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Where Has the Conformal Symmetry of Anyons Gone
in a Magnetic Field?

Tadashi AWAJI and Masahiro HOTTA

Department of Physics, Tohoku University, Sendai 980

It is known that a many-body system of free anyons has the conformal symmetry and that
the symmetry is broken explicitly when an external magnetic field is applied to the system.
However, we can show that a modified conformal symmetry still exists in the presence of the
magnetic field and plays a crucial role in anyon energy spectrum.

§1. Introduction .

Recently, a 2+ 1-dimensional Chern-Simons (C-S) gauged Schrédinger field theory
in the presence of a uniform external magnetic field has attracted much attention.
This is because it describes the fractional quantum Hall effect (FQHE) in condensed
matter physics.? A Hall current with a fractional-valued Hall coefficient can take
place in this model when an electric field is applied into the system. On the other
hand, another interesting aspect of this model has been pointed out. Anyons,” which
are particles with an intermediate statistics between bosonic and fermionic one, -
appear when the C-S gauged Schrodinger field is second-quantized. A many-body
system of anyons is expected to have peculiar properties clearly different from those
of ordinary particle systems.

Though the model with such striking aspects has been investigated vigorously so
far, we still believe that more detailed analysis of the anyon and the C-S gauged
Schrodinger field will reveal newer aspects of the theories and give us deeper under-
standing of the anyon physics and the FQHE.

It is known that the conformal symmetry exists in the C-S gauged Schridinger
field theory without the external magnetic field.”*® The conformal symmetry gets
broken when the magnetic field appears in the system, because the magnetic field
possesses mass dimension 2. However, this does not mean necessarily that the
number of symmetries of the system decreases. Surprisingly, it has been shown that
the conformal symmetry modifies its form when the magnetic field is applied and
survives as a certain exact space-time symmetry.'®

On the other hand, free anyons also have the conformal symmetry, and the
magnetic field breaks the symmetry. In this paper, we shall discuss a modified
conformal symmetry of anyons in the presence of the magnetic field and show a

‘notable role of the modified conformal symmetry in determining the energy spectrum.
Moreover, we shall discuss the possibility of dynamical realization of the 2-dimen-
sional conformal symmetry of anyons in the magnetic field.
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This paper is organized as follows. In § 2, we shall review the modified confor-
mal symmetry of the C-S gauged Schriddinger field theory in the presence of the
uniform external magnetic field. It is also shown that the 2-dimensional conformal
symmetry is realized dynamically in a subset of solutions of equations of motion. In
§ 3, it is presented that the modified conformal symmetry also exists in a many-body
system of anyons in the magnetic field. Then, we reveal a role of the modified
conformal symmetry in the energy spectrum of anyons. In § 4, we discuss the energy
spectrum of anyons quantized semi-classically and, using the results, investigate the
possibility of dynamical realization of the 2-dimensional conformal symmetry in a
subspace of the Hilbert space of anyons.

§ 2. Modified conformal symmetry in a C-S gauged Schriodinger field theory

In this section, a C-S gauged Schridinger field theory in the presence of a uniform
~ external magnetic field B is discussed. The action reads

S= f de[ T iD, wmzl—mjpkwl%% W|4+Z}56“ﬂ’aaaﬁa,] , @)

where Du=0.— tau— ieAy., 8,=0/0x", and
eAo=0 , eAr= _—eélg‘ekzl’l s ‘ (2)

and the Latin indices run over 1, 2 and the Greek indices over 0,1, 2. ¥ is a complex
bosonic field, and a. is C-S abelian gauge field. We include in the action a two-body
delta-functional potential of ¥ with a coupling constant g. - The action with v=3, 5,
.-+ describes FQHE with filling 1/3,1/5, -2
When B=0), the dilation and special conformal symmetries exist. The dilation is
V=0°%t,
x/k;ka ,

P=0"'

