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   It is kntiwn that a  many-body  system  of free anyons  has the cenformal  symmetry  and  that

the symmetry  is broken explicitly  when  an  external  magnetic  field is applied  to the system.

I{owever, we  can  show  that a  modified  conformal  symmetry  still exists  in, the presence oi the

magnetic  field and  plays a  ctucial  role  in anyon  energy  spectrum,

                            gl. Introduction

   Recently, a  2+1-dimensional Chern-Simons (C-S) gauged  Schr6dinger field theory
in the presence  of  a  uniform  external  magnetic  field has attracted  much  attention.

This is because it describes the fractional quantum  Hall effeet  (FQHE) in condensed
matter  physics.2) A  Hall current  with  a  fractional-valued Hall coefficient  can  take

place in this model  when  an  electric  field is applied  into 
'the

 system.  On  the other

hand, another  interesting aspect  of  this model  has bee.n pointed out.  Anyons,i} which
are  particles with  an  intermediate statistics  between bosonic and  fermionic one,  

'

appear  when  the C-S gauged  Schr6dinger field is second-quantized.  A  many-body

system  of  anyons  is expected  to have  peculiar  properties  clearly  different from those

ef  ordinary  particle systems.

   Though  the model  with  such  striking  aspects  has been investigated vigorously  so

far, we  still  believe that more  detailed analysis  of  the anyon  and  the C-S gauged
Schr6dinger field will  reveal  newer  aspects  of  the  theories  and  give us  deeper under-
standing  of  the anyon  physics and  the FQHE.

   It is known  that  the conformal  symmetry  exists  in the C-S gauged  Schr6dinger
field theory without  the external  magnetic  field.ii)'iZ) The  conformal  symmetry  gets
broken  when  the magnetic  field appears'in  the system,  because the  magnetic  field

possesses mass  dimension 2. However, this does not  mean  necessarily  that the

number  of  symmetries  of  the systern  decreases. Surprisingly, it has been shown  that
the conforMal  symmetry  modifies  its form  when  the magnetic  field is applied  and

survives  as  a certain  exact  space-time  symmetry.i5)

   On  the other  hand, free anyons  also  have  the conformal  symmetry,  and  the

magnetic  field breaks  the symrnetry.  In this paper,  we  shall  discuss a  modified

conformal  symmetry  of  anyons  in the presence  of  the magnetic  field and  show  a

notable  role  of  the modified  conformal  symmetry  in determining the energy  spectrum.

Moreover,  we  shall  discuss the possibility of  dynamical  realization  oi  the 2-dimen-

sional  conformal  symmetry  of  anyons  in the magnetic  field.

'
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   This paper  is organized  as  follows. In S 2, we  shall  review  the modified  confor-

mal  symmetry  of  the C-S gauged  Schr6dinger field theory  in the  presence  of  the
uniform  external  magnetic  field. It is also  shown  that the 2-dimensional conformal
symmetry  is realized  dynamically in a  subset  of  so'lutions  of  equations  of  motion.  In

g 3, it is presented  that the moclified  conformal  symmetry  also  exists in a many-body

system  of  anyons  in the magnetic  field. Then,  we  reveal  a role  of  the modified

conformal  symmetry  in the energy  spectrum  of  anyons.  In g 4, we  discuss the energy
spectrum  of  anyons  quantized semi-classically  and,  using  the results,  investigate the

possibility of  dynamical realization  of  the 2-dimensional conformal  symmetry  in a

subspace  of  the Hilbert space  of  anyons.

g 2. Modified conformal  symmetry  in a C-S gauged  Schrtidinger' field theory

     In this section,  a C-S gauged  Schr6dinger field theory  in the presence of a  uniforrp

. external  magnetic  field B  is discussed. The action  reads

       s=: fd3x[Tt mo  q-  21m lD, eq2+-g-l gJ'1`+4;y eaP'a.dia,]  , (1)

 where  Db =  0pt -  ia" -  ieApt, ･ Elu ==  Oex", and

       eAo=o,  e,4,k=-e2Behtxi,  (2)

  and  the Latin indices run  over  1, 2 and  the Greek indices ever  O, 1, 2. T  is a  complex

 bosonic field, and  apt is C-S abelian  gauge  field. We  include in the action  a  two-body

 delta-functional potential of  T  with  a  coupling  constant  g, The  action  with  y==3,  5,

