q(O)

          ×[r2,,(k, k'; k'+q, k-q)+Sr"2,(k,  k'; h'+q,  h-q)]  . (4･28)

r",(h, h'; k'+q,  le-q) is the antisymrnetrized  vertex  for the electrons  with  parallel
spins  and  vanishes  for q==O. If we  neglect  the momentum  dependence in Pft, P", =O.

Further, if the large Coulomb  repulsion  between  f-electrons suppresses  the charge
fluctuation of  f-electrons or  zcf ==:O,  the following relations  hold

x-,,(h)- z'-,,(k) -=  7( le) . (4･29)

Here,

     x"V,.(k) ==  Zpk･'(O)Jl, ,(k,  k'; h', k). (4･30),
             k'

Comparing (4･28) with  (3･36) for r-, we  can  see  that the coeMcient  of  T2-term of  the

resistivity,  A, is proportional  to r2 when  the momentum  dependence  in i-lfdr is weak.

Thus, A  can be .strongly enhanced  as  observed  in experiments  in Ce and  U'systems.
   Here  we  stress  that  the large T2-dependence of  the resistivity  at  low  temperatures

is an  important common  feature in heavy  electrons.  We  think  that the  logarithmic

dependence  on T  at  high temperatures is not  indispensable for heavy fermion systems.

The  large T2-dependence of  the resistivity  means  that the coherent  heavy  electron

band is broken ,at a  comparatively  low  temperature,  because the T2-dependence

reflects  that of  the reciprocal  life-time of  quasi-particles. If we  define T'  (kB=1) as
the temperature equal  to the inverse life-time of  quasi-particle, we  obtain

T"  =1-'k*  =gbjltih==  -!- 72T*2pf(o) ,

                7

･(4･31)
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T' or  21'7 pfl(o) 
=fo  ･ (4･32)

Thus, T" is the order  of  band width  of  heavy  electrons.  The  rapid  increase of the

resistivity  ceases  at  the temperature around  T*. The behavior of  the resistivity  at

the temperatures higher than T*  cannot  be confined  to the logarithmic dependence,
because  there exist  various  intersite couplings.

   For the actinide  system we  need  another  explanation  than the Kondo  effect  for

the reason  why  the heavy  electron  is realized.  For example  in the uranium  system

there exist  two  or  three f-electrons at  each  U  atom.  These  f-electrons censtruct

narrow  coherent  bands at  low  temperatures.  The  actinide  system  can  be described

on  the basis of  the periodic Anderson Hamiltonian with  the orbital  degeneracy. The
uranium  system  with  two  f-electrons has larger degree o,f freedoms than  Ce (Yb)
system  with  one  f-electron (hole). The  weak  Hund's coupling  and  orbital  degeneracy

give rise  to large entropy  and  large specific  heat at  low temperatures. Though  the

5f-band in U  systems  is not  so  narrow  as 4f-band in Ce, systems,  higher density of

f-eleqtrons paakes more  effective  the Coulomb repulsion  among  f-electrons, which  is

determined by coupling  constant  p'(O)U.

   If the static  pressure is applied,  the heavy  electron  system  becomes  light in the

general case,  because the bare f-electron density at  the Fermi  energy  decreases
through the increased hybridization. Thvs, the pressure r6duees  the T-linear term  of

the specific  heat and  the T2-term of  the resistivity.

   In the low  frequency limit, (4･22) or  (4,27) can  be generalized as

o"u(ca)=  e2;Jhp(-  
aioC(xX)

 )..E.. (2ri,,I.T)k"zto+ 
w2
 Akv , (4･33)

where

     1":,w=2k'[z1fe(Ek*+of2)+Zlk(Eh"'of2)]. (4'34)

The result  (4･33) explains  the temperature and  frequency dependence of  the observed

optical  conductivity.  At low  temperatures  o(to) is given  by

a(  to) oc  [A{( rrT)Z+  .2}]-i  
,

A  being proportionalto  72,

g 5. Extension  to the periodic  Anderson model  with  degeneratef-orbitals

   We  have developed so  far the Fermi  liquid theory  on  the basis
Anderson  model  in which  localized orbitals  are  assumed  to have  no

racy.  In this section,  we  remove  this assumption  and  introduce the
pling and  the  crystalline  field splittings.

of  the periodic
orbital  degene-

spin-orbit  cou-

1. 7"Zze Pen'odic Anderson  fitzmiltonian for degeneizzte forbitnls

   For this case,  our  Hamiltonian can  be written  dow'n as
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     JiC=F.ekaciack6t,nv2,EMM･ffi{f;M･+g,,.;.,f}MfunMtnMr

         +  tt iM;o(  VkMve-ik'nx c:aiM+  V:uaeik'RifMfcha) . (s.1)

The  wave  function of  the conduction  electron  1ho> is approximated  by the plane  wave

as

            1 ifer

     1ka>=vbe xo, (s･2)

where  xa represents  the spin  function for spin- o( ± 1) and  9  is the total volume  of  the

crystal.  In the  presence  of  the magnetic  field H,  its energy  consists  of  the  kinetic

energy  and  the Zeeman  energy  as

     eka=  Ek  rm opBH,  (5･3)

where  o  represents  the Pauli spin  matrix  ag which  takes  ± 1. The  plane  wave  given
by  (5･2) can  be expanded around  site  i as

     [ko>= lat etk'Ri,Zco=,i7i(lelr-RiD.;.-,KM"(eh,  q5k) MM(0r-R. ipr-R,)xa ･ (5'4)

Here, 7'i(kr) is the spherical  Bessel function and  YiM(e, ip) the spherical  harmonic.

