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   The  cluster-variation  method  (CVM) proposed  by Kikuchi is a  general  theory to give
approximations,  which  are  useful  to discuss phase  transitions  qualitatiyely  in many  systems.

Recently  one  of  the  present authors  (M. S.) proposed  the  coherent-anomaly  method  (CAM).
If we  have  a  well-behaved  serfes  of  appToximations,  which  is called  a canonical  sen'es, we  can

estimate  critical  exponents  following the  CAM.  In this paper it is demonstrated  by using  the

ferromagnetic Ising models  that the CVM  will  provide  a  canenical  series  which  shows

coherent  anomaly.  Our result implies that combining  the CVM  with  the  CAM  will  give a

powerful  method  to study  phase transitions and  critical  phenomena.

gl. Introduetien

   The  cluster-variation  rnethod  (CVM) is a  scheme  to give approximate  expres-

sions  for the free energy  of  infinite systems.  It is based on  the variational  principle
of  free energy.  We  prepare a  set of  clusters  of  elements  ef  the system  and  give a  trial
function of  the free energy  by  using  density matrices  defined on  these clusters.  In this
scheme,  mean-fields  acting  .on each  cluster  are  expressed  by  a  set  of  parameters  {Ai}
and  they are  regarded  as  variational  parameters. We  assume  that the best approxi-
mation  will  be obtained  when  we  choose  the parameters  {Ai} so  that  the trial free
energy  is reduced  to its minimum,  The CVM  was  formulated by Kikuchii) in 1951 for
the Ising model  and  then it has been applied  to a  wide  variety  of  systems2>  such  as

magnetic  systems,  liquid-gas systems,  and  solid  solutiens.  It was  reformulated  by
Morita3)n'5) to apply  it to quantum  spin  systems  and  random  systems,

   The  CVM  has the following two  merits.  The first one  is that  it is easy  to

introduce external  fields and  to deriVe equations  of  state  in this method.  This enables
us  to give  an  approximate  expression  for an  order  parameter  er  response  functions
and  to discuss phase transitions of  the  system.  The  second  merit  is that the CVM
gives  a  systematic  procedure  to improve  approximations,  Thefe  each  approxima-

tion is characterized  by a  set  of  prepared  clusters,  which  are  called  basic clusters.  It

is expected  that better approximation  will  follow from  a  set  ef  larger clusters,  As a

matter  of  fact, Schlijper6}'7) proved  for the Ising model  that the approximate  free
energy  obtained  by  the.CVM  converges  monotenically  to its exact  value  as  larger
clusters  are  included. Kikuchi  also  proved  the convergence  of  the entropies  obtained

by the CVM  to the exact  one  in some  limit.S)

   In 1986, one  of  the present authors  (M.S.)9] proposed  the coherent-anomaly  method

(CAM), It is a new  gen'eral scheme  to study  phase  transitions and  critical  phenom-
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ena,  It studies  the convergence  rate  of  approximations.  The  property  of  a series  of

approximations  which  enables  us  to estimate  the true values  of  critical  exponents  isi

called  canonicality  in the CAM.9)

   The purpose of  the present paper is to demonstrate that the CVM  will  provide  a

canonical  series  which  shows  coherent  anomaly.  This study  was  already  reported

briefiy by the present  authors  and  Fujiki in Refs. Ib) and  11). Our result  implies that
combining  the CVM  and  the CAM  will  give a powerful method  to estimate  critical

exponents  as  well  as  critical  temperatures  of  phase  transitions.

g 2. Kikuchi's approximation  and  its simpiified  versaons

   We  consider  the Ising model  on  the

Hamiltonian  of  this system  is given  byd-dimensional

 hyper-cubic lattice Zd. The

     .src =  
-1

 z  s.s. -  pt,HZ  s. 
,

            <.TY> X

where  2<ew> denotes the surnmation  over  all  distinct nearest-neighbor  pairs on  the
lattice, Here  we  assume  that t]he exchange  interaction  is ferromagnetic,  i.e. f>O.
The parameter  H  is an  external  magnetic  field and  ptB denotes the Bohr  magneton.

2.1. Kthuchi's apt)roximationi)

   Kikuchi's approximation  is derived by the CVM  from  a set  of  three clusters  given
by

     Ao =:=  {{x}, {x, x+  ei}, {x, x+  ei, x+  e.･, x+  ei+  ej}}  
,
 

'
 (2･1)

where  {ei}'s are  the unit  vectors  of  Zd  and  i=#j. In other  words,  the  basic clusters  of

Kikuchi's  approximation  are  a  singleton  {x}, a  doubleton of  nearest-neighbors  {x, x
+ei}, and  a  square  {x, x+ei,  x+ej,  xut-ei+ej}.  Each  cluster  is considered  as  a  part
of  the relevant  infinite system  and  mean-fields  from  the outside  of  the cluster  shall  be

acting  on  spins  located on  the cluster.  The free energy  for each  cluster  may  be given
as  follows by intreducing the mean-fields  {2r, n2, A3}:

