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   We  study  the quantum  conserved  charges  and  S-matrices of Ar=2  supersymmetric

sine-Gordon  theory  in the  framework- of  perturbation theory  formu]ated in N=2  superspace,
                   A

The  quantum  aMne  algebras  slq(2)  and  super  topological charges  play important roles  in,
determining the IV=2 soliton  structure  and  S-matrices of  soliton-(anti)  soliton  as  well  as

soliton-breather  scattering.

gl. Introduction

    Recently there has been increasing interest in massive  integrable field theories in

two  dimensions which  can  be regarded  as  perturbed systems  of  conformal  field
'theories.

 Following the idea orginally  due to Zamolodchikov,i) we  apply  a  certain

perturbation  term  Af¢ d2zv where  A is the coupling  constant,  upon  the action  of  the

conformal  field theory  as  follows:

      S=S,,,-Afd2wO(w,  "). (1･i)

    In this perturbed  system  the conformal  invariance no  longer holds, but the theory

is still solvable  as  a  massive  theory, because of  the existence  of  infinitely many

conservation  laws. The soliton  theories like KdV, rnodified  KdV  and  sine-Gordon

theories  belong to such  a  class  of  solvable  models.  They  possess factorizable
S-matrices due to an  infinite number  of  conservation  laws. Although  these soliton

theories  are  related  with  each  other,  here we  shall  focus our  attention  on  the sine-
Gordon  theory.

    Let us  now  recapitulate  what  have  been known  so  far about  sine-Gordon  theory

as  a perturbed conformal  field theory. First of  all, we  consider  the bosonic (Ai==O)
sine-Gordon  theory. It has been realized  that the conformal  minimal  model  pertur-
bed by ¢ a,3) operator  leads to the integrable restriction  of sine-Gordon  theory.2)A"6) In

the  Feigin-Fuchs representation,  the di(i,3) operator  is given  by  eTiPe  with  (112)B2
==  ml(m+1)  for the central  charge  of  the minimal  unitary  series:  c=:1-(61m(m+1)),

where  m==3,  4, ･･-. Together  with  the screening  operator  ezeP the dio,3) forms  the cos

Bip interaction ter,m of  sine-Gordon  theory.

    Some  time ago  Sasaki and  Yarnanaka7) studied  the higher-spin conserved  charges

which  are  polynomials  in Virasoro operators  at  the classical  levels as  well  as  at
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quantum  levels. Eguchi  and  Yang  derived the conserved  charges  based en  the

perturbation  theory tz la Zamolodchikov. It was  also  realized  by, LeClair, Smirnov
and  Eguchi-Yang  that the Hilbert space  is truncated for the rational  values  of  the

coupling  constant.2)."-6) It has turned out  that quantum  group symmetrye)'9)  plays an
important role  for the truncation.

   Now  it should  be  interesting to see  whether  incorporation of  supersymmetry  will

affect  th'e solvability  of  sine-Gordon  theory. The  N==1 supersymmetric  version  of

sine-Gordon  theory  can  also  be regarded  as  the. N=1  superconformal  minimal  model

perturbed  by O{i,3) operator.  The conservation  laws and  S-matrices are  discussed by
Sasaki-Yamanaka,7) Mathieu,ii) Ahn-Bernard-LeClairi2) and  Schoutens.i3)

   Now  the question is the fol!owing: wnat  about  the N=2  supersymmetric  exten-

sion  of  sine-Gordon  theory? As we  will  see,  there exi.st semewhat  different features
for N  =2  case  in costrast  to N=  O and  1 cases.

   The  classical  equation  of  motion  for the N=:=2 sine-Gordon  theory is given by the

coup!ed  equations:i`)

     D+D+  ip'=gsinBipr 
,

     D-D-ip'=:gsinBip',. (1･2)

where  ip' and  ip- are  the chiral  and  anti-chiral  superfields  of.N  = 2 supersymmetric

theory. Z  =(z,  e', e-') and  Z-=(2-, e-', eH-') are  holomorphic  and  anti-holomorphic

parts of  the IV'==2 supercoordinates,  respectively.  The  chiral  and  anti-chiral

superfields  satisfy  the constraints  D-ip"==D-di'=:O and  D+di-=:D+diL=O, where  the N
=2  supercovariant  derivatives are  defined as  D ±

r=:6lde ± +(lf2)e;Ox and  similar

expressions  for D+  and  D-. The chiral  and  anti-chiral  superfields  are  composed  of  a

complex  boson g
±
 and  a complex  fermion ip', di± and  the auxiliary  field F ±

 as

     ip± ==q
± +o ± di+e± ip;+e± e ±F ± . (1･3)

In terms of  the component  fields the equations  of  motion  read

     aaa2uep' =:=  
-

 g2sinq'co$ g- 
-

 g2 gb' gb 
'sin

 ep- ,

     a2ip- ==  g ip 'cos  op 
ve
 ,

     da ip-'= 
-gdi'cos

 q-,  (1･4)'
where  we  set  B=1 for simplicity.  On  the  basis of  real  components  q

± =(Yn)

× (qi± iq2) one  of  the bosonic parts of  thb equations  of  motion,  for qi, in the limit of

vanishing  fermion fields becomes a  sine-Gordon  equation  and  the other  one,  for g2,

becomes a hyperbolic sine-Gordon  (sinh-Gordon) equation.

   The  conservation  laws  were  studied  at  the classical  level,'4)'i5) and  some  lower-

spin  conserved  charges  were  explicitly  constructed  as  polynomials  in super-Virasoro

generator (super energy-momentum  tensor) in Feigin-Fuchs-Miura form.