   nM and  fu represent  creation  and  annihilation  operators  of  f-electron at  site i in
the eigenstate  denoted by M  under  the spin-orbit  coupling  and  the crystalline  field.
Such  eigenstates  can  be expressed  as  an  appropriate  linear combination  of  the states

specified  by 1'--l± s, j'x=m  and  o=  ± 1. Namely, the eigenstate  Iin4> can  be expre-
ssed  by

     IiM'>rr I?ni(1r-Ril)i,aYmcr KM(er-R,, g5r-R,)xa, (5'5)

where  Rni' is the radial  part in which  n==4  and  l= 3 for Ce3' ion and  aYmcr is the

Clebsch-Gordan  coeficient.  The-f-electron energy  with  the Zeeman  term, which  has

now  off-diagonal  elernents,  is given  by

     Ennvt=EMaMM,-<Mlh+2sfiIM'>ptBH. , (5･6)

Here it is noted  that z-axis  differs generally from  the principal axes  of the crystalline
field.

   The  third term  of  (5･1) represents  the on-site  Coulomb  repulsion  between  f-
electrons,  U>O,  and  the  fourth term  represents  the mixing  between  f and  conduction

electroris.  The  mixing  matrix  element  can  be  calculated  with  the  use  of  (5･4) and
(5･5) as

     Vh..=s/4iirZaY.. Y}M(e,, ¢ k) Vi,.,, (s･7)
               m

     i'lni;(-i)`V[lllil,Ccoi't(kr)v(r)Rnt(r)rzdu, , (s･s)
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                                                       '
                                                              '

where  V(r) is the effective  potential for electrons,  assumed  spherically  symmetric  for

simplicity.

   The  Fermi liquid theory is developed by  taking  U==O  case  as  the unperturbed

state. Fer  that purpose, it is convenient  to tewrite  the Hamiltonian  (5･1) as

     LSrC==Zekifc:ctcka+  :  EfifM,fXMfbMr+ 2  (VkMtrCicrfhM+ V:MiffZMCkd)
         ka  , kMMr  hnfa

         +  2UIV' kb.;,,,,,fZ""AtfZ"  q"'fk'"'fkM,  (5'9)

where  fhM is

     fkM= l<ii l.]e-'k'R'fu. 
,
 (s,lo)

2, Consicieration for the non-interac(ing  system

   The main  purpose in this section  is to derive the expressions  for the T-linear

coeMcient  of  the specific  heat and  the magnetic  susceptibility  on  the basis of  this

Hamiltonian. For that purpose,  we  begin with  the consideratien  for U== O case.  In

the absence  of  magnetic  field (H=O), the Green's functions of  conduction  and  f-
electrons are  given by

     GSotr(ca)=Aka(to)1[Akif(to)Abcr(w)fBhd(to)Bkif(w)], (5･11)
       '

     GZaa(ca)!Bka(w)1[Ako(ca)Ahff(w)-Bha(to)Bhff(to)], (5'12)
                                                    '

     G{aut( tu) =l  .6."i]il'3. +.Z., 
,.khi:Sl}GZotrt

 
.V+:'iii:',,

 (5'i3)

where  o- 
--

 
-

 o. and  ･

     Akcr(w) =  w-  eh  -  v-Iill.elst-E. , (s.14)

               V:Ma  VhMa
                       .

 
･(5･15)

     B,.(w): ;X

             M  to-EM  .                         '

In this U=:O  and  H=O  case,  the  Hamiltonian  (5･9) is diagonal with  respect  to k  and

M.
   In the case  that the localized f-electron states  have Kramers  degeneracy as  for

Ce3', Bkcr always  vanishes.  The reason  for this is a$  follows. The time reversal

operation  denoted by K  on  the state  1mu> gives its counterpart  liM> with･a  phase
factor which  has no  physical significance.  Using the relations  that K(gext)=ip"x,

and  K(gex,)=-di"x, and  MM*=(-1)MY}-M, we  obtain

     aef- mt  =e(-1)M'iaY."  
,

     ae(Tm,  ==  e(-1)MaYn,.  (e=l or  
-1)

 (5'16)

Note  that the Clebsch-Gordan coeMcients  are  taken to be real.  From  (5･7), (5･16)
and  EM=Em,  Bkt(ca) of  (5･15) is calculated  as

         .
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     Bk,(ca)=S-v-ZtiigZk{tlEl!l!dlelE!-
leMVkM･iEV.k*MVkM,

           ==2rr1  Vkni12; 
to
 mlE.  

.Z.,(aYntaYm,･
 XM" YIM'+aptL.r,a{l-.. x-m'* K-m) 

'

                      1
           

=2zl

 VknilZV tom  E.  
.2.,(aYmtaYnr,

 
LaYn,aY.r,)

 }'}M" xm'= o .

In the same  way  we  obtain  also  Bk,(ua)=O. Therefore, in this case

     GScstr(to) :=11[t4.ko(to),  (5'17)

     GiMM(w) ==  .-IE.  +;-d.lkstli-"  E.)2 
GZetr(ca). (s･is)

On  the other  hand, since  we  can  show  that

     
']VkMtfl2+1Vhiitr12=1VkMo12+1VkMa12='21kM

 
'(5'19)

is independent of  a, (5･17) and  (5･18) can  be written  as

     GZ,.(di):=1iCA,(w), 
･
 (5･2e)

     GiMM(ev)=:.mlE.+(..ii3fS,MA,(.), , (s･2i)

'where
 , 

'
 

'

                    IkM
     Ah(to)=tu-Eh-]ill to-E.,  , (5･22)

which  is also  independent of  a. The  Green's functions of  (5･20) and  (5･21) have the
same  pole  at  to ==  Ek"n which  is an  eigenvalue  of  the hybridized band  and  determined by
                                           '

                        IkM
     Ak(E:n)=EXn'Eh-;E:.-E.  