, __ ox" ‘
A= v au . (3)
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The action (1) with B=0 does not change its form under the transformations (3) and
(4).12  However, when B0, these symmetries are explicitly broken because B has
mass dimension 2. This does not mean straightforwardly that the number of space-
time symmetries of the system decreases. Amazingly, it has been shown that these
symmetries modify their forms when the magnetic field is applied, and survive as
exact space-time symmetries.”” The modified dilation is given by

t'=ltan‘1([22tan<~@t>> ,
10) 2

x’=(!2”1+Q)77(t)x+(g‘1—_(2)77(t)|: cos(wt) —sin(wt)} 2,

sinlwt) cos(wt)

4

P= \/2—7%5 exp[i—%wrz(u@‘z—-Qz)v(tv)sin(a)t)] r,

, _ ox”
ay= arw Ay, (5)

where 7(t)=(272+ 22+ (22— 0Q%cos(wt))™ and 2 is a parameter independent of
time. The modified special conformal transformation is given by

@
9 1 tan( 5 t)

t,:_aj tan- 2¢ ) ’
1——— tan(—t)
w 2

.I',k : 1 5
<1 _2c tan(ﬂz‘» -l—tanz(ﬂt)
@ 2 2

X [é‘“(l —2¢ tan(—gt> —I—tan2<—q)—t>> + ek‘—z—c— tan2<ﬂt>]xl ,
W 2 2 W

2
2
U= [(cos(%t) ——%— sin(—%t))z -i-sinz(—g)—'z‘)]”

. 1 +tan2<ﬂt>

_.mc 2. of @ . mcr 2
Xexp[ = E()A() 7 tan(ztﬂexp =g . r <w ) r,
——tan| 57
) 2
, __ ox* , , |
av=— axlu ar’ly (6)
where
_q_bc . (0N, (; 4\ ol w ‘
At)=3—= tan( 5 t)+<1+ 2 )tan < 5 z‘> , (7)
and |

O [T ) (o) R 0] L
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and c is a free parameter. The transformations (5) and (6) really make the action (1)
unchanged.'”® Therefore, they are exact space-time symmetries.* When -0, Egs.
(5) and (6) reduce smoothly to Egs. (3) and (4). :

Note that there is another kind of space-time symmetry in the action (1)." The
transformation is defined as

i tan‘l(ﬂr+tan(ﬁt)> ,

W 2 2

x'= 1
2
1+<%z'+tan<—620—t>)
) W of W @
y 1+2rtan<2t>+tan<2t) 5 T
. x ’
~ 2, 1+57 tan<—622z‘> +tan2<%t>
2.2 ' ’
= Zé(t) exp[i ”Zw ﬂé(t)( w4r sin(wt)— a)rcos(wt)ﬂ v,
/-‘ ' ' .
al:%—a# ’ , . ; ' (9) v
where

5(1‘)=é~ [cosz(%t>+(sin(%t> +_aé_r cos(fzgt)) }_1 (10)

and r is a free parameter. Transformation (9) also does not change the action (1).
When o vanishes, transformation (9) reduces to the ordinary time translation.

It has also been pointed out that transformations (5), (6) and (9) form an SO(2, 1)
group.”® We call the SO(2, 1) group the modified conformal group and the symmetry
corresponding to the group the modified conformal symmetry in this paper. The
modified conformal symmetry shows us many dynamical aspects of the system,' and
exists also in quantum problem of anyons, as discussed later.

Equations of motion derived from the action (1) are

z'Doq'f=—21 DRV — (T )T (11)
m
s (Gata— 3ate)= €unnd ", ~ (12)

where /°=¥'¥ and J*=—(/2m) T 'D.¥—D.¥'¥). Notably, these equations
possess some analytic solutions when g=2x|v|/m.*® The forms of the solutions are

s o o) a7,
l[f:[—ﬂ—m—} cos (7t>—1ml—2—ez T,

*) These symmetries are imported from the system without B through a general coordinate transforma-
tion, which has appeared in Ref. 14). See Ref. 15) for details.
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ar=—v [90(@=)'(t, 9)dy+ dulie,

ao=vf0kt9(x—y)]"(t, y)d*yv+ar, (13)
where | \
i(w/2)¢t
LS a
cos<—2—t>

z=x+1y, F(y) is an arbitrary analytic function of 7, and 8(x)=tan™*(y/x). The
phase /r in Eq. (13) is almost a gauge degree of freedom except its singular contribu-
tion, which cannot be gauged away. For example, when F(7)=7", the corresponding
Ar is given by