  
"'

 describes FQHE  with  fiIling 113, 115, ･-･.2)

     When  B=O,  the dilation and  special  conformal  symmetries  exist. The  dilation is

       tt=92t,  '

       x'k  F  S2xk ,

       vt=s2rr1q,

    ･ 
.nv

 Oxpt 
'

                                                                    (3)       
au-

 oxrv 
apt

 
･

 The  special  conformal  transformation is

            t
       t'=
          1-  ct  

'

        fk-
 xh  ,

       
Xr1-

 ct'  
'
 

'

       T'=(1  -  et.)ei(ll2)me(r2A-ct)  ep ,

        ,-  dr"
       av-  ox.ll 

a".  
-
 . (4)
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The action  (1) with  B=O  does not  change  its form under  the transformations (3) and
(4).i')'i2) However,  when  BiO,  these symmetries  are  explicitly broken  because B  has

mass･  dimension 2. This does not  mean  straightforwardly  that the number  of  space-

time  symmetries  of  the system  decreases. Amazingly, it has been shown  that  these

symmetries  modify  their forms  when  t]he magnetic  field is applied,  and  survive  as

exact  space-time  symmetries.i5)  The  modified  dilation is given  by

     t'== Ztan-'i(S22tan(-Yt)) ,

xt-;(g-i+s?)rp(t)x+(9-i-9)rp(t)[

                           L

Urt=1

cos(tot)  -sin(tot)1

sin(tut)  cos(tot)  ] X,

wheretime.

pmrp()

 , Oxpt
au=

 ox,u 
apt

 ,

exp[i  
M4
 tor2(9-Z-S?2)ny(t)sin(wt)]  Clr ,

rp(t) =(9H'2+92+(9"2-92)cos(ut))ii  and  9  is a  parameter  in
The  modified  special  conformal  transformation  is given by

tt-=-2,tan-r(,-Sax
n(,g'.i)

g,))･
 ,kL  1
X

 
nv

 (1- 
2toC
 tan(gt))2+tan2(:t)

×[6kt(1- 
2cac

ep'==[(cos(

tan(gt)+tanz(gt))+  eht 
2wC
 tan2(-St)]xt  ,

gt)- 2toC sin(gt))2+sin2(gt)]ii2

× exp[-  i 
M2"

 6(t)A(t)r2tan2(- lt)]exp[ t 
MSr2

 i- 2c1+tan2(gt

(5)

dependent of

)

aL--0x"0x'u
 
ap,

w
 tan(gt)]

 q,

(6)

Where

A(t)-3-6wC  tan(-S!t)+(i+  
4i22

 )tan2(-Yt) (7)

and

g(t)=[(1-2diC tan(gt))[(1-  
2toC

 tan(gt))2+tan2(  :t)]]-i (8)
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and  c  is a  free pararneter. The  transformations  (5) and  (6) really  make  the action  (1)
unchanged.i5)  Therefore, they  are  exact  space-time  symmetries.")  When  to-O,  Eqs.

(5) and  (6) reduce  smoothly  to Eqs. (3) and  (4).
   Note that there is another  kind of  space-time  symmetry  in the action  (1).i5) The
transformation  is defiried as

t'=-[} tanLi(gT+tan(gt))  ,

x'=

   1+(
1

ST+tan(9t))2

Tt...

×

1+-[YTtan({}t)+tan2(8t)

1

  ca--2-r

tor2mT

1+gTtan(gt)+tan2(gt)

V2Egi(iYo

 t Ox"
au=::

 oxrv 
aF

 ,

exp[i  
M4to

 r2s(t)(  
[DZT2

 sin(tot)-  toTcos(avt))]  ur ,

'

x,

(9)

where

e(t)=-li- [cos2( :t)+(sin( :t)+ 
a2)T

 cos(gt))2]Li (10)

and  T  is a  free parameter.  Transformation  (9) also  does not  change  the action  (1).
When  ca vanishes,  transformation (9) reduces  to the ordinary  time  translation.