==O,

 (5'23)

                                                 '

where  the subscript  n  is assigned  to the different eigenvalues.  The corresponding

eigenstates  

'are
 given  by  

-

     lk"O*>= A,,(IEx.) [CZa+;E:V.St"fli.f:M]10>, (5b24)

where  lO> is the vacuum  state  and  A'h i's given  by  
'
 

'

           -  dek(to)                                Ik. deh
     A'k(Eh*n)- do lto-E:n=:1+; E,*.-E.)2=alEx.'  (5'25)

Furthermore, ,GIMM(w)  has another  pole  at  to ==  EM.  Residues of  GChaa(ca) and  Gfnnv(to)
at  these poles are,  respectively,  given  by

     ZSd(E:")==A'h(IE"k.)=[1+;(E,*.Il"E.)2]Hi,  

'

 (5'26)

,
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                 2I,.

     2iM(Ek*n)=  (E:.-E. 2 gZo(Eb"n)  ,

                    2I,.
     a{M(EM)==1-                               for IhM#=O
                    Z  IkMr
                 MrE(E".=EM)

            =1  for IkM =O.

Here, it should  be noted  that 2Scr(EXn)  is independent oi

     2Zcr(Eh'n)-Jli-;XiM(EXn)=1.  '

   Introducing the Green  function of  the  electron  in the

o and

(5･27)

(5･28)

(5･29)

(5･30)

hybridized band  state  by

     Gh"nd(w)::=11(w'E:n), (5'31)

we  can  rewrite  the Green functions of  c- and  f-electrons as

     GSoo(to)=ZzSo(Eh"n)Gh*ncr(to), ' - , (5'32)
              n ･

     Girmt(to)==Zz{M(E:n)G:nif(w)+a{M(EM)1(touzEM). , (5'33) '
               n

'

Now, we  discuss how  are  the electronic band structures.  We  consider  the case  IhM
=S
 O. If there are  np  degeneracies except  Kramers one,  the residues  at  any  EM  for k

vanish  because ef  (5･28), and  (5･23) gives the whole  band  energies.  The  number  of

E:n is equal  to A[f12+1. Here, AIh denotes the number  of  the local f-electron states,

then AC･12 corresponds  to the number  of  the Kramers doublets. In such  a  case,  the
whole  

'bands
 have  dispersion,

   If some  f-levels including the state  M  has further degeneracy  besides Kramers

one,  a fraction of  the state  M  mixes  with  the conduction  electron  states  to construct

the hybridized bands but the remaining  parts stay  at  the original  energy  EM  with  the

weight  of  (5･28). The  total weight  of  these unhybridized  parts of  thef-level  (denoted
by l) is calculated  from (5･28) as  ZM.i-thieveiziM(EM)==Mi-2, where  A(fi is the

degeneracy of  that f-level. These remaining  parts, of  course,  form dispersionless
bands  at the original  energy  EM.

   The  exceptional  case  lkM=O  occurs,  for example,  for h  parallel to one  of  the

crystal  axes  for cubic  n  doublet. In such  a  case,  11 state  is outside  of  the mixing

problem  solved  by (5･23) but joins the  band  formation by connecting  continuously  to

a  solution  of  (5･23) for IkM=#O･

   Next, we  consider  a  simple  case  with  spherical  symmetry  in which  the crystalline

field splitting  are  not  taken into account.  Using Clebsch-Gordan coeMcients  given by

aYmd=-a(l+-ll--flaa)/(21+1)6m,nz-ai2  for M:  7'i=l--lli-, flg, (5'34)

 Malmif=

and  relations

(l+t+7',.o)/(21+1)a.,m-.t, for M:fe==l+e,

2in=-,1 ylm(e, di)12-(21+1)14rr, zh=-,ml yLm(e, ip)12-

i2g , (5･35)

O,'we obtain



Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOffice,Progress  of  Theoretical  Physics

160 K. Yamacla,  K. Yosida  and  K. Hanzawa

 S'l

 Z  I,.±
M=-Jl

l Vlknil -,-
 27',+121l'enil2, (5･36)

     .$-J,IhM=(l+1)1
 Kni12== 

27'22+11
 ltni12. (s･37)

Thus, (5･23) is written  as

     Ek*n-eh-El,l.V-L"S12,.,-(IE+,*1.)!k,E",.Ii12=o, 
'
 

'

 (s･3s)

which  does not  depend on  the direction of k, thereby leading to an  expeeted  result  that
the whole  bands are  spherical.  (We approximated  conduction  electr:ons  as  free.)

The  degree of (5,38) is three, giving  three hybridized bands with  two-fold  degeneracy.,

The prefactors of  1 VZntl2 are  equal,  to a  half of  the degeneracy of  the corresponding
spin-orbit  levels. Effective mixing  matrices  are  enhanced  by the square  root  of  half

a  degeneracy.

   We  consider  the case  that  the  total number  of  f- and  c-electrons  per  f-site is less

than two, and  the lowest band is a  hybridized one  denoted by E:o and  that this is

partially fi11ed and  other  bands are  vacaht.  In this case,  the linear coeMcient  of  the

specific  heat is given  by

     r== 
23n2

 leB2]i]a(pt-E:,), 
･
 

･
 (s･3g)

'

where  pt is the Fermi energy.  This is proportional  to the density of  states  at  the

Fermi energy,  which  is rewritten  with  the use  of  (5.30) as

     :i]a(pt-EXo)==]Il][2Sa(E:o)+-li-;ziM(Ek*o)]6("-EXo). (s･4o)

By  denoting the density of  states  of  the original  conduction  band per spin  by p(Ek) and

replacing  the summation  over  wavevector  by  integration,

     ;a(p-E:o) ==  fff9.k p( eh")+;1:  
{II.?k

 p(ek") (pt il:'ij.)2 , (5'41)

where

     eh"-"";  pt 
I-kiC}..