   More  systematic  method  to investigate classical  conservation  laws is provided  by

Lie superalgebraic  approach.  Recently Inami and  Kanno  studied  the N=2  super

KdV  and  sine-Gordon  theories in this frarnework.i6) They  have shown  that the N=2

supersymmetric  sine-Gordon  corresponds  to the A(1, 1)(i) Lie superalgebra.

NII-Electronic  
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   Now  what  abeut  the conservation  laws at  the quantum  level? Does  the factoriza-.

tion of  S-matrix into bosonic and  $upersymmetric  partsi7)''2)'i3) also  hold in Ar=2 case?

For this purpose we  shall  base outr argument  on  the perturbation theory. In this
article, we  shall  also  present the argument  on  exactness  of  first order  perturbation.

   In the next  sectien,  we  discuss conservation  laws in the  framework  of  Ar=2

perturbation theory  based on  the superspace  formalism. In S3, we  present the

g}tlgulantum conserved  charges  which  generate the quantum  group  symmetry  denoted as

sl4(2).  In g4, we  study  the super  topological  charges  of  IV==2 supersymmetry  and

their relation  with  the topological charge  which  belongs to the quantum  group
algebras.  This analysis  is important for determining the Ar=2  soliton  structure.  ,
We  present the S-matrices for soliton-(anti) soliton as  well  as  soliton-breathet  scatter-

ing in N=2  sine-Gordon  theory in g 5. The final section  is devoted to conclusion  and

future problems. ･

            g2. IV=2  perturbatioh theory  and  conseryation  Iaws

   The  action  which,leads  to the classical  equations  of  motion  fer the Ar=  2 sine-
Gordon  theory  is constructed  by  adding  a  chiral  perturbation  to the IV=2  free action

Sfree aS

     S=  Sfree LAfd2z ¢ (2, zL) ,

     o(2, 2-)=  fd2e+(ez"e'+ e-  
tpe')

 +  Y212e-(eree- +  e-  
ife-)

            ==  2(fd20"cos Bip'+fd20-cosBdi-), (2'1)

where  gb" and  g6- are  free chiral  and  anti-chiral  superfields  satisfying  the conditiQns:

D+D+di'=O  and  D-D-diL=O.  Hence  they  are  decomposed into holomorphic and

anti-holomorphic  parts as,  ip± =S ± +  S'.

   To  the  lowest order  in perturbation theory, we  get

     ai,A(Zi, Z-D =  AO2-,(fd222 d2 &-A(Zl)(e'fi"-CZ2) +  eLt"eH(Z2))  +  ( -  -  +)l . (2 . 2)

Let us  suppose  that the operator  product  exparrsion  of  an  operator  A  and  the  chiral

perturbation  term-exp[asSr(Zle)] is given  by -

     A(Zl)e`fiS'(Z2)f- Sti2,× (residue), 
'

 (2･3)

where  Z12 and  0i±2 stand  for the invariant distances in N=2  superspace

     a2aZi-22-t(0i'&M+a-&'),  ei'2=a'-&'.  (2･4)

Now  if the residue  behaves  as,

     residue'-D+X+D-X'  

'
 (2･5)
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for some  operators  X  and  X', then  the following charge

     Q-f,lade+de-A(Z) (2･6)

turns out  to be a  conserved  charge,  provided  that (2･6) is invariant under  the inter-
changes:  (i)+e- and  (ii) Be-B.
   Now  we  can  classify  conserved  charges  at  the  quantum  level into two  categories.

The  first category  includes regularized  Virasoro polynomials  which  form  an  infinite

set  of  higher-spin conserved  charges  that assure  the integrability of  the theory. 

'The

second  one  contains  extra  non-local  conserved  charges  which  do not  have  classical

analogues  in contrast  to the  first category  and  lead to the quantum  group  symmetry

as  will  be discussed in the  later section.

   In Refs. 14) and  15), we  have presented some  lower-spin conserved  polynomial
charges  in terms  of  the super  stress  tensor  in Feigin-Fuchs-Miura form:

     T==: :D.S+D"  Sm: -in(0S+-  0S-), ･
 (2-7)

which  consists  of  the  N:=2  superconforrnal  generators:  the U(O  charge,  the  supercur-

rents  and  the energy-momentum  tensor (Virasoro generator), In the above  equation

we  choose  a==IZI?  so  that the  vertex  operator  e'PS' should  have  the conformal  weight

112 as  the chiral  screening  operators.  Then  it turns  out  that the coeflicients  of  the

Virasoro polynomials depend upon  
"central

 charge"  given by c=3(1-2ZB2).

   Here one  important observation  is in order.  Although  we  applied  the A[=:2
superconformal  field theory  (SCFT) technique,  our  N=2  sine-Gordon  theory  should

not  be regarded  as  a  perturbed N==2 SCFT  minimal  models,  in contrast  to the N==O
and  N==1 cases.  This is because, if so, a  part  of  the chiral  perturbation term  e-'"S'

would  possess a  negative  conformal  weight  -1!2  which,  of  course,  cannot  be
accepted.  We  should  rather  interpret the present  Ar=2 sine-Gordon  theory as  a

super-renormalizable  theory  with  zero  background charge,  for which  the coupling

constant  A has a  mass  dimension, 
'

g3. Quantum consetved  charges

   As  we  have  mentioned,  the quantum  theory  has extra  non-local  charges  of  the

vertex  operator  type in addition  to the polynomial charges,  The vertex  type charges

have no  classical  analogues.  In our  IV==2 sine-Gordon  we  found the following extra

quantum  charges:

     Q
±(B)=fdede+deF:e±i(Ue){S'+SH):=fdeJ ±(2), (3･1)

Which can  be seen  to satisiy  the condi,tion  (2･5). As for Q-, for example,  we  find

     :exp[-k  (s' +  s-)](zi)::exp( rssnxth) :

       -ZT2,xD-(i.iB,  exp[  ks'+i(-k+B)s-](k)). (3･2)
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In Eq. (3･1) the non-local  conserved  currents  1'(2) are  found to be
                                     '

     1'(2)=(± SB a,ep2+ Bl, ip+ip-)e±Cile',p)pi
 

'

 (3.3)

 and  similarly  we  have the anti-holomorphic  non-local  currents

                             '

      f-'(z-)--(g] 71iB 0iqN2+ Bl, g-e+g-o-)ewzatp)prmi. (3.4)

 Under the perturbation  term  Afd2zv¢ (to, nd) where

      o(w, ta) ==  z  di(ab)(w)di-(ab)(to) (3･5)
              a,b=+,-

with

      O(")(w)== ± iBip'(w)e'i"P'(w), di(-± )(w)= ± iBip-(w)e± ipa"(tv),

      O-('
±)(ta)=

± i)96b"(to)e'i"q-"(to), ¢

L(-
±)(oo)=

± i}e6}'n(za)e± iPp-'(oo),
 (3･6)

 they satisfy  the following conservation  laws

      Oal
±

=aH
±

,
 &f ±

=6.e
±

,
 (3･7)

where  ･

      U ±
 ==  zZh ±(ab)(z)

 o-{ab)( z-) ,
           ab  ･

      ff± =Az  o{ab>(z) h-±(ab)( z-),  (3 ･s)
           ab

 together  with  the operator  product  expansion

                    1
                       O.h

± (ab)(w)
 
,      f

±(z) ¢ (ab)(w)
 A.

                  z-w  ,

                     1
      f-

±( zN)di(ab)(  m)  
n-

 2mw  0.- hJ
±(ab)(

 th), (3-9)

 and  the non-vanishing  h'{"b)(w)'s are-found  to be

      h+(
±
M)(zv)=

 
±

fgi
 ip±(w)ei(V2'tPnPiV2')giT(Pta)p2(zv) ,

      h-(
± +)(w) ±

 
±

Bi ip
±(w)e-i(V7tP-PfV2')9i± (Ma)ep2(w),

 (3.lo)

 and  we  also  have  similar  expressions  for hJ±("b)(za)'s. Frorn the conservation  laws

 (3･7) we  redefine  conserved  charges  as

      Q± -  fclzf±
 +  fdif"' ,

      a.-fdznt1-
± +fdeA ± . (3･11)

 It turns out  that these quantum  conserved  charges  generate  the q-deformation  of  sl(2)

                                                      NII-Electronic  
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affine  Kac-Moody  algebra  denoted as  fa/q 2) which  has been discussed by Bernard and

LeClairiO) for the IV =O  sine-Gordon  case.

   For the' commutation  relation  between Q+' and  Q", for example, we  find by using

the perturbation theory

     O. O-- 
-  qr2 Q-- Q. =-A.[  dua.K, 

'
 (3･12)

where  the quantum  group  deformatien parameter  q is given by

     q=-e-`"",  r==B2  (3'13)
                                           '

and  the 11r is equal  to the spin  of  the conserved  charges  Q+.                                                     Let us  note  that the 7

and  B are  related  with  each  other  for AI=O and  N=l  case-s as  
'

     r-  2-B2B,, (iv-o) 7-  i2-Bk2. (N-i) (3･i4)
                                                              '

The  quantity  K  on  the righVhand  side  of  (3･12) is found to be

     K=(-  Bi2 ) (exp[i(9- Zl)ipi(x, t)- S¢ 2(x,  t)+iip3(x, t)]

         +exp[i(f-  £l)dii(x, t)+ Zi di2(x, t)-iip3(x, t)]), (3･ls)

where  we  have bosonized the fermions as  ip± ==  e'iqS and  di'=e± tP3
 in.order to avoid

the subtlety  of  the Grassmann variables.  In Eq. (3･15) we  denote ipi(x, t)==epi(z)

+  p-i( z-) for i=1, 2 and  3.

           g 4. Topological charges  and  quantum  group  symmetry
                                -

   In this section,  we  shall  show  that the  quantum  conserved  charges  we  found in the

previous section  and  the topological charge  we  now  discuss generate  a quanturn group
symmetry.  .

   First we  note  that the  action  (2･1) is invariant under  the following shifts  of  the

fields (m being an  integer):

           2mnVli1) dii-dii+ B , ip2, ip3: fixed,

2) ¢ i-  oi+ (2M 
+Bl)ZA

 , ip2: fixed , di3 --> ip3+n (mod 2n) .

   Then  we  find that there exists  a  topological  current  for our  N=2  case:

     gp(x, t)= 2B. e"vo.{V2  ip,(x, t)}, (4･i)

where  EW  is the Levi-Civita symbol  in two  dimensions.

   Therefore we  can  define the topological  charge  as
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     g=== 12de go de =-  2B. J2{ di,(x-+oo)- ¢ ,(x  =--co)}  . (4 t2)

The  right-hand  side  of  (3･12) turns out  to be

     AY: duO.K =:  2nl(-B2)[1-exp(i(  
!l31
 
-
 S)ipi(x= 

-oo)]cos
 ¢ 3(x=-  oo)]  , (4 ･3)

where  we  have taken  the soliton  configurations  ¢ i(x  ==  t  oo)==  ip3(x ==  +oo)=  O which  is
derived from  the translational invariance, and  ip2(x==+co)== ip2(x==-oo)==O because

the  hyperbolic sine-Gordon  component  damps  at  ± oo.  Therefore, the topological

charge  is determined by dii(x=-oo) as

     g--  
2B.