Arp= —T;f'— (N—1)0(x)+regular term, (15)

where only the regular term can be gauged away.

It is a remarkable aspect of the C-S gauged Schriodinger field theory that the
2-dimensional conformal symmetry is also realized dynamically in a set of the
analytic solutions (13), though the theory is defined in the 3-dimensional space-time.
Consider a solution ¥ in the form of Eq. (13), and transform it under the dynamical
2-dimensional conformal transformation: ’

t'=t,
. i(w/2)t
z’=cos(%t>e“’(“”z)tf __e___c;_g_ ,
cos(71>
,_ 0z (A F(t,2")—Ar(t,2)) |
vr==>le v, | (16)

where f(7) is an arbitrary analytic function and F’'(#(»))=F(5). Then it can be
shown that ¥ is also a solution in the form of Eq. (13).

In this way, the C-S gauged Schridinger field theory in the magnetic field has the
modified conformal symmetry and, the 2-dimensional dynamical conformal symmetry
exists in a class of the solution of the equations of motion.

§3. Modified conformal symmetry of anyons in a magnetic field

In § 2, we discussed the C-S Schrédinger field theory. If the field is second-
quantized, we get a quantum field theory equivalent with a many-body quantum
mechanics of anyons. In this section, we discuss the N-body system of anyons in the
uniform external magnetic field B. The Schrodinger equation with B reads

0
Z

: N . _ (72
Uszszl—ﬁa:I[aamL 7 ezB €kzl'al— Z'Vﬂgaékz%:%?z] . (17)
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Because one anyon cannot be put upon another anyon in order not to disturb the
notion of anyon-path homotopy, the wavefunction of anyons must vanish when two
coordinates of anyons coincide with each other. This is called the hardcore condition
of anyons. ’

In the system of anyons in B, there also exist the modified conformal symmetries,
corresponding to the symmetries (5), (6) and (9) of the C-S gauged Schrédinger field
theory in B.*® The quantum generators of the modified conformal group can be
written down explicitly. For the symmetry corresponding to transformation (9), the
generator is written as

H=cos’(2t)| H+-2( 7 +4 N 1)

+2 cos(2t Jsin(-9) 2 (2D pA (D) + b (D2 (1))

-————(ZCOS( ) >i:] (x(t)), (18)

where J=X3_1e*x.*(t)pa'(t) and
2H(t) =g lte | p ()= (— i3 oxF)e e | (19)

For the modified dilation symmetry, the generator is

D=L tan(L1)H—1 5] 2000 (0) + 0O (O)+ malad (0)tan( 2t )| ‘.
| (20)

For the modified special coanrmal symmetry, it is

2 (x"(2)). (21)
2 t)

K——‘——42—ta ( >H+itan< )D+——————
1) 2 2 9 ( 1)
cos

The transformations generated by H, D and K really make the form of the Schrdin-
ger equation (17) unchanged. By virtue of these symmetries, the charges are con-
served, ’

d ,_ 90 _ | '
—EZTO Z[HB, O]+ ot _0: (22)

where O=D, K or H.
It is remarkable that they form an SO(2, 1) algebra,

[H, D]=iH,
[D, K]=iK,
[H, K1=2iD . ‘ | (23)

Note that all of them are commutative with the conserved angular momentum J.
When o vanishes, H, D and K reduce to the ordinary Hamiltonian, dilational charge
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and special conformal charge of free anyons, forming the SO(2,1) algebra.'’»'?
Jackiw has shown that the quantum mechanics of two-body free anyons with fixed
angular momentum is completely described by a single, irreducible, unitary and
infinite-dimensional representation of the SO(2,1) algebra with w=0.2Y We can
extend his argument for anyons in the magnetic field, as follows.