   It has also  been pointed out  that transformations  (5), (6) and  (9) forfri an  SO(2, 1)

group.i5) We  call  the SO(2, 1) group  the mQdijied  conjiormal  gromp and  the symmetry

corresponding  to the group  the modiped  cowfouaal  symmet7s, in this paper. The

m'odified  conformal  symmetry  shows  us  many  dynamical aspects  of  the system,i5)  and

exists  also  in quantum  problem  of  anyons,  as  discussed later.

   Equations of  motion  derived from  the action  (1) are

        1
iD,W;-2mD,2q-g(qtur)T, (11)

12ny(Oaap
 -  aeaa) ==  eas7:1"r , (12)

where  JO=T'er and  lh:=-(of2m)(T'Dker-Dkop'T). Notably, these,equations

possess  some  analytic  solutions  when  g==2nlullm.i3)  The  forms of  the solutions  are

     T=  [th]i'2cos-i(gt) 
1
 
+

Ctif7rpF((

 
nyrp)l,
 ezri F ,

*) These  symmetries  are  imported from the System  without  B  through a  general coordinate  transforma-

  tion, which  has appeared  in Ref. 14). See Ref. 15) for details.
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     ah=  -  yfohe(x-  J7)fO(t, y)d2y +  Ok/LF ,

     ao=yfohO(x-y)fh(t,y)d2y+a)AF,  (13)
                                                        '

where  ''

     
op
 
=:=

 .z

'

l?ii
'

 ?)･ 
(i4)

2=:x+iy,  F(op) is an  arbitrary  analytic  function of  ny, and  e(x)=:tan-i(y13v). The

phase  11F in Eq. (13) is almost  a  gauge  degree of freedom  except  its singular  contribu-

tion,whichcannotbegaugedaway.  Forexample,whenF(o)==rp",thecorresponding
AF  is given by

     nF=-1,Vl (A[-1)0(x)+regular term, (15)

where  only  the regular  term  can  be gauged  away.

   It is a  remarkable  aspect  of  the C-S gauged  Schr6dinger field theory  that the

2-dimensional conformal  symmetry  is also  realized  dynamically in a  set of  the

analytic  solutions  (13), though  the theory  is defined in the 3-dimensional space-time.

Consider a solution  q  in the form  of  Eq. (13), and  tfansform it under  the  dynamical

2-dimensional conformal  transformation:

t'=t'

                 /
2t=cos(gt)e-i{to'2)yC

                 N

ei{to12)2:

cos(-IYt))･

     qt=  &Z, ei(AF･(t',fl')-nFCt,g))er ,. . (16)
                             '

where  f(ij) is an  arbitrary  analytic  function and  F'(f(op))==F(v). Then it can  be
shown  that  q' is also  a  solution  in the  form  of  Eq. (13),
   In this way,  the C-S gauged  Schr6dinger field theory  in the magnetic'  field has the

modified  conformal  symmetry  and,  the 2-dimensional dynamical conforrnal  symmetry

exists  in a elass of  the solution  of  the equations  of  rnotion.

       g 3. Modified conformal  symmetry  of  anyons  in a  magnetic  field

   In g2, we  discussed the C-S  SchrOdinger field theory. If the field is second-

quantized,'we  get a  quantum  field thegry equivalent  with  a many-body  quantum
mechanics  of  anyons.  In this section,  we  discuss the IV-body system  of  anyons  in the
uniform  external  magnetic  field B. The  Schr6dinger equation  with  B  reads

     i oOt ur=IibT=-  21m .]$.ll,[Oak+i  
e2B

 Ekixai-ivB\.  ekten]2T.  (17)
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Because one  anyon  cannot  be put upon  another  anyon  in order  not  to disturb the

notion  of  anyon-path  hornotopy, the  wavefunction  of  anyons  must  vanish  when  twe

coordinates  of  anyons  coincide  with  each  other.  This is called  the hardcore  condition

of  anyons.