 J2ipi(x--oo). (4･4)

Hence we  have  the following boundary conditions  in accordance  with  the  invariance

ef  the action:

   i) S  is an  odd  integer, ip3(x=-oo)==rr (mod2rr) and

   ii) g  is an  even  integer, di3(x==-oo)==O (mod 2z).

Therefore we  find the quantum  commutation  relation  as  follows

     Q±Q.-q2O.Q ±
=o,

     Q±
 O--. -q-2  Q--. Q±

 "a(1-q
± 2g)

 
,

     [ET, e,]-: ± 2Q,,  [ET, Q-.]- ± 2Q-,, (4･5)

where  we  have defined a constant  a=  2Al(-B2>. From  this commutation  relation  we

can  easily  see  that the extra  charges  generate  the quantum  afllne  algebra  gl(li) with

vanishing  center,  which  has been cliscussed by Bernard and  LeClair.iO)

   In the above  derivation of  (4･5), we  have computed  the algebras  of  the non-local

quanturn conserved  charges  to the first order  in perturbation theory. Here  one  should

note  that the first order  correction  is the only  possible  correction  fer general values

of  B and  hence the above  result  is actually  exact,  This statement  was  not  explicitly

shown  in the previous articles.i4)'i5)'22)  This can  be shown  by writing  down  all  the

possible  perturbation  terms and  considering  their scale  dimensions as  well  as  their
symmetry.  The  proof gbes as  follows. Let  us  take the case  of  0af±

,
 for illustration.

We  find that the left (holqmorphic) and  right  (anti-holomorphic) conformal  dimen-

sions  of  0alr' is given  by  (1+1/le2, 1). Then  the possible A" (n-th order)  term  should

have the form

     ipipLexp(eq'+'il;q-+iL(9q'+imBg")exp(il)9ip'+imBip-) (4t6)

with  kat's and  le'0g-'s being multiplied  in front. In the above  equation  ip(Cl) denotes
either  di'(dir") or  ipm(ip-m). Terms  without  fermion fields would  not  lead to conserved
charges  that  a;e  invariant under  supersymmetry  transformations.  By noting  that the
scale  dimension of  2 is (lf2, 112), we  have the following equations
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-il'+

 lmB2+  312 
+l+m+-iiL+k=::1+  B12 ,

     -ll-+lmB2+g+k,=1.  (4-7)

From  the above  equations  we  get im=::k'==O and  n==1.  Therefore only  the first order

term  is allowed  from the dimensional counting.  This means  that the lowest order
term  gives in fact the exact  result.  This kind of  argument  also  applies  to more

complicated  cases  like (4･5).
   We  now  consider  the topological charges  of  IV=2 supersymnietry  which  are

different from  the ordinary  sine-Gordon  topological  charge  given in (4･2). The
superchargesareholomorphicwitheuttheperturbation.  Butnowweshouldconsider

the effect  of  the perturbation terms. In the  same  methods  as  the bosonic topological
charge,  it is easily  checked  that  the superalgebra  has the topological  modification.iS>

   The  holomorphic and  anti-holomorphic  supercurrents  are  written  in terms of

components,

     G ±(2) =  ¢
±(z) Ogp'(z) ,

     G-±( 2) --  di-'( z-) Oiq-;( z-), ･, (4･8)

which  obey  the conservation  laws･in perturbation  theory as  in the extra  non-local

currents:  
'
 

'

     a.-G± ==a,F ±
,
 daG-± =a.F ±

,
 (4･g)

where

     F
±

 
=A;,

 f
±{ab)(z)

 o-(ab)( 2-) ,

     F
± =A2ocab)(z)f ±{ab)(x-)

 (4･lo)
          ab

with  f'(ab)(z)'s and  f'{ab)(zm)'s being defined through  the operator  product  expansion:

                    1
                       a.,f± (ab)(w)  

,     G ±(z) di("b)(w) .v

                   z-w

                                                 '

                     1
     GM

±(2-) ¢
-(ab)(

 tu) 
--
 2  -  tu 

O.- f'±(ab)(ta).
 (4･11)

Now  we  define the supercharges  as  follows
                                                         '

     Q
± -fdeG'+faa-F',  Qr'==fdz-GL'+fa!zF' (4･i2)

and  non-vanishing  f±(ab)'s and  fn±("b)'s
 are  given  by

     f+<r±)=nee ± iPP',
 fu{+± )=:-e ± neP',

     f-+{+±)=-e'iBp--,  f--(-±}==-e ± iPPr'.
 (4'13)

Perturbation theory  leads to the following anti-commutation  relation
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     {Q
±

, Q- 
-+}-Afdua,K

±T,
 (4･14)

where  
'

     K ± T==Zf ±(ab)(z)f-+-(ab)(z-)=eifi(pt± +Prr']+e-ifi{pt'+p--')
           ab

         =-exp{i(Blsf2)(ipi(x,t) ± idi2(x,t))}+exp{-i(B!sE)(¢ i(x,t) ±
'iip2(x,t))},

                                                                (4･15)

while  we  get

     {e±

,.Q

±}==O. (4･16)

With  the same  soliton  configuration  as  discussed before we  obtain

     {c?± ,
 Q-i},..,l[2-(eiCBiV2')ei{-po)+e-i(fiia)ei(-co))].,. El`,. 