It is a very important property of the modified conformal symmetry that H and
K satisfy :

R=H+% R=H,+2 2 (7 +¥NW-1). ' ()
The eigenstates of R are the energy eigenstates with a fixed angular momentum J.
As seen in Eq. (24), the modified conformal algebra contains the Hamiltonian in the
presence of B. Therefore, the symmetry can play a crucial role in determining the
energy spectrum of anyon systems. We also recombine the generators of the algebra

-such that
L.~(2R-L1a)+iD. | (25) -
Their cofnmutation relations are calculated as |
[R, Li]=+wL., ~ | | (26)
(L. L1=—2FR. « | (27)

Equation (26) means that L.(L-) is a raising (lowering) operatdr of R by . On the
other hand, it is shown that R is bounded below, since R is explicitly written as

R= 2[ (;ba ()—v 3 e ﬁfcgg ggg%) + méuzxak(f)z}ko ] (28)
Therefore, there is a state |d> which satisfies

L|d>=0, | o (29)

Rld>=dw|d> . | (30)

|d> is the highest weight state of the modified conformal group. From Eq. (24), the
highest weight state |d> is an energy eigenstate with its eigenvalue E=w[d —(1/2)]
—(y/[4)N(N—1)]. Every energy eigenstate can be reproduced by operating L.
repeatedly to the highest weight states with arbitrary angular momentum. Now,
what we must do is only to solve Egs. (29) and (30) for |d>. For this purpose, we write
down two equations from Egs. (29) and (30),

(L_+%0—R>ld>=<%lz— Z'D)|d>=d1d> , | (31),
2ma)L_ld>=—2m(ﬁ—%—2—[§’+ia)ﬁ>|d>.=0. (32)

Here, we introduce a state |d> by

NI | -El ectronic Library Service



Publication O fice, Progress of Theoretical Physics

382 T. Awaji and M. Hotta

|dy=e"@PR| 3
Using identities of the SO(2, 1) algebra such that | ,

e(w/z)kDe—(w/z)K:D_ Z'__Zal[z , ’ (34)
~ o~ -~ —~ ~ 2 o~
e @R Fg~(@nF = Ff — iwD—%-K , (35)

we get two constraint equations for |d,
—iD|d>=d|d>, (36)
—2mH|d>=0. (37)

Writing down Egs. (33), (36) and (37) by the coordinate representation in which |d>
and |d > correspond to ¥, and ¥, we get

Gﬁd:exp[—%gza'.xakz] 7, (38)
%’él(«rakaak“‘ 1) @d:d@"d , . (39)
3 _ kzw_ﬁif 7 ,

agl(aak Zyﬂgae |xa_x/3‘2 Wd"—o . (‘ (40)

Equation (39) means that
Tult, Qud) =%V u(t, x.") . - (41)

Therefore, after removing the factor ¢ /2%, all of the highes.t weight states have a

definite scaling property under the spatial dilation. When one introduces a multi-
valued wavefunction, '

Wmum=exp[z'u0§ﬁ6(.ra~x,e)] r (42)
-~ with 8(x)=tan"'(y/x), Eq. (40) is reduced to the Laplace equation,

N ~ .

aZ=‘.1 0k w'multizo . (43)

Therefore, the energy spectrum problem of anyons in the magnetic field can be
entirely described by the Laplace equation with multi-valuedness defined by Eq. (42).