   In the system  of  anyons  in B, there also  exist  the modified  conformal  symmetries,

corresponding  to the symmetries  (5), (6) and  (9) of  the C-S gauged  Schr6dinger field

theory in B.i6) The quantum  generators  of  the modified  conformal  group  can  be
written  down  explicitly.  For the symmetry  corresponding  to transformation  (9), the

geneTater  ls wrltten  as

     lii :=cos2(9t)[Hb+-:l<f+-ll-N(Ar-1))]

        +'[il'cos(gt)sin(LiY't).Z".,(xak(t)pcrk(t)+pah(t)xak(t))

        -MsW2  (2cos2(gt)-1).Z"=,(xak(t))2, (18)

where  1= :lj=iekixak(t)Pat(t) and
                                                      '

     x.h(t)=eitHBx.he-itllB,  P.h(t)!eitHS(-iO!Ox.k)e-itllB. (19)
                                      '

For the modified  dilation symmetry,  the  generator is

     D=Ll} tan( Y t)fi -t.2"..,[xak(t)pah(t) +  pak(t)xak(t) + mw(xah(t))2tan(gt)]  .

                                                              (20)

For the modified  special  conformal  symmetry,  it is

     
,rt==-

 S2 tan2(gt)El'+-2I tan(- tt)D+  2,.,ttGt) .X".,(xak(t))2･  
(2i)

The  transformations generated  by  fi, D and  rt really  make  the fo'rm of  the Schr6din-

ger  equation  (17) unchanged.  By virtue  of  these symmetries,  the charges  are  con-

served,

     
-ISIIo-i[Hb,  o]+ 

OoOt
 -o,  (22)

where  O==b,  rt or  a. . ,

   It is remarkable  that they ferm  an  SO(2, 1) algebra,

     [Il,D]-::iH, 

'

     [D, K]-  iK,

     [A, k]-2iD. (23)
Note  that all of  them  are  commutative  with  the conserved  angular  momentum  1.
When  to vanishes,  H, D  and  K  reduce  to the ordinary  Hamiltopian, dilational charge
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and  special  conformal  charge  of  free anyons,  forming the SO(2,1) algebra,ii)'i2)

Jackiw has shown  that  the quantum  mechanics  of  two-body  free anyons  with  fixed

angular  momentum  is completely  described by a single,  irreducible, unitary  and

infinite-dimensional representation  oi  the SO(2,1) algebra  with  w=O.ii)  We  can

extend  his argument  for anyons  in the magnetic  field, as  follows.

   It is a  very  important property  of  the modified  conformal  symmetry  that H  and

K  satisfy

R.. fi+ Z2 K-  Hk  +  Y (f+-i7A[(Ar-i)) . (24)

The  eigenstates  of  R  are  the energy  eigenstates  with  a  fixed angular  momentum  J,
As seen  iri Eq. (24), the modified  conformal  algebra  contains  the Hamiltonian  in the

presence of  B. Therefore, the symmetry  can  play  a  crucial  role  in determining the
energy  spectrum  of  anyon  systerns.  We  also  recombine  the generators of  the algebra

such  that

     L.=:(-Zik--l3A) ± iD ,

Their commutation  relations  are  cal

[R, L ±] =  t wL ± ,

[L. L-]--  2R  .
           to

culated  as

(25)

(26)

(27)

Equation  (26) means  that L+(Ln) is a  raising  (lowering) operator  of  R  by to. On the

other  hand, it is shown  that  R  is bounded below, since  R  is explicitly  written  as

     R==2"l=,[21. (Pah(t)ny, ].eh`(::Xlli:::2)2i)2+ 
Msto2xak(t)2]>o.'

 (2s)

Therefore, there is a state  ld> which  satisfies

     L-  d>  
:=0,

 . ,.  (29)

     Rld>==dold>.  (30)

ld･> is the highest weight  state  of  the modified  conformal  group.  From  Eq. (24), the
highest weight  state  id> is an  energy  eigenstate  with  its eigenvalue  E=== di[d-(112)f
-(v14)Aff(IV-1)].