 
'

 (s･42)

The first term of  the right-hand  side  of  (5･41) corresponds  to the density Qf states  of

conduction  electrons,  which  does not  change  from  that of  the original  conduction  band
for a  constant  density of  states  and  the  second  to that of  f-electrons.
   Next, we  turn to the derivation of  the magnetic  susceptibility.  For  this, we  must

solve  the equation  for H40,

Aha(to)Aha(w)-Bka(w)Bka(w)=O, (5･43)

to obtain

obtained

 the  eigenvalues  up  to the order  of  H2. Here, Aha(w) and  Bkcr(w)

as

are
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     Abo(to)==:to-sh-ah(di)+a[1+bh(ca)]h-ch(ca)h2+O(h3), 

'
 (5･44)

     B,.(to)==-d,.(to)h+O(h2),  (5･'45)

where  h=:=#BH and

     ak(ca)==;-132.e{flE.,  (s･46)

               V:Md<Mlh+2salM'>VhM･d
     bk(W)=:O,X}. .-E.  .TE.,  , (5･47)

               Vk"Mtr<M h+2sx  M'><M'1h+2sfiIM"> VkMr･cr
                                                 ,

 (5･48)     Ck(W)=  Z
           mufrM"  (tomEM)(tomEM,)(camEM")

               V:ua<M  h+2s2 M'> VhM,a
                                    . (5･49)     dka( to)=  Z
            aur･  (te-EM)(to'EM')

It is easily  shown  that ak(ca), bk(to), ch(to) and  dha(to)dka(to)=ldhcr(tu)l2iiiek(to) are  all

independent of  a. Thus, (5･43) is reduced  to

    ･ to==eh+ak(to)-o  [1+bk(ca)]2+eh(ca)h+ch(tu)h2+O(h3). (s･so)

We  define the solution  of  (5･50) fer o by Ek"on and  consider  the case  that gnly the
lowest band n=O  is occupied.  From  the expressions  for the total number  of  electrons

and  the  energy  of  the  grbund  state,

     M-ZO(pt-E:ifo), 
'
 .(5･51)

         ha

     Eo=ZEXaoO(pt-Ek"ao), . (5'52)
         ka

the susceptibility  is obtained  as

     x=xp+xv,  
'
 (5･53a)

     xp=F.[03iliaO]2.=,a(pt-E:o),  (s･s3b)

     xv =-  7. 
02oEH"'2aO

 
.=,e(pt-E:o)

 .' (5'53c)

The first term xp ma'y  be called  the Pauli term which  gives tise to a  usual  Pauli
susceptibility  and  the second  xv the  Van Vleck term. The  contribution  from xv is
crucial  when  orbital  degeneracy is considered.  Differentiating (5･50) by  h, we  obtain

                 1+bh(to)]2+ek(w)      oca
                                ,

 (5･54)
      oh h.e==  

rma
 1-ai(w)

     
6o2hg

 
,=,=i-

 
.lt,(,,)[

 oa.([1+blk(-`02),2(+.,)ek(W))+2ck(ca)], (s･ss)

where  a'h(ev)=Oala(to)raca.  Noting that 1-a'k(w) is equal  to A'k(Eh*n) of  (5･25) and

replacing  the summation  over  k  by integration, we  obtain

                                                       NII-Electronic  
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     x,=2pt,2f(f9.hp(e,">-t/l-±-bei421tsi+bfu)(]Xe(p),
 (s･s6)

     xv ==  
-2pB2/:g

 [T?k l;.cl[e:ep(ekEXo)[ 
czEdr,.,

 ( [1 +  bh(:;lt,,o(t/2.t,)eb(E:o) ) +2c,(E:,)]

       =  -  2uB2f  g2Slnlk p(ek") 
[i
 
+
 
h
 
hhge,,)!pt2

 ; eh( pt)

        
'F
 21tB2ff29.k p(ek"D') 

[1
 
+
 
bb(

 
-AD,,(*2i]2D+,fk(

 
-D")

        +2ptB2fS.lhlZ.`ZEeXo 
`lptilie)

 ls==e.Ex,{[1- bh(E:D)]2+ek(E:o)}

        -4tiB2fg29rrhl[Z,(iE:op(eltEaso)ck(Elt*o), (s･s7)

where  -D'  is the lowest value  of  Eh*o and

     EkEZo=E#e-;  E:f2tVE.. (s･ss)

The Pauli term  is entirely  canceled  by the first term of  (5･57). If we  assume  that the

conduction  band width  is much  larger than  the  mixing  rrlatrix  elements,  we  can  safely

put A'k(-D*)==l and  bh(-D')==ek(-D*)=O.  Further, if we  assume  that the density

of  states  p(e) is constant  we  can  drop the third term  of  (5･57). Then,  denoting the

constant  state  density by  po and  the mixing  integral by V  which  is assumed  to be
constant  also,  we  have as  the susceptibility

     x=2ge,2  p,+xi,2p, v2si;, t<s,M- k+) 
2(lilzltllZl'iili,

 (s･sg)

where

     <Mih+2s21M'>=!Z(m+o)aYmcraYic.  (5･60)
                  mcr

The second  term  of  (5･59) cornes  from the upper  limit of  the integration of  the fourth
term  of (5'57) which  includes cb(Ek*o).  To  derive this second  term,  we  have used

(5'48), (5'5) and  (5･7) and  the orthonormalities  of  iM>  and  YIM. The  simple  expres-

sion  for the susceptibility  given by (5･59) results  mainly  from the assumption  of

constant  density of  states  and  constant  mixing.  It is noted  here  that  the  anisotropy

of  the susceptibility  is included in (5･60).
   Now,  we  calculate  the susceptibility  in the spherically  symmetric  case  in which

the crystalline  field splittings  are  ignored, retaining  only  the spin-orbit  coupling.