Next, we analyze explicitly two-body energy eigenfunctions of anyons corre-
sponding to the highest weight states of the modified conformal group. First, fixing
the angular momentum, we write down the highest weight conditions for two anyons.
Removing the contribution of the center-of-mass degrees of freedom and using the
relative coordinates r=x;—x:= (rcos@, »sinf), we get from the angular momentum
conservation and Egs. (39) and (40), ' :

'—Z'a—aa@au:]@au ) (44)
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r4-0u=(2d =104, )
10 0., 1(0. Vo o
[7?75—*— 2 <a€ +Z)/> }(D(g——o,‘ (46)

where J is the relative angular momentum and takes an integer Valtie. From
Eqgs. (44) and (45), the eigenfunction is expressed in the form as

Oy=r>*"1e?, | | 47
Substituting Eq. (47) into Eq. (46), we obtain
2d—1==%[J+|. , ’ (48)

From the hardcore condition of anyons, the eigenfunction must vanish at r=0.
Therefore, the positive sign in Eq. (48) should be selected. Finally, we get an energy

eigenfunction,

O, =yV+V1gie (49)
with |

E=o( 5+ +1-]-)). )

If one wants the ordinary expression of the eigenfunctipn, it needs a normalization
constant and the magnetic exponential prefactor e™“/®¥,  Using a step operator L,
we also obtain all of the energy eigenfunctions,

@J(”)—_-?’““'Ln”*“‘<——@2t—w—72>e”" ‘ - (51)
with

E=o(ntp+4(T+d=T-v)), | (52)
where L.*(x) is the Laguerre polynomials, and #=0,1,2, ---, and m,=m/2 is the

reduced mass. This coincides with the well-known result.*® Consequently, it can
be said that the energy spectrum of two anyons in the uniform external magnetic field
is completely determined only from kinematics of the rotational symmetry and the
modified conformal symmetry.

§4. Semi-classical energy spectrum of anyons in a magnetic field

In § 3, we discussed the modified conformal symmetry of anyons in the magnetic
field. On the other hand, in the C-S system in § 2, there is another type of symmetry;
the 2-dimensional dynamical conformal symmetry in a subset of solutions of the

- equations of motion. Here, one question arises. Does the 2-dimensional conformal
symmetry also exist in the system of anyons in the magnetic field? We can find a clue
about this problem by investigating the energy spectrum quantized semi-classically in
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the two- and three-body problems.

First, we start with a classical action of two anyons in the magnetic field B.
Removing the center-of-mass degrees of freedom, and adopting a relative coordinate
of two anyons r=ux:—xi, the action reads

S= [qt My 7-,k2_ e.B ekﬂ"krl—)/fkaz.eﬁ(r) ’ '(53)
2 2

where m,=m/2 and e,=e¢/2. "' The equation of motion derived from the action (53)
has general solutions, '

rzro[ cos(wt) ] +e, | ' ' (54)

—sin(wt)

where 7 is a radius of a circle of a cyclotron motioh, and e is a coordinate vector of
the center of the circle. Energy E and angular momentum J of the solution are such

that
E= W;’ (wn)?, , (55)
fz—m—zl@—(ez—roz)—v. , (56)

In order to apply the Bohr-Sommerfeld semi-classical quantization to the system,
we calculate the action of classical orbits in Eq. (54). Because the flux stays at the
origin r=0, the classical orbits separate into two classes, whether the origin is in the |
circle of the cyclotron motion (Case A) or not (Case B). In Case A, J+v<0 and in
Case B, /+v>0 from Eq. (56). The action of the orbits in one period T=2r/w is

Sle"=[— vo(r(£)L"

| 2zv (Case A)
| 0 (CaseB). | (57)

Therefore, the energy spectrum derived from the Bohr-Sommerfeld quantization is
such that

_ 27m Xinteger—S
E= T

=w[integer+%(|]+u|‘~]—u)]. ‘ | ' (58)

This energy spectrum is only an approximation. So, in general, the exact spectrum
needs higher quantum corrections. However, it must be emphasized that v-
dependence of the energy spectrum in Eq. (58) is the same as that of the exact result
in Eq. (562). Very notably, higher quantum corrections than the semi-classical one are
not needed in the v-dependence. Remembering that the exact two-body energy
spectrum is derived from the modified conformal symmetry as shown in § 3, it can be
said that the modified conformal symmetry protects the two-body spectrum from higher
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quantum corrections than the semi-classical ome. This interesting aspect tempts us to
quantize three anyons semi-classically.