 Every energy  eigenstate  can  be reproduced  by operating  L+
repeatedly  to the  highest weight  states  with  arbitrary  angular  momentum.  Now,
what  we  must  do is only  to solve  Eqs. (29) and  (3e) for 1d>. For this purpose,  we  write

down  two  equations  frorn Eqs. (29) and  (30),

(L-+-iiR)1d>-(- Lk-  iD)1d> =-d1d>  ,

2mwL-ld>--2m(g-  {2 lzr+ i,,b)ld>-o .

(31)

(32)

Here,we  introduce a  state  ld> by
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ld> =:  e-(  
to'2)

 
fil
 d> .

Usingidentities of  the SO(2, 1) algebra  such  that

(33)

e(bl2)'IDer(tot2)rt  
=D

 
-
 i-g k  ,

                        2

e(on)rtAe-(wt2)g=  ,Ci-itoD-  
gZ
 k,

we  get two  constraint  equations  for 1d>,

     -iDld>-d1d>,

     
-2mHId>:=O,

Writing down  Eqs. (33), (36) and  (37) by the coordinate  representation  in

and  d>  correspond  to {PU and  U?, we get

     IPU=exp[- 
M4W

 :i]x.k2] ZPk ,

      3 .2:,(xakOak  +  1) utt =  dCital ,

(34)

(35)

(36)

(37)
which  d>

(38)

(39)

     .Z".,(Oak-ivs
 

.ehi
 
(li:

 III I::i2t )2 diit =O.  , (4o)

Equation (39) means  that

     <ijli(t, S?xak)=t S2Zdi" {P2i(t, xak).  . (41)

Therefore, after  removing  the factor e-(toi2}fi, all of the highest weight  states  have  a

definite scaling  property  under  the spatial  dilation. When  one  introduces a  multi-

valued  Wavefunction, 
'

     U'hiuitr=:exp[iyZe(xa `-  xp)]T  (42)
                 a>p

with  e(x)==tanr'(y!Z ), Eq. (40) is reduced  to the Laplace equation,

      N .
     Za2, {Pin.,,,-0. (43)
     aTl  '

Therefore, the  energy  spectrum  problem  of  anyons  in the magnetic  field can  be

entirely  described by  the Laplace equation  with  multi-valuedness  defined by Eq. (42).
   Next, we  analyze  explicitly  two-body  energy  eigenfunctions  of  anyons  corre-

sponding  to the highest weight  states  of  the modified  conformal  group.  First, fixing

the angular  mornentum,  we  write  down  the highest weight  conditions  for two  anyons.

Removing  the contribution  of  the center-of-mass  degrees of  freedorn and  using  the

relative  coordinates  r  =xi-x2=  (rcos0, rsin0),  we  get  from  the angular  momentum

conservation  and  Eqs. (39) and  (40), 
'
 

'

  .o-z
 oo 

ip.=la>. , (44)
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/

     r60.  didi=(2dm1)¢ di, (45)
'                                                                 '

     [-}r oO.roO.+ .12
 (aOe +iy)2]odi  =e,  (46)

where  J is the rerative  angular  momenturn  and  takes  an  integer value.  From
Eqs. (44) and  (45), the eigenfunction  is expressed  in the form  as

     Odi=r2d-leiJe. (47)

Substituting Eq. (47) into Eq, (46), we  obtain

     2d-1=- ± V+yl. (48)
From  the hardcore condition  of  anyons,  the  eigenfunction  must  vanish  at  r=O.

Therefore, the  positive sign  in Eq. (48) should be selected,  Finally, we  get an  energy

eigenfunction,

     diJ ==  rl!+"leUe  (49)

with

     E-  to(-ll-+e(11+v  
-J-y)).