'
 (4.17),

Hence  we  note  that the  super  topological  charge  S' is determined by  the topological

charge  g  as

     EZ`t-2A(1-(-1)ff), (4･18)

Therefore, when  EZ'. is an  odd  integer we  get Er'==4A, on  the other  hand, if g  is an  even

integer we  have g'=O.  Since the soliton  and  the anti-soliton  possess the topological

charge  EZ' =:  ±1, they must  have non-zero  super  topological  charge  EZ`'=4A. We  will

see  the  physical consequence  of  thi,s fact in the  next  section.

   In terms of  the real  basis Qi and  Q2 satiSfying

     {Q,,,, Q,,,} ==i2Ti,,,  (4･lg)
Q ±

 and  Q ±
 are  given by

     Q
± =ilE(Qi ± iQ2), QM'=!:G(Q=i:Fier2) (4･2o)

and  therefore we  have g'=: 71-  7>==2A==  -2  7>.

g5. Soliton strqcture  and  S-matrix of  N  :2  sine-Gordon  theory

   In the present  section,  we  examine  the N=  2 soliton  structure  and  construct  the

S-matrices oi  the Ai=2  sine-Gordon  theory.

   We  first study  the realization  of  Ar=2  supersymmetry.  Let us  first consider  the
realization  of  N==1  supersymmetry'.as  discussed by Zamolodchikov.i9) The tri-
critical  Ising model  possesses IV ==1  supersymmetry  and  is described by  ip6 potential in
the Landau-Ginzburg  picture. The  suitably  perturbed  model  which  is still  solvable

and  has N=1  supersymmetry  is represented  as  the deformed ip6 potential which  has
three minima.  We  denote these minima  by numbers,  

-1,
 O, 1. The  fundamental

particles correspond  to the soliton  or  kink states  which  are  classical  configurations

going  from one  minimum  to another.  We  denote a kink state  connecting  the degener-
ate  vacua  a and  b (a, b=O, ± 1, a-bl==:1)  by  Khb(0)> where  0 represents  therapidity
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of  the state.  Therefore we  have four solitons  which  we  denote by  IKIo>, [KLio>, IKbi>
and  IKhni>. We  now  introduce supercharges  denoted as  Q and  Q, The supercharge

Q acts  on  this kink state  as

     QIKhb(e)>=:i(a+ib)ee'2KL.b(e), (5･1)

where  a2+b2=1,  and  we  have  similar  expression  for Q- by replacing  i(a+ib) with
-i(a-ib).  We  easily  see  that the superalgebra  is realized  as

     Q2 ==  ee=p,  QL2 ==  e-e  ::=  P, {Q, af} ==  2T,  , (5･2),

where  we  have  taken  the mass  to unity  and  T  is the super-topological  charge.  Any

multi-particle  state  can  be given by  , 
'

     IKh,(e,)Kb.(th)K}.(&>･ny･>. (5･3),

The  supersymmetry  is realized  on  the multi-particle  state  as

     QIKhia2(ei)Kb2as(&)"'KhN-iaN(eN-i)>

       :=  Si(ai- iai+i)ee±i21K-ai-a2"'KLai.i-a,K-atat+iKbz+iai+2'''KhN-iaN>  - (5'4)
         i=1

   New  we  proceed to the N:=2  supersymmetry  which  can  be realized  as  a  tensor

product  of  two  tri-critical Ising soliton  states.  The  fundamental  particles are  written

in the form:

     IKzb,cd>!IKhbKcd>. (5'5)

In N=2  case,  we  have supercharges  Qi arid  Q2 and  conjugated  ones.  We  assume  that

the first supercharge  operates  on  the  first factor of  the right-hand  side  of  the equation

just as  tri-critical Ising model.  But when  the second  supercharge  operates  on  the

second  factor, we  require  that the sign  of  the components  of the first factor should

always  change.  For  example,  the supercharge  acts  on  the  one-particle  states:

     Qi[Khb,cd>= i(a+  ib)eei21K.ab,cd> 
,
 QMilKtb,cd> ==  

L
 i(a- ib)e'"i21Kab,cd> ,

     Q21Khb,cd>=i(c+ id)eei2LKLa.-brcd> , Q'21Khb,cd> ==  
-

 i(c- id)e-et21KLamb.cd> .

                                                                 (5･6)

Therefore the supercharges  satisfy

     QIZ=Q22=ee=P, Q12=Q2Z==e-e==P,

     {Q!,2,Q-i,2}==2TU,2, lll=::-(a2-b2), n=-(c2-d2),  (s･7)

and  they, otherwise,  anticomrnute  with  each  other.  The  reason  why  we  demand  that

the sign  in the first factor change  when  we  operate  the secQnd  charge  is to assure  the

anticommutativity  of  Qi and  Q2.
    Now  the bosonic and  fermignic IVr==1 tri-critical Ising soliton  states  and  their

antiparticle  states  are  constructed  as:i2>,i3>,20)

     IB>=S(IKLio>+IKio>), IF>=h(IKLio>-IKIo>).
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     IB">==h(IKb-,>+IKb,>), IF>-G(IKb-,>-IK6,>). (s･s)

   As we  mentioned,  our  quantum  conserved  charges  are  integrals of  the highest

component  of  their supermultiplet  by  construction.  Therefore they commute  with

the supercharges.  This means  that we  have ttttommuting  symmetries,  i.e., AI==2

supersymmetry  and  quantum  aMne  algebra  slg(2).  Hence  the'S-matrix  can  be
written  as  a  product  of  