   Using (5･34) and  (5･35), we  have  
'
 ･

     x=2ptB2po+g"B2pov2[4pti'tVil)i,) 
2i'iii

        +g.i'2-(i2 S,) 
2i2,+i.

 ?l(-, EB(.(2! 
+.,:),],

 (s･6i)
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where  1'i-l-(112), su, -2U(21+1);  1'2-･l+(112), th,-(21+2)1(21+1). If Ej,=l!li,=E,

we  have

     x=2pt,2p,+2pt,2p,({2+-ik)V,2+-g-ptB2poi(i+o-<ZtilLIZII;E--E),  . (s-62)

These  results  for U=O  and  no  crystalline  field splittings  are  derived in Ref. 12).

3. Considet'ation for fall Hkzmiltonian

   For  general  cases  in which  the Coulomb repulsion  is taken  into consideration

between f-electrons, we  ha've to introduce the self-energy  of  f-electrons by .Xknvt(w)

and  determine the  Green's function by

     PkGk--"IN.+2, 

'
 ･ 

'
 .(5･63a)

     iii,=(
t'ceiNfI";ii,l-`Xhh

 toehet,, 
V-

oh･ 
N

), (s･63b)
         X vn X, o to-ek,/

     c,-(GG'i･f',
 Gs9fi/cv) GsG,fl/w)> 

'

(s'63c)
         XGs{l GZ.,(w) Gs,,(to)/

Ph and  Ck are  (M+2)×(A(}+2) matrices.  fN.+2 and  iN, denote the unit  matrices  of
                                                  A  rH
rank  Al] +2  and  M, respectively.  These are  simply  written  by 1 in the following. E,

X"k'and Ckf are  A(f× AJ]lt matrices  whose  MM'-elements are  given by Enur, XhM]fr(w)
and  GiMMr(ca), respectively.  v""ka and  6fir are  AtY-dimensional colurnn  vectors  whose

M  component  is giVen by  VkMtr and  G{ifd(w), and  vAXd  and  Gza are  the row  vectors.

   The  determinant of  Pk is expressed  as

      p,i= tui-E-Sk-ZhmaVeA
,Z.ct 

v-hb (to-.,.)
                   vAXff ev nv eka

        ..  cai-E-.S,-z  V"haV-'Zcr (to-ek,)(ev-Eh,), (5･64)
                      a to-eka.

where  v'"kcrv-Zo  is the MXM  matrix  whose  MM'  element  is given  by  VXMtrVbM,a･

Therefore, if we  define the AI}XAi] matrix  by

      
--
 

--L-

 (5･65)     Fh ==  to1-E-x,-2  V-kcr V- ha 
,

                    o  CO-Ekcr

the Green's functions of  f- and  c-electrons  are  given by

     Ginuf(ca)=(fih-i)M]tr,

     GScrcr(w) ==  [ to T  EbdL  
,me,

 Vh"ne([wi-E  
-
 .Ei  k-  ZhL6 f2.a ]-i)nu, v,.,.]-'

           =  
cv
 leka +  

w
 -lsh.  me, VZMd Ginu'(w) VkM'a cv ie bo  ･

(5･･66)

(5･67)
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'

    By  introducing the unitary  matrix  Uh, Pk is diagonalized as  UhPhUh-i==Qh  to

give  eigenvalues  EXn, where  n=1,  2, ･-･IV[)+2. If we  follow Luttinger derivation,8) the

coethcient  of  the T-linear term of  the specific  heat is obtained  a$

      7=  
n32
 leB2N.Z'i20("-Ek"n). (5'68)

    We  calculate  this as

     IV)+2

      Z  8(to-Ek"n)
      n=1

       =--l  [rn oO. 
Iog".T:Ii,2(to+i6rEXn)

       ==  --}Im  oa. 
IoglQ,1--tlm  oO. 

IoglPhl

'

 =-IFIm  oO. {logl#kl+;log(ca+i8-eha)} 
'

       ---l  im(,iil,(6M]dif- 
a2!,;h.""'

 
-]7

 \6`!fY,X.3a )
         × G{MrM(cv +  i6) +  7 

ca
 +  isl- E,.  )

       =  -"Im(me,(  a,,.･- 
a`Xob."var

 )GiM･M( ca +  i6)+ :i] GS ,v(ca  +  i6)) . (5･69)

Generally, the imaginary part of  the self-energy  vanishes  at  the Fermi  surface, so  that

the T-linear coeMcient  of  the specific  heat is obtained  as

      7== ZSZ kBZ ][Trr-h(xt)n-h'(ti)+]Ii]niif(tt)], ,. (5'70)

where

      r-h(ca) =2-  
Oo"Xvk

 , (5'71),,

and  n-h'(to) and  nScr(w)  are  defined by 
i'

      n- h'(w)  =--1-ImCk'(w+  ia), . (5･72)
               rr
                                                              

.t

      nXd(te)=--LImGSdi(to+i6).  
''

 (5･73)
               z ･                                                          '

Thus, the T-linear terrn of  the specific  heat is proportional  to the density of  states  of

quasi-particles at the Fermi  energy  in which  the f-electron part is enhanced'by  7k(pt),
while  the c-electron  part  has no  such  enhancement.  k

    Next, we  turn to the susceptibility.  As  LuttingerS) has derived, the magneltization

is obtained  by differentiating the thermodynamic  potentlal with  respect  to the
magnetic  field and  by keeping in mind  its stationary  properties  to variatiens  pf the
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self-energy,  as