 (so)

If one  wants  the ordinary  expression  of  the eigenfunction,  it needs  a  normalization

constant  and  the magnetic  exponential  prefactor e-(Wi2)". Using a  step  operator  L+,
we  also  obtain  all  of  the energy  eigenfunctions,

     diJ{n}==rlJ+VIL.iJ+Vl( 
M2'ev

 rZ)eZJe  , (51)

with

     E=:=to(n+t+S(IJ+yl-1-y)),  (s2)

where  Lna(x) is the Laguerre  polynomials,  and  n==e,1,2,･･},  and  nzr::=m!2  is the

reduced  mass.  This coincides  with  the well-known  result.3)'8) Consequently, it can
be said  that the energy  spectrum  of  two  anyons  in the  uniform  external  magnetic  field
is completely  determined only  from kinematics of  the rotational  symmetry  and  the

rnodified  conformal  symmetry.

g 4. Semi-classical energy  speetrum  of  anyons  in a  magnetic  field

   In g 3, we  discussed the modified  conformal  symnietry  of  anyons  in the magnetic

field. On  the other  hand, in the C-S  system  in g･ 2, there is another  -type of  symmetry;

the 2-dimensional dynamical conformal  symmetry  in a  subset  of  solutions  of  the

equations  of  motion.  Here, one  question arises.  Does  the  2-dimensional conformal

symmetry  also  exist  in the  system  of  anyons  in the  magnetic  field? We  can  find a  clue

about  this problem  by investigating the energy  spectrum  quantized semi-classically  in



Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOffice,Progress  of  Theoretical  Physics

384 71 Awal'i and  M  Hbha

the two- and  three-body problems.

   First, we  start  with  a  classical  action of  two  anyons  in the magnetic  field B,

Removing  the center-of-mass  degrees of  freedom, and  adopting  a relative  coordinate

of  two  anyons  r==x2-xi,  the  ac'tion  reads

s=fdt[  
glir

 ak2-  
eli!ll

 ekidi  
kri-vfi.kOke(r)]

 , (53)

where  mr=m12  and  er=  e12.  
'

 The  equation  of  motion  derived from the action  (53)
has general  solutions,

r-=,th[ mCO,?fiesl)] +e･ (54)

where  rb is a radius  of  a  circle  of a  cyclotron  motion,  and  e  is a  coordinate  vecto'r  of

the center  of  the circle.  Energy  E  and  angular  momentum  1 of  the solution  a!e  such

that

E=  
211r

 (toro)2 , (55)

J-MrW2(e-rbZ)-v. (56)

   In order  to apply  the Bohr-Sommerfeld  semi-classical  quantization to the system,

we  calculate  the action  of  classical  orbits  in Eq. (54). Because  the flux stays  at  the

origin  r==O,  the classical  orbits  separate  into two  classes,  whether  the origin  is in the

circle of the cyclotron  motion  (Case A) or not  (Case B). In Case A, J+y<O  and  in
Case B, f+y>O  from Eq. (56). The  action  of  the orbits  in one  period  T==2nfto is

     SloT==[-yO(r(t))]oT

7r  2nv (Case A)rmL
 O (Case B). (57)

Therefore, the energy  spectrum  derived from  the Bohr-Sommerfeld  quantization is

such  that

E=-ZtZL2S-III!i\lgg=tS
XtrS

-to[integer+t(lf+ylrJry)]- (58)

This energy  spectrum  is only  an  approximation.  So, in general, the exact  spectrum

needs  higher quantum  corrections.  However,  it must  be emphasized  that v-

dependence  of  the  energy  spectrum  in Eq. (58) is the same  as  that of  the  exact  result

in Eq. (52). Very notably,  higher quaptum  corrections  than  the  semi-classical  one  are

not  needed  in the y-dependence.  Remembering  that the exact  two-body  energy

spectrum  is derived from the modified  conformal  symmetry  as  shown  in g 3, it can  be

said  that tize modiped  conjbmaal  symmeti3,  Protects the two-body spectram bem  higher
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quanimm  corrections  than the semi-classical

quantize three anyens  semi-classically.

   The  three-body  quantization can  be

reads

,..kt[Y.Z3=,[Xah]2r  
e2B

 ek`.Z3.,iXa

one.This  interesting aspect  tempts  us  to

performed  in thesame  way.  The action

      3
kxa`-

 y ]X dr ah  2  OkO(Xa- Xp)
     a=1  Pta ]･ (59)

where  tu==chrlclt, Classical solutions  with  three anyons  in cyclotron  motion  are

classified  into 4,distinct classes  (Case 1r-Case 4) accerding  to their action  values  in

one  period. Case 1 is with  S:==e, Case  2 with  Si==2zv, Case  3 with  S==4ny and  Case  4