"minimal
 supersymmetric  S-matrix" and  the ordinary  sine-

Gordon  S-matrix as  in the N  ]1  case  discussed by  Ahn  et  al.'2}'20) and  by Schoutens.i3)

     SN2sG 
--

 Snv2X SsG,' . . (5･9)
where  SN2sG, SMiv2 and  SsG represent  the S-matrices of  N=:2 supersymmetric  sine-

Gorbon, of  the minirnal'N==2  supersymmetric  model,  and  of  ordinarY  bosonic sine-
Gordon,2i) respectively.  We  expect  the 

"rriinimal
 supersymmetric  S-matrix" is that

Qf the coset  model  SU(2)2× SU(2)2ASU(2)4 which  is the perturbed  c==1  model  discus-

sed  in,Refs. 12) and  20). Alternatively, it may  be realized  at  a  special  value  of  the

coupling  constant,  B=21JIi, of th'e bosonic sine-Gordon  theory  which  corresponds  to

c=1  N=2  super  CFT.i5)

   The fundamental particles of  our  model  can  be represented  as  the product of

RSOS  solitons  of  the coset  model  and  kinks of  the sine-Gordon  part. We  can  show

that they actually  form  the super  multiplets,  though  we  need  suitable  truncation  to

obtain  the minimal  number  of  particles.

   Fundamental, particles that form  supermultiplets  are

     IBB>, IBF>, IFB>,･1.FF>, [BB>, tBF>, IFB>, IFF> (5･10)

andtheirconjugates,  Sowehavesixteenfundamentalparticles.  Butsomeconsider-
atien  about  topological charges  leads to reduction  of  the number  of  fundamental

particles. Because  of  the form of  the potential without fermions, we  expect  kink and
anti-kink  solutions  as  in the case  of  bosonic and  Ar:=:1 supersymmetric  cases.  And
the topological charges  are  discussed in Refs. 12) and  13) and  in the beginning of  this

paper. Since kink and  anti-kink  solutions  have odd  topological  charge,  their Super-

topological  charges  shou]d  be  non-zero.  This  restricts  IXY> in Eq. (5'10) to one  of

     IBB>, IBii 
;>,

 [FB->, IFF >, ･
 (s･11)

which  possess  n==-  7>= -1  and  hence S'=-2  and  their coniugates  with  7'1==- 7>
==1  and  !l"==2. For  remaining  states  the super-topological  charges  vanish.  In fact,

particles of  (5･11) and  their conjugates  form a closed  set, i.e., we  can  restrict  on-shell

$tates  to the  set  and  other  states  cannot  appear  in the final state.  Of course,  this i･s
another  expression  of  the conservation  laws of  super  topological  charges.  Therefore

we  have four supelrmultiplets;  those of

     IA±BB->, IA±BMB>, . (5･12)

where  we  have  denoted kink an

A+  and  A-.2i)

   Now  we  parametrize  the

d, anti-kink  states  of  ordinary  sine-Gordon  theory  by

S-matrices for tri-critical Ising solitons  scattering
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Kh,(et)+Kh.(a).Kh.(&)+Kle.(e,)  as

     IKh,( 0,)Kb.( &)>,.= {l Sg,a( e,,)IKh,( ca)KL,,( e,)>.., , (5･13)

where  a, b, c, d=O, ± 1, and  0i2== ei-&  is the rapidity  difference. Assuming the

commutativity  of  the supercharges  and  S-matrix Zamolodchikov  derived the S-

Matrix.i9)  ,
.

   The  S-matrix can  be parametrized as

     IKha(ei)Kbo(a)>in=Ao(ei2)IK6a(&)Khe(ei)>out+Ai(ei2)IK6-a(&)KLao(ei)>out,

     IK,o(ei)K}.(a)>i.=Bo(eiz)IKhD(ez)Kh.(0i)>out,

     IKh,( e,)Kb-.(&)>,. == Bi( ei2)IKho(a)Kbr.( e!)>,.t 
,                                                          (5･14)

                       '
where

  
'
 A,(e)=ececosh(f)s(e),  A,(e)=-iecesinh(e)s(o),

     B,(e)==V2e-cecosh(eEin)s(,e), B,(e)=:Vlle-cecosh(0Sirr)s(e) (s･ls)

Wnh

     C== iilog2,
     s(e)-J}:rgco=,scfi,e.12,rrrir,}i.i,)ift,k.',9S2.n,)i). (s･i6)

   As for the'bosonic  sine-Gordon  theory, the S-matrix is well  known.2i} For kink

A"  and  anti-kink  A-  we  have

     S,,.,, ..=  U.( e) s.,, .,,  

'
 (s･17)

             zrr ･

where a, b, c, d== ± and  SsGab;cd is the scattering  amplitude  for the process: A"+Ab
->AC+Ad

 and  U(e)  is given as  
'

     u( e)-p(e)r(i  +  i-9 )r(i --}p-  i-9 ).itui=, 
R"i

 9!,5k(:
"

7i.)0) ,

     R"(e'=.( £(tlii/ilii)
);Xli/n;t4flij･ie) (sis'

with  r being given by Eq. (3'13). Non-vanishing Sab;cd's are

     s.+,++m s-=,--==sinh[l (in-e)] ,

                                                        '

     s.-,."==s-.,".=::sinhe, s.-,rr.==s-.,...:==isin-ZC. (s･lg)
                      r 7
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Here  we  note  that  the Sab;cd is the  well-known  solution  of  Yang-Baxter  equation  for

the six-vertex  model.