The three-body quantization can be performed in the same way. The action
reads

3 3
S:/dt[ﬂgl[i'ak]z"“‘e‘iB—lezlilakxal_ V[Z:li'akﬂgaake(-ra_xﬁ)] , (59)

where & =dx/dt. Classical solutions with three anyons in cyclotron motion are
classified into 4 distinct classes (Case 1~Case 4) according to their action values in
one period. Case 1is with S=0, Case 2 with S=2rv, Case 3 with S=47v and Case 4
with S=6my. The typical arrangement of three anyon orbits in each case is dis-
played in Fig. 1. For Case 1, the typical situation is that any orbit does not enclose
one another. For Case 2, there is one orbit including another one and the third orbit
encloses nothing and is enclosed by no other orbits. For Case 3, there is an orbit
including two other orbits and the two in it do not enclose each other. For Case 4,
the first circle encloses the second one, and the second one encloses the third one. We
notice only the v-dependence of the semi-classical energy spectrum AEs«(v). The
results are such that

AE&se (v)=0, - (60)
AEEse :(V)=—vw , | | (61)
ABSes)=—2v0, | . (62)
AE?}%S; {v)=—3ww . (63)

It is rather mysterious that the

energy eigenfunctions have been analyti-
cally obtained only in Case 1 and Case 4,
and that the v-dependence of the energy
spectrum for the analytic results coin- @
O O

cides exactly with that in Eqgs. (60) and
(63). For example,

3 y Case 1 Case 2
wcase 1= H |Za_2ﬂ'
asp

. \
X exp< —%Ellzalz) (64)
is an energy eigenfunction of Case 1 with @
E=3w/2 (4E=0), and _

3 . Case 3 Case 4
gp‘Case 4= al;[ﬂ'Zaf - Zﬁ|_y(2a — Zﬁ)z
‘ s Fig. 1. Typical arrangement of classical orbits of
maw ; i -
X exp( _T S ‘ Za[2> (65) three anyons in t-he uniform extern'al magnetic
a=1 field, corresponding to Cases 1~4 in §4. The
circles express anyon orbits of the cyclotron
is an energy eigenfunction of Case 4 with motion in the z-v plane.
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E=w((15/2)—3v)(dE=—3vw).*® Other exact wavefunctions in Case 1 and Case 4
have been created with step operators acting on the states in Egs. (64) and (65).? In
this way, the v-dependence in Case 1 and Case 4 is really protected from higher
quantum corrections than the semi-classical one. Then, what protects it?

'~ We have not found its complete answer yet. However, there are some clues to
this question. Even if the number of anyons increases to more than three, extension
of Egs. (64) and (65) to the many-body problem is always possible, and the exact
wavefunctions can be written down.”® The v-dependence of the energy spectrum
remains protected from higher quantum corrections even though the system has many
dynamical variables. It may be another clue that the energy eigenfunctions analyti-
cally obtained can be expressed by the vertex operator formalism,'®*® which often
appears in the conformal field theory. From these, we conjecture that a certain larger
symmetry than the modified conformal symmetry protects the semi-classical v-
dependence from higher quantum corrections in Case 1 and Case 4, and that the large
symmetry, perhaps with infinite number of generators, may be the 2-dimensional
dynamical conformal symmetry like that of the C-S system in Eq. (16). Thus far, this.
is only a conjecture and needs more effort for its establishment.

We want to comment also on Case 2 and Case 3. In these cases the exact energy
eigenfunctions are missing so far. It seems that those energy eigenfunctions and their
energy spectrum have more complicated forms than those in Case 1 and Case 4. We
have calculated only their v-dependence of the semi-classical energy spectrum in Egs.
(61) and (62). On the other hand, there are recent perturbative and numerical works
calculating a part of the energy spectrum in Case 2 and Case 3. The semi-classical
picture is available to grasp the behavior of those results, as shown below.