with  S=6rry. The  typical arrangement  of  thtee anyon  orbits  in each  case  is dis-

played in Fig. 1. For  Case  1, the typical situation  is that any  orbit  does not  enclose

one  another,  For Case  2, there is one  orbit  including another  one  and  the third orbit

encloses  nothing  and  is enclosed  by  no  other  orbits,  For  Case 3, there is an  orbit

including twe  other  orbits  and  the two  in it do not  enclose  each  other.  For  Case 4,
the first circle  enclbses  the second  one,  and  the second  one  encloses  the third one.  We

notice  enly  the y-dependence  of  the semi-classical  energy  spectrum  dEsc(y). The

results  are  such  that

AE8Case i(v)=O  
,

AEeCase z(v)=  
m

 ytu ,

AE8Case 3(Y)  ==  
rm

 2Yca ,

AE8ease 4(y)  ==  
-3vca

 .

   It is rather  mysterious  that  the

energy  eigeniunctions  have  been analyti-
cally  obtained  only  in Case  1 and  Case  4,

and  that  the v-dependence  of  the energy

spectrum  for the  analytic  results  coin-

cides  exactly  with  that in Eqs. (60) and

(63). For  example,

          3

   ZIJLase 1=  fi za-diU
         a>p

         Xexp(-  
M4CV

 2{3;!,k.12) (64)

is an  energy  eigenfunction  of  Case  1 with

E==3w12  (dli=O), and

eJbase
   3,=n

  a>BZa-zpl-"(za-zke)2

XeXP(-  
M4ca

 
.Z3=,Iza[2)

 (65)

is an  energy  eigenfunction  of  Case  4 with

6
Case1

0

oO
Case3

b

(60)

(61)

(62)

(63)

Case 2

@
Case 4

Fig. 1. Typical arrangement  of  classical  orbits  of

  three  anyens  in the uniform  external  magnetic

  field, corresponding  to Cases 1"-･4 in g 4. The

  eircles express  anyon  orbits  of  the  cyclotron

  motion  in the x-y  plane.
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E  =to((1512)-3v)(aE==-3yca).`)'8)  Other exact  wavefunctions  in Case  1 and  Case  4

have  been created  with  step  operators  acting  on  the states  in Eqs. (64) and  (65).9) In

this way,  the y-dependence  in Case 1 and  Case 4 is really  protected from higher

qgantum  corrections  than  the semi-classical  one.  Then, what  protects it?

   We  have  hot found its complete  answer  yet. However,  there are  some  clues  to

this, question. Even if the number  of  anyons  increases to more  than three, extension

of  Eqs. (64) and  (65) to the  many-body  problem  is always  possible, and  the exact

wavefunctions  can  be writtep  down,7}'8) The  v-dependence  of  the energy  spectrqm

rernains  protected  from higher quantum  corrections  even  though  the system  has mamp

dynamical  variables.  It may  be another  clue  that the energy  eigenfunctions  analyti-

cally  obtained  can  be expressed  by  the vertex  operator  formalism,ie)'8) Which often
appears  in the conjiouaal  field theo7ry, From  these, we  conjecture  that a  certain  larger
symmetry  than  the rnodified  conformal  symmetry  protects  the semi-classical  v-

dependence from  higher quantum  corrections  in Case 1 and  Case 4, and  that the large

symmetry,  perhaps  with  infinite number  of  generators,  may  be the 2-dimensional
dynamical conformal  symmetry  like that of  the C-S system  in Eq, (16). Thus  far, this

is only  a  conjecture  and  needs  more  effort  for its establishment,

   We  want  to cornment  also  on  Case 2 and  Case'3. In these cases  the  exact  energy

eigenfunctions  are  rnissing  so  far. It seems  that those energy  eigenfunctions  and  their

energy  spectrum  have  

'more
 complicated  forms  than  those in Case 1 and  Case 4. We

have  calculated  only  their y-dependence  of  the semi-classical  energy  spectrum  in Eqs.

(61) and  (62). On  the other  hand, there are  recent  perturbative  and  numerical  works

calculating  a  part of  the energy  spectrum  in Case 2 and  Case 3. The semi-classical

picture is available  to grasp  the behavior of  those results,  as  shown  below.