M==pB\f:dof(ca)(j:,<M](h+2sa)IM'>

× (-tlm) GiM･M(w+ iO)+ {] o(-Tll Im)GkCatr(to +  ia)) , (5･74)

where  f(to) is the Fermi distribution function. Introducing the A()XA(i matrix  ICi
whose  MM'  element  is given by <Ml(h+2s2)IM'>, making  use  of  (5･66) and  (5'67), we

can  rewrite  (5.74) as

MiiptB;1:duf(to)(--l  [m)(Tr(AiLfiXkLi)

+\  to +  i6a--e,. 
+  ;] w+  i60- e,.)2 

Tr( v- hct v-;crii"k-i)l . (5･75)

   If we  follow Luttinger's procedure,  the next  step  will  be  to rewrite  (5.75) in the

following･form,

M-=  pB]v.LI:dof(to)(-{:{[m) oO. 
sh(to+ ia)+J . (5･76)

If it is possible and  J is shown  to vanish,  then we  have the  expression  for the

susceptibility  which  is described in terms  of  the quantities at  the Fermi  surface.

However,  it is generally  impossible to obtain  such  an  expressiori  in the cases  including
the trace of  product  of  matrices  in (5･75), since  commutator's  of  #k with  th, v-kav-Xa

do not  vanish.  In connection  with  this, ln the  previous  paperi"} in which  orbital

degeneracy  has been taken  into consideration  for･localized f-electrons, non-

co'mmutability  between these operators  was  not  correctly treated and  therefore the

final expression  given there for the susceptibility  is not  correct.

   Generally, in such  cases  as  here, the expression  for the susceptibility  is composed
of  a  part  expressible  in terrns of  the quaritities at  the Ferrni surface  and  the other  parts
given  by the integrals over  the band. The  first part is proper to the  Fermi  liquid

theory and  the others  can  be regarded  as  correction  terms  to the first. Here, if we
assume  that the conduction  electron  band  width  is large enough  compared  with

mixing  matrix  Vbua, perturbations whi,ch  the electronic  states  undergo  by  the

magnetic  field will  be limited to the neighbourhood  of  the Fermi  energy.  Therefore,

in .this case,  the second  correction  terms are  expected  to be small  compared  with  the
normal  part.

   That  this  js actually  the case  has  been  shown  by Hanzawa  et  al.i2) and  Yamada
and  Nakano'5) for a simple  special  case  although  we  have no  space  to describe here
their detailed calculations.  The  simple  case  is that in which  the spin-orbit  coupling

and  crystalline  fieid are  so  strong  that  we  can  safely  be restricted  to the lowest

Kramers  doublet labeled by  M  and  M.  For  this two-diinensional case,  it can  be
shown  that (M)nu==pt, (M)imii==:Lpt and  (A4)Adiiif==O. The  result  for the susceptibility  is

e'xpressed  as
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     x==2ptZptB2\[1-eeA  ).=,]nfMM(EF) '

        +21iB2:i]nSa(eF)+correction term. (5･77)

4. Summa?s, of thds section

   In this section,  we  developed the Fermi  liquid theory on  the basis of the real
periodic Anderson model  applicable  to Ce metallic  compounds,  in which  the spin-orbit
coupling  and  the crystalline  field splittings  are  introduced. Eigenstates 

'for
 localized

f-electron at site i is denoted by l iM> and  mixing  between this sitate and  the wavefunc-
tion ef  the conduction  electron  [ko> is taken  into account.  The  direction of  the
external  field is taken  as  2-axis  and  lin4> is described by a linear combination  of  YIMxif
referring  to z-axis.

   First of  all, the electronic  states  for this Harniltonian have  been investigated
when  U:=:O. Then, Fermi  liquid theory has 

'been
 develeped for non-zero  U. In this

case,  the self-energy  and  Green's function for f-electrons becoine matrLices  whose

off-diagonal  elements  are  non-2ero.  This makes  the situations  complicated.  Under
these situations,  the specific  heat has a normal  form to the Fermi  liquid, but the
magnetic  suscePtibility  has, besides the normal  part, anomalou$  correction  terms

which  cannot  be expressed'by  the  quantities at  the Fermi leveT. However,  this

anomalous  terms are  expected  not  to play an  important role  when  the width  of  the
conduction  band  is large compared  with  the mixing  matrix.  

'

                g 6. 71 of  NMR  and  anomalous  Hall effect

1. Nuclear spin-lattice reimation  time Tli

   Here, we  consider  the nuclear  spin  relaxation  due  to hyperfine interactions with

f-electrons.i6) In this case,  relaxation  tirne 7'1 is given byi')

     {X =leB  T(gnpn)2:i] IA(q)[2['il Imx'-(q, w+  iO)]...,, (6･1)

where  A(q) is a hyperfine coupling  constant  and  x'-(q, w+iO)  is the transverse

susceptibility  of  f-electrons. x'-(q, ca) is given  by

                                                           '

     x'-(q, cic)+io)  ==  i.L'oode"to'ie'`<[s,"(t), sz.(o)]> , (6･2)

     Sg'== Il]fitfk+q･･ (6'3)

The  general  discussion was  done by Kohno  et al.i6) Here, we  dis'cuss the case  at  low
temperatures.  At  zero  temperature we  can  derive the  equation,

     [blMX'-(q, to+iO)].=,=n;zk'S(pa-Ek*)af+g6(pt-E:+q)[Ah,k+q(O)]2.  (6'4)

The three-point vertex  Ah,k+g(O) is given by using  the four-point vertex,  I:i,, as
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      il lt.h+q(O);1-  T2Zll,  ･(k+q,  h'; le, k'+q) Gir+at(iEn･) GQ(iEnr) . (6'5)
                    nr  hr

 This result  can  be directly obtained  in the imaginary  frequency representation,  as

 shown  by Shiba for the  magnetic  impurity.iS) The  factor Ah,h+q is expected  to be

 enhanced  owing  to the electron  interaction U, leading to the enhancement  of  the

Korringa  constant,  i.e., (ZT)-1 at  T==O.