Recently, three-body energy spectrum of anyons in a harmonic potential has been
calculated perturbatively® and numerically.? It is known that energy eigenfunctions
of three anyons in the magnetic field B have the same forms of those in a harmonic
potential with a frequency w/2,'¥ and that the energy Es of anyons in the magnetic
field B is related to the energy Er of the harmonic potential problem as

Es=Ex—2 (J+30). - (66)

Therefore, it is possible to translate those results from the harmonic potential case to
the magnetic field case. From the numerical results,”’ we can extract the v-
dependence of the energy spectrum in the presence of the magnetic field, 4Enun(v).
The results are such that \

Egi (v)=0, (67)
AE&S (V)= w(—v+8:(v)), (68)
BB () =a(—2v+85)) o | (69)
AEES (V)= w(—3v), | (70)

where d; and s are nontrivial corrections and 82(0)=82(1)=83(0)=6‘3(1)=O. The
numerical energy spectrum in Case 2 (Case 3) decreases by w(2w) when v changes
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from 0 to 1. This behavior has been precisely predicted in our semi-classical results
of Egs. (61) and (62). We think 6. and &5 as higher quantum corrections than the
semi-classical one.

For example, in the harmonic potential problem there is an anyon state which is
led to the fermion grand state when v—1. The anyon state is translated into a state
¥ of the magnetic field problem, which energy decreases by 2w when v changes from
0 to 1. Hence, the state ¥rc belongs to Case 3 of our semi-classical picture. The
higher quantum correction &3 of ¥rc behaves near v=1 as

(‘)‘3(1/)=—%—(u4— 1)+c(y‘—1)2+0(<‘u—1)3), ’ (71)

where ¢ is a positive constant and ¢~0.65.7

Because the first term in Eq. (71) is the same order of the semi-classical contribu-
tion in Eq. (62), the semi-classical picture is not so good near v=1 in Case 3. This
fact makes the above mysterious feature in Case 1 and Case 4 more striking.

§5. Summary and discussion

In this paper, we discussed the modified conformal symmetry in the presence of
the uniform external magnetic field for the C-S gauged Schridinger field and the
anyons. We revealed the role of the modified conformal symmetry in the anyon
energy spectrum. Especially, we pointed out that the two-body energy spectrum of
anyons in the magnetic field can be completely determined by kinematics of the
modified conformal symmetry and the rotation symmetry.

It was also shown that, in the C-S gauged Schrodinger field theory, there is the
2-dimensional dynamical conformal symmetry in a subset of the solutions of equations
of motion. We conjectured that the 2-dimensional conformal symmetry appears
dynamically also in the quantum mechanics of anyons in the magnetic field, and keeps

 higher quantum corrections than the semi-classical one from contributing to the
energy spectrum in some cases.

Here, we want to comment on the modified conformal symmetry of anyons in an
external harmonic potential. As mentioned in § 4, the quantum mechanics of anyons
in the harmonic potential is equivalent with that in the external magnetic field. This
fact tells us the modified conformal symmetry also exists in the system of anyons in
the external harmonic potential. Especially, it is also true that the two-anyon energy
spectrum in the external harmonic potential is entirely determined by kinematics of
the modified conformal symmetry and the rotation symmetry.'”

Acknowledgements
We would like to thank R. Jackiw for giving us useful comments. We are also

grateful to A. Iwazaki for discussing related subjects. We thank H. Murayama for
reading through the manuscript and giving us helpful comments.