   Now  we  present  explicit  resu]ts  for rninimal  N=2  supersymmetric  parts  of  S-

rnatrices.  First we  write  dewn  the in-states of  tri-critical Ising soliton  and  anti-

soliton  scattering  in terrns of  the out-states.  This can  be provided  by the matrice.s  di
and  S  given below. And  then, by taking  the tensor  product of  these in-states we  can

construct  the S-matrices for soliton-antisoliton  scattering  for A[=2  supersymmetry  as

follows:22)

     IXY( 0i) 7W(  th)>in=IX( 0i) ff(th)>inl V( ei) ur(a)>in

                   =-  X  IBxv-,xr.!i(e,2)diF,,,Ff.r(e,,)lxtrt(e,)V7tpvr(e,)>,.,,
                     xt, Y,, V,, IV'

                                                             (5･20)
where  the indices X'(Y') and  W'(V') run  over  B(B)  and  F(F). In the above

equation  the  tri-critical Ising soliton  ampritudes  ue  and  ve are  given  by

          A. A.  OO  B.  B-  OO

         A. A.                  oo                                 B-  B.                                         oo
     J=-  S-
          O O AL  A-  ' o o B.  B-  , (5･21)

          OO  A-  A-  OO  Bu B.

where  the  rows  and  columns  of  u4  are  arranged  in the order:  BB,  FF,  BF  and  FB,
while  those of  re are  in the order:  BB,  FF,  BF  and  FB.  In (5･21) A ±(e) and  B ±(e)
are  obtained  from  (5･15) as

     A.(e) =S  (A,(o)+A,(e))= l ece(cosh  4e 
-is

 inh 4e )s( e) , 
'

     A-(e)=: l (A,(o)-Ai(o))== l ece(coshf+  isinhf)s(e)  ,

     B.(e) =-li-  (B,(e) +  B,(e)) ==  eLcecosh-SLs(  e) ,

                                                             (5･22)    .B-(e)=::
 2 (B,(o)-B,(o)) ==  

-ze-cesinh
 
4e
 s(e) .

For illustration,.we consider  the scattering  of BB  and  BB  as  follows:

     IBB(ei)BB(a)>i.-[B(ei)R(&)>inlB(en)B(C13)>in

                  =;i  B+A+l(BB-)(B-B)>out +  B-A+  (FB-)(llFiB)>out

                    +B+A+j(Blli)(BF)>out+B-A+1(Fliii)(F}F)>out.

Hence, for example,  we  obtain  the following result:

     S(BB-+B-B.BB-+B-B)-S(BR+B-B.BLFi+BF)

                       =B.A.=-1-  (i+coshTi;- isinhg)s2(o) .

(5･23)

(5･24)
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The  S-matrices f6r the processes: XY+  VW-X'  Y'+  V'W'  are  obtained  by  crossing

symmetry.  The  total S-rnatrices are  given  as  a product  .of above  N==2  supersym-

metry  parts with  the ordinary  sine-Gordon  S-matrix factors as  follows:

     Stv2sG(e)=sA,.,(e)xss,(x=eetr,q=-e-ixn). (s.2s)

   Here we  have a  comment  on  the correspondence  between the coset  and  the

bosonic sine-Gordon  theories. As we  mentioned  before, the N=2  supersymmetry  is

realized  for the  special  value  of  the coupling  constant,  3=:2!Vii. By  setting  7==:2

corresponding  to the above  value  of  B in Eqs. (5･17) fv (5･19> (or setting  7==16rr in the
S-matrix formula of  Ref. 21) where  the normalization  of  r differs from  ours  by a

factor 8n) for ordinary  bosonic sine-Gordon  theory, we  obtain  the scattering  matrices

for soliton  A  and  anti-soliton  A- (here we  use  this notation  instead of  A', followi.ng
Zamoledchikov's notation):2i)

     IA( 0,).2i( th)>,.= S.( e,,)IA( e,)A( e,)>..,+ S.( 0,,) A(  a)A-( e,)>,., 
,

     IA( e,)A( a)>,.= s,( e,,)IA(&)A< a)>..,, IA( e,)A< a)>,.= s,( e,,)I A< ca)AM( e,)>.., 
,

      
'
 

･
 (5･26)

where  ST and  SR are  transmission  and  refiection  amplitudes  for soliton-antisoliton

scattering  and  So denotes the  amplitude  for identical soliton scattering

     s.(e)=-isinhgsz(e), s,(e)::=coshgsz(e), s.(e)=:=s2(e). (s･27)

What  is remarkable  here is that we  can  recover  these results  by  expressing  the soliton

states  in terms of  the coset  soliton  states  as

     1A>-1B-B>- ,PiB>+1BF>+1,i  iF>+1BB>+lFB>- Bfii>+1Fli7>

        =IKhiKLio>+IK6iKlo>+IKioK6-i>+IKioKbi>

          +lKl}-iKio>'IKb-tKio>-[KleK6-i>+IKIoKbi>. . (5'28)
This strongly  supports  the validity  of  our  calculation  for S-matrices of  IV=2 SG
soliton  scattering.