    If we  neglect  the le, E-dependence  of  Ah,le+g(E),

      X(q)=  m  i]1: 2fi;i 
Ah,h+q( iE)Gk'(iE) Gf+q( iE)

          ty  A(q) xrm(q), (6･6)
where  x(q) is the exact  susceptibility  and  x-(q) is defined as  that without  the vertex
correction.  Therefore, A(q)  can  be regarded  as  an  enhancement  factor of  x(q)  due
to vertex  corrections.  In this case,  (Tl T)-i is enhanced  by the factor

      711T cc[p'(O)]2]l]IA(q)12(  ff-lqql )2. (6･7)

    If we  neglect  the momentum  dependence  of  IU:F,(q) in (6･5) and  assume  a uniform

enhancement,  we  obtain

 . (TIT)-ioc72. 
-
 (6･8)

This is the similar  relation  to the  T2-term of  the resistivity.  From  (6･4) we  can

consider  

'also
 in the picture of  the heavy  electrons  by using  the density of  states  of

quasi-particles, p"(O), which  is enhanced  by 7A". In this picture the  vertex  correction

,is given  by zk'lt'lh,k+qxi+･qAk+q,b, which  is of  the order  of  unity  without  enhancernent.

The  factor [Ak,k+a(O)]2 is important in understanding  of  temperature  dependence of  Tl .
in the superconducting  state,  since  it decreases with  increasing superconducting  gap.
Therefore, in order  to ekplain  the full temperature dependence of  7'1-' for the systems
such  as  UPte, CeCuleSi2 and  UBei3, we  should  estimate  the temperature  dependence of
Ak,h+q, as  well  as  the life time  of  heavy  electrons.

2. Anomalozts Hlill ofect in the coherent  regime

    The ordinary  Hall effect  in the system  with  the electron  interaction is developed
by Kohno  et  al.,i9} extending  the theory done  by  Fukuyama20)  to the system  with  the

 T2-terms of  resistivity.  The  normal  Hall coefficient  RH has no  temperature depen-
dence at  low temperatures. On  the  other  hand, typical heavy fermion systems  exhibit

anomalous  Hall effect. The RH increases rapidly  with  increasing temperature  from
a  constant  value  at. T=::O in the low temperature  regime,  while  it decreases at  high
temperatures,  resulting  in a peak  structure  between  the two  regimes.  The  behavior

at  high temperatures  was  explained  by Coleman  et  al.2i) and  Fert et  al.22) by the
'mechapism

 of  the single  impurity skew  scattering.

    In Ref. 23) it is shown  that the  anomalous  Hall coeMcient  in the coherent  regime

is given  by

      RH=cR2  tc(Ro+AT2)2,  (6･9)
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where  c  is a constant  proportional to the susceptibility  of  f-electrons and  R  is the true

resistivity  including the residual  resistivity,  Ro. The  above  expression  was  derived
for the case  with  only  the orbital  degeneracy.23) The  extension  to the case  with  the

spin-orbit  coupling  is possible to give the same  expression  (6･9). Equation (6'9)
explains  the rapid  increase of  th'e Hall coeMcient  at  low temperatures. The  detail of
the derivation for the general  case  will  be given in a  future publication.

g 7. Fermi  liquid and  spin  fiuetuations

   In this section  we  would  like to stress  that  the Fermi  liquid is a  general  state

including the singlet  state  as  a  local structure.2`)  The  nature  of  the ground  state  of

a single  magnetic'  impurity is well  known  as  the singlet  bound state.  The similar

nature  can  be seen  also in the periodic Anderson Hamiltonian. For  the periodic
Anderson Hamiltonian  we  choose  arbitrarily  one  atomic  site of  f-electron and  call  it'

O site. The wavefunction  of  the ground  state  can  be expanded'in  the following way,
depending on  the state  of  f-electron at  O site,

     U'Lr=Aoipo+AtA'dit+AiA'ip･+A2A'L'ip2, (7'1)
where  flit, Aa  and  ipa denote f-electron with  o  spin, coeMcient  and  neighbouring

electron  wavefunction  associated  to each  f state,  respectively.  For Uib to be the

ground  state,  the matrix  element  of  the hybridization term  should  exist.  If it van-
ishes there is no  energy  gain, because only  the,hybridizatiop  term  reduces  the energy

in the periodic  Anderson  Hamiltonian. Thus, the system  described by the periodic
Anderson  Hamiltonian  gains the. energy  by constructing  the coherent  band of  heavy
electrons  through the hybicidization term,

     LStCmix=  X( VkfXaCka+  Vk'CXafha)
           h,ff

=Z(  Vkilach creik-Ri  +  Vh*  ci.f}.e-ik'Ri)

 
i'kcr

=Z(  Vf}}citr+ V*c;Ma)  
,

 i,o
(7･2)

where

and

For

  Cia  ==  2  zakchaeik'Ri  
,

      k

  Citti=2ukcXae-ik'Ri  
,

      k

Vh==  V2th is assurned.