NI | -El ectronic Library Service



Publication O fice, Progress of Theoretical Physics

388 T. Awaji and M. Hotta

References

1) J. M. Leinaas and J. Myrheim, Nuovo Cim. 37B (1977), 1.
F. Wilczek, Phys. Rev. Lett. 49 (1982), 957.
2) R. B. Laughlin, Phys. Rev. Lett. 50 (1983), 1395.
F. D. M. Haldane, Phys. Rev. Lett. 51 (1983), 605.
B. Halperin, Phys. Rev. Lett. 52 (1984), 1583.
Z. F. Ezawa and A. Iwazaki, Phys. Rev. B43 (1991), 2637.
S. C. Zhang, T. H. Hansen and S. Kivelson, Phys. Rev. Lett. 62 (1989), 82.
N. Read, Phys. Rev. Lett. 62 (1989), 86.
S. M. Girvin and R. Prange, The Quantum Hall Effect (Springer-Verlag, NY, 1990).
3) F. Wilczek, Phys. Rev. Lett. 48 (1982), 1144.
) Y. S. Wu, Phys. Rev. Lett. 52 (1984), 2103.
M. D. Johnson and G. S. Canright, Phys. Rev. B41 (1990), 6870.
4) Y.S. Wu, Phys. Rev. Lett. 53 (1984), 111.
5) A. Khare and J. McCabe, Phys. Lett. B269 (1991), 330.
J. McCabe and S. Ouvry, Phys. Lett. 260B (1991), 113.
A. Comrd, J. McCabe and S. Ouvry, Phys. Lett. 260B (1991), 372.
C. Chou, Phys. Rev. D44 (1991), 2533, Erratum: Multianyon Spectra and Wavefunctions.
6) M. Sporre, J. J. M. Verbaarschot and I. Zahed, Phys. Rev. Lett. 67 (1991), 1813.
M. V. N. Murthy, J. Law, M. Brack and R. K. Bhaduri, Phys. Rev. Lett. 67 (1991), 1817.
7) C. Chou, Phys. Lett. A155 (1991), 245.
8) G. V. Dunne, A. Lerda and C. A. Trugenberger, Mod. Phys. Lett. A6 (1991), 2819,
9) G. V. Dunne, A. Lerda, S. Sciuto and C. A. Trugenberger, MIT Preprint CTP#1978 (June 1991).
K. H. Cho and C. Rim, Chonbug Univ. Preprint SNUTP-91-21 (1991).
10) S. Fubini, Mod. Phys. Lett. A6 (1991), 347, 487. ‘
M. Stone, Int. J. Mod. Phys. B5 (1991), 509.
11) R. Jackiw, Ann. of Phys. 201 (1990), 83.
12) R. Jackiw and S. -Y. Pi, Phys. Rev. D42 (1990), 3500.
13) Z.F. Ezawa, M. Hotta and A. Iwazaki, Phys. Rev. D44 (1991), 452.
R. Jackiw and S. -Y. Pi, Phys. Rev. Lett. 67 (1991), 41; Phys. Rev. D44 (1991), 2524.
14) S. Takagi, Prog. Theor. Phys. 85 (1991), 463, 723; 86 (1991), 783.
15) Z. F. Ezawa, M. Hotta and A. Iwazaki, Phys. Rev. D44 (1991), 3906.
M. Hotta, Prog. Theor. Phys. 86 (1991), 1289. 0
16) More detailed analysis can be seen in T. Awaji and M. Hotta, Tohoku Univ. Preprint TU-386 (October,
1991).
17) This was emphasized to us by R. Jackiw.
18) M. Sporre, J. J. M. Verbaarschot and I. Zahed, SUNY-NTG-91/40 (October, 1991_).’

Note added: After the first draft of this paper had been completed, we received a preprint of Sporre, et al.’®
A semi-classical argument like that in § 4 appears in it. (They also cite a recent preprint in which, they say,
the same semi-classical discussion as theirs can be seen. However, we have not obtained the cited paper yet.)
In § 4, the semi-classical quantization. of anyons is discussed for the main purpose of investigating some
symmetry. On the other hand, they argue it only for intuitive understanding of the anyon energy spectrum
numerically obtained. Therefore, we think that our point of view and theirs are different. We strongly
believe that our semi-classical argument reveals a new aspect of anyon physics which they did not notice.
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