   Now  let us  briefly consider  the N=2  sine-Gordon  breathers which  are  bound
States of  the IV =2  kinks. As in the case  oi  Ar=::2 kinks, the IV:=2 breathers can  be
constructed  from two  tri-critical Ising models  and  bosonic sine-Gordon  theory. In the
case  of  N=1  sine-Gordon  theory we  have  N=1  bosonic or  fermionic breathers with

no  topological  charge  denoted by ¢ n  and  ipn which  form  a  supermultiplet  of  tri-critical

Ising model  as  discussed by  Ahn.20) The  n-th  breathers din and  ipn possess  a mass:  mn

=2msin(nn"2)  (r<1) where  m  is the s'oliton  mass  and  set  to unity.  In our  N=2

chse,  the breather can  be represented  as

     IBnxnyn>, (5'29')

where  Bn  in the n-th  breather of  ordinary  sine-Gordon,  and  xn  and  yn stand  for either

¢ n  or  din. Therefore we  get the following N==2  breather multiplet:  

'

     IOn{OO]>i[Bndinipn> 
,
 l¢ nCOI}>!I!IBnipndin>

 
,

NII-Electronic  
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     1¢ n(iO)>!IBnipn ¢ n>,'  1¢ n(ii)>EIBndinipn>.  (5'30)

   We  now'examine  how  to construct  S-rnatrices for breather-soliton scattering.

Let us  take  1 din(OO)> and  IBB> as  an  initial state. For minimal  Ar=2 supersyrnrnetric

part, we  calculate  the product oi in-states of lipnB> and  1ipnB>, which  are  given  as

     1 ipnB>in =  Xh(e)2"de"t2rri(anl ipnB>out+ finl ipnF>out) ,

                                       '

     1ip.Bn>i. ==  X)i(e)2"e"i2ni(rnl ipnB->e.t+ anl ipnFi>eut), 

'
 (5'31)                               '

where  Aen=in-inz7  and  Xh(e)  is given by

     x},(o)=--2s(e+S-tiem)s(o-ttie,) (s･32)

with  S(e) being given in (5-16) and  evn==rn  =cosh[(2e-irr)14],  Bn== Jiiil and  an
==  

"iVMll
 as  obtained  by Ahn.20} Hence  we  get

     ldin(ei)B(th)>inlipn(a)Bnv(&)>in=(X;;(0))2{an7nlipnipnBB->out+Bn7nlipndinFB->out
             

'
 ' +an6nlipnipnBF->out+Bn8nlipnipnFFa>out}. (5'33)

Here, note  that the factor 2-de"i2rri in 1¢ nB>in  is canceled  by the factor 2ua"i2･nt in l ipnB>in.
Thus  we  obtain  the following S-matrices.

      S( ¢ nipn+
 BB7 '  ipnipn +  BB)  =(X}t(0))2cosh2[(2  e 

-
 in)14] ,

      S(¢ n
 ipn +  BB  "  ipnipn+ BIFi)=(Xh(0))2( -  iVntI)cosh[(2 e dn iz)14] ,

      S(¢ nipn+BB--'ipnipn+FB-)==(.)kl:(e))2y(Milcosh[(20-irr)14],  .

      S(ipnipn+BB'ipndin+FIFi)==(-Xh(0))2(-imn). (5'34)                             '             '

Other S-matrices for breather-solution as  well  as  breather-breather scattering  should

also  be calculated  through a  similar  procedure,

S6. Conclusion

   In this article  we  have investigated the Ai==:2 sine-Gordon  theory  in the frame-

work  of  perturbation  theory. We  obtained  the q}lgal}gntum conserved  charges  which

generate sl(2)  quanturn aMne  Kac-Moody  algebra  slq(2).  The  IV= 2 supersymmetry

commutes  with  this quanturn grbup  symmetry.

   On the basis of  this･ two  commuting  quantum  symmetries,  we  have constructed
S-matrix of IV=2 sine-Gordon  theory  as  a  product  of  S-matrix for the Ar==2 minimal

supersymmetric  part and  that for the  ordinary  sine-Gordon  part. One interesting

point is the topological  charges  of the two' symmetries.  We  derived the relation  of

the ordinary  sine-Gordon  topological  charge  and  the topological  charges  of  IV==2
supersymmetry,  which  was  originally  discussed by Witten and  Olive.i8) It turns  out

that the relation  between  the topological  and  super-topological  charges  plays an
                                          

t ny

essential  role  when  we  restrict  the fundamental' particles from the abstract  realization

theory. One  remarkable  observation  is that  we  can  reproduce  the  soliten-antisoliton
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S-matrices of  ordinary  bosonic sine-Gordon  theory at  a  special  value  of  the coupling
cpnstant,  B==21JIi, which  corresponds  to the N=2  SUSY  point.

   Now  some  remarks  on  further problems  are in order.  Our model  is the  simplest

model  and  we  believe it can  be extended  to any  N==2  supersymmetric  models,23)""25)

In this regards,  it would  be intriguing to extend  the present  analysis  to the  N==2
supersymmetric  version  of  Toda  field theories,26)-'3') to see  if the quantum  group

structu!gt.lg.is described by commuting  N=2  supersymmetry  and  quantum  group  sym-

metry  slq(n)  for n==3,  4, ･･･. Another interesting subjects  is to investigate the corre-

spondence  ef  IV=2  sine-Gordon  theory  with  some  Thirring-type fermionic theories.

This is motivated  by the well-known  correspondence  between the Ai=O sine-Gordon

theory  and  the massive  Thirring model.32)'33) We  have one  more  cbmment  on  super-

symmetry  (see Refs. 13), 17), 23) and  24)). We  think it becomes  clear  that S-matrix of

N-extended  supersymmetric  models  can  be constructed  simply  by making  the N

product  of  that of  the N=1  supersymmetric  model  (tri-critical Ising model)  and  some

bosonic part, up  to CDD  ambiguity.  We  are  interested in whether  there  is a  model  for

arbitrary  N.
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