Thus, the necessary  condition  to be the ground  state  is the  following,

  < Zl]blLSPC.i.I UYb>;2  V< IPblnacicr+ci'tiy`}ol CPb># o .

              i'cr

simplicity,  we  consider  the hybridization at  site  O as'an  example,

(7･3)

(7-4)

(7･5)
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     =Z  V{<Aoflr ' ip ifIflr ' ccrIAo ipo> 

'

        d

       +<A2A'A'ip21flr'colA-di[[taip-a>+c.c.}

     ==  Z  V{A6Ao<  dial cdi  ipo> +  A2A-d<  ip21 cdl  ¢-d>
        a

       +AoAo<ipolco'l¢ a>+A2A-o<di-crlcdt1ip2>}.  (7'6)
By  defining ntivr as  the number.  of  local electron  with  a' spin  associated  to f-electron
with  o  spin,  the necessary  condition  is given on  account  of  the Anderson orthogonality
theorem by25)

     nod  
==

 noa-1,  (7-7)

     nct-  cr 
==  no-a,  , (7,8)

     n2a=,nmoo-1,  , (7･9)

     n2-tr=n-o-a.  (7.10)

Thus, we  obtain  frem (7･7) and  (7･8), and  the symmetry  relation,

     noo+1==ns-o==nrca.  (7･11)
There is no  local charge  associated  to flrt state,  .

     noo+ncrffa==O.  (7･12)
From  (7･11) and  (7･12), we  obtain

            1 -

     nnd  
=:

 
-'2-

 ,' (7･13)

            1
     na-o=u2-.  (7･14)

Thus, we  can  see  that  the component  of  f-electron with  o  spin  has 112 local electron
with  

-o
 spin  and  112 local hole with  o spin.  This structure  is nothing  but the singlet

ground  state  for the single  impurity. In our  case,  the number  of  local electron  around

a  fixed site  includes the  number  of  f-electrons at  Other sites, than the fixed site. Thus,
in the periodic  system,  the local singlet  state  i$ constructed  by  both of  conduction  and

f-electrons. The weight  of each  component,  f and  conduction  electron,  depends on
the parameters  in the Hamiltonian. Therefore, the construction'of  the singlet  in the
Fermi. Iiquid is free from  the lack of  conduction  electrons.  The same  consideration

can  be applied  also  to the normal  state  of  the d-P Hamiltonian  for the copper-oxide

superconductor.  In the normal  ground  state,  the d- and  p- electrons  are  combined  to
construct  the quasi-particles in a  Fermi  liquid state.  The  local spins  due to d-
electrons  construct  a  local singlet  combined  with  neighbouring  P- and  d-electrons.

g8. Concludingremarks

Heavy  fermion systems  are  formed  at  low temperatures in rare  earth  metallic
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compounds,  particularly in Ce(Yb) compounds.  At high ternperatures, these com-

pounds  show  Kondo  like behaviors characterized  by the logarithmic increase of  the
resistivity  with  lowering temperature although  the  density .of local spins  is high.

Such a  change  from  the high temperature  regime  to the low  temperature  heavy

fermion regime  resembles  the transition observed  in dilute alloys  including magnetic'

impurities.

   The  reason  why  such  a  change  is possible  even  for high density of  magnetic  ions

lies in that  the characteristic  Kondo  temperature Tk in magnetically  dilute alloys  is
larger than  the characteristic  temperature CTk at  which  the magnetic  ordering  of  the

rare  earth  spins  o ¢ curs  by RKKY  interaction. In order  that the  reiation  7'k > 7k may

hold, 7k rnust  be much  larger than that for iron group  dilute alloys  represented  by
CuMn. For  4f-electrons in Ce(Yb) occupying  degeneratef-orbitals, 7k can  take very

large values  estimated  as  7k  --10  K. This is the main  reason  for such  a 6hange frorn
the Kondo  regime  to the  heavy  fermion regime.  In this sense,  the degeneracy of

f-orbitals has essential  importance for iormation of  the heavy fermion systems.

   For the low 
'temperature

 heavy fermion regime,  the electron  system  including
conduction  and  4f-electrons can  be described by the Landau  Fermi  liquid theory.  In

the main  part  of  this paper  the Fermi liquid theory is reviewed  which  has been
developed on  the basis of  the periodic Anderson model.  Here, Anderson,model is
usecl for simplicity  in which  the orbital  degeneracy  of  f-electrons is not  taken into

account.  Considerations on  the Anderson  model  with  orbital  degeneracy are  given  in

g 5.in which  only  electronic  specific  heat and  magnetic  susceptibility  are  treated.

   We  have  derived expressions  for the electronic  specific  heat, the susceptibility,  the

resistivity,  the relaxation  time  of  nuclear  spins  and  the normal  and  anomalous  Hall

coeMgients.  We  obtain  at  Ieast qualitative understanding  for various  experimental

results  as  stated  in this paper  in terms of  the results  obtained  by the present Fermi
liquid theory.

   Main  results  obtained  by this theory are  as  follows. The resistivity  due to
electron  interaction shows  T2-temperature dependence. This resistivity  becomes
finite only  through Urnklapp processes and  the coeracient  A  of T2-resistivity is

proportional  
'to

 the sqtiare  of the coeficient  r of  the T-linear specific  heat. The  large

enhancement  of  ( Tl T)-i for NMR,  the temperature dependence of  the Hall cQecacient
at  Iow  temperatures  and  so  on  are  also  derived.

   For  quantit,ative discussion, however, the various  

'kinds
 of  vertex  functions

introduced should  be calculated  explicitly.  This is very  dificult task and  at  present
low  order  (2nd) perturbations  in one-dimensional  system  haVe only  been calculated.
The  other  problem  is that the periodic  Anderson  rnodel  we  have  used  for the Fermi

liquid theory  is simple  and  this should  be extended  to more  realistic  ones.

   Nevertheless, the Fermi  liquid theory  ha's common  features for itinerant electrons

with  strong  correlation,  irrespective of  special  Tnodels used  as  the basic Hamiltonian,
Anderson model  or  Hubbard  model.  Thus, the  Fermi  liquid theory  described here
can  also  be used  for high 71 cuprate  superconductors  and  actinide  metallic  compounds

with  slight  modifications  as  well.
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