   Recently, three-body  energy  spectrum  of  anyons  in a harmonic potential has been
calculated  perturbatively5) and  numerically.6)  It is known  that energy  eigenfunctions  

･

of  three anyons  in the  magnetic  field B  have the same  forms of  those in a  harmonic

potential wit]h  a frequency of2,'`) and  that the energy  EB  of anyons  in the magnetic

field B  is related  to the energy  EH  of  the harmonic potential problem  as

E. ==  E. -g  (f+3y) . (66)

Therefore, it isi possible to translate those results  from  the harmonic  potential case  to

the magnetic  field case.  From  the numerical  results,6) we  can  extract  the  y-

dependence oi  the energy  spectrum  in the presence of  the magnetic  field, ZEnum(v).

The  results  are  such  t]hat

AEe"arnse i(v)  =0  
,

tiE8Ugee 2(y)-  to(-  u+  62(v)) ,

zlEEEgee 3(y)  -w(-2v+  03(y)) ,

t(fEEXgee  4(y)-  cv(-3y)  
,

(67)

(68)

(69)

(70)

vLrhere  a2 and  03 are  nontrivial  corrections  and  62(O)=62(1)=63(0)==63(1)=Q. The

numerical  energy  spectrurn  in Case 2 (Case 3) decreases by w(2ca)  when  v  changes
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from O to 1. This behavior has been precisely predicted  in our  serni-clasSical  results

of  Eqs, (61) and  (62). We  think a2 and  63 as  higher quantum  corrections  than the

semi-classical  one.

   ,For  example,  in the harmonic  potential problem  there is an  anyon  state  which  is

led to the fermion grand  state  when  y-1.  The  anyon  state  is translated into a  state

U]l?G of  the magnetic  field problem, which  energy  decreases by 2w when  y changes  from
O to 1. Hence, the state  WirG belongs to Case 3 of  our  semi-classical  picture, The

higher quantum  correction  63 of  ll]i?G behaves  near  y=1  as

     63(y)==-l}-(v-1)+c(v-1)2+o((y-1)3), (71)

where  c  is a  positive constant  and  c--e.65.5)

   Because  the first term in Eq. (7'1) is the same  order  of  the semi-classical  contribu-

tion in Eq. (62), the semi-classical  picture  is not  so  good  near  vJ=  1 in Case 3, 
'
 This

fact makes  the above  mysterious  feature in Case 1 and  Case  4 more  striking.

g 5. Summary  and  discussion

   .In this paper, we  discussed the modified  conformal  symrnetry  in the presence  of

the uniform  external  magnetic  field for the C-S gauged  Schr6dinger field and  t]he

anyons.  We  revealed  the role  of  the modified  conformal  syrnmetry  in the anyon

energy  spectrum.  Especially, we  pointed  out  that the two-body  energy  spectrum  of

anyons  in the magnetic  field can  be completely  determined by  kinematics of  the

modified  conformal  symrnetry  and  the rotation  symmetry.

   It was  also  shown  that, in the C-S gauged  Schr6dinger field theory, there is the
2-dimensional dynamical  confermal  symmetry  in a subset  of  the solutions  of  equations

of  motion,  We  conjectured  that the 2-dimensional conformal  symmetry  appears

dynamically also  in the quantum  mechanics  of  anyons  in the magnetic  field, and  keeps

higher quantum  corrections  than  the semi-classical  one  from  contributing  to the

energy  spectrum  ln  some  cases,

   Here, We want  to cornment  on  the modified  confermal  symmetry  of  anyons  in an

external  harmonic potential. As mentioned  in g 4, the quantum  mechanics  of  anyons

in the harmonic potential is equivalent  with  that in the external  magnetic  field. This

fact tells us  the modified  conformal  symmetry  also  exists  in the system  of  anyons  in
the external  harmonic  potential. Especially, it is also  true that the two-anyon  energY

spectrum  in the external  harmonic potential is entirely  determined by  kinematics of

the modified  conformal  symmetry  and  the rotation  symmetry.i7)
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