     F({x})=  
-

 leB TIog[TrexpB(2?ai+ ptBff)Sx] ,

     F({x, x+  ei})  ==  -  leB TIog[TrexpB{(ft  y4A3)SxSx+ei

                  +[(2-1)Ai+u4A2-tiBH](Sx+Sx+e,)],

- F({x,x+ei,x+ej,xtei+ej})

       --kBTIog[TrexpB{[1+(y4-1)A3](SxSx+ei+Sx+eiSm+ei+ed

         +Sx+ei+ejSx+ej+Sx+ejSx)

         +[(z-2)Ai"-2(y4-1)A2+ltBH](Sx+Sx+ei+Sx+ei+ei+Sx+ej)],

where  a  is･the number  of  nearest-neighbor  sites  (2==2d) anct  y4 is

squares  which  have  a  given  bond  as  an  edge  (v4;2(d-1)). Here

mean-field  acting  on  a  single  spin  from  its neighboring  spins,  and  A2

(2･2a)

(2･2b)

(2･2c)

the number  of

 Ai denotes a

 and  A3 denote
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mean-fields  acting  on  a  single  spin  and  on  a  product  of  a  pair of  nearest-neighbor

spins,  respectively,  both from  a  square  cluster  of  spins.

 
'
 Because  a  cluster  can  be, in general, divided into its subclusters,  the free energy

of  the  cluster  is regarded  as  a  combination  of  contributions  from its parts. Let A  be
a cluster  in Ao  and  Bi's are  its subclusters  included in the set  Ao. Then
                               '

     F(A)=2f(Bi).  (2e3)
           B, iC A

'The
 explicit  expressions  of  F(A)  are

     F({x}) =-  f({x}) ,

     F({x,x+ei})=:f({x})+f({x+ei})+f({x,x+ei})

                ==  2f({x}) +f({x, x  +  ei})  
,

     F({x, x+ei,  x+  ej, x+  ei+  ej})  -

         ==4f({x})+4f({x,x+ei})+f({x,x+ei,x+ei,x+ei+ej}),  (2･4)
where  we  have  used  the translation invariance of  the system.  In other  words,  we

extract  a  proper contribution  f(Bi) from  each  cluster  Bi from  (2･2) as  follows,

     f({x}) -=  F({x}), '
 (2･5a)

     f({x,x+ei})-F({x,x+ei})-2F({x}), (2･5b)

     f({x,x+ei,x+eJ,x-ei+ej})=J=F({x,x+ei,x+ej,x+ei+ej})

                               -4F({x,x+ei})+4F({x}).  (2e5c)

The  free energy  per spin  is assumed  to be expressed  by using  {f(Bi)} as

     f(AO'=Zn(Bi)f(Bi). (2'6)
          B,Eno

Here  n(Bi)'s  are  normalization  factors to make  f{"O) be  a  value  per  spin.  It is easy

to find that

     n({x})=  1,

     n({x,  x  + ei}) ==  -l-z  ,

     n({x,  x+ei,  x+  eh  x+e,+e,}>=-k-zv4.  (2e7)

By  (2･5) and  (2e6), the trial functien of  Kikuchi's approximation  is given  explicitly  by
using  (2･2) as

     f(Ae)==(1-2+-li-xv4)F({x})-tg(v4-1)F({x,x+ei})

          +gzv4F({x,x+ei,x+ei,x+ei+e,}).  (2･8)
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   Then  the mean-fields  {Ai} are  considered  to be variational  parameters  and  they

are  determined by the following simultaneous  equations,

8
  f(Ao}==O,on1 (2･9a)

6
  f(Ao}=O ,iLa, (2`9b)

6
  f(no) .=O  .
Eza, (2-9c)

2.2. Simplilied vexsions

   In the scheme  of  the CVM,  Bethe's approximation  can  be  viewed  as  a simplified

version  of  Kikuchi's. In Bethe's approximation  we  introduce only  one  kind of

mean-field  Ai and  impose a  self-consistency  condition  between  the one-spin  cluster  and

the spin-pair  cluster.  It is obtained  by eliminating  the square  {x, x+ei,  x+ej,  x+ei

+  ej} from Ao and  considering  variations  only  on  a  singleton  and  a  doubleton, where

A2=A3==O and  only  one  equation  (2･9a) is solved.  If we  eliminate  the doubleton {x, x
+ei}  from Ao and  consider  a  singleton  and  a  square  as  basic clusters,  we  obtain

another  approximation  by  solving  (2'9a) to determine Ai with  A2==A3==O, This  may  be

called  a  cactus-square  approximation.ii)

   Here  we  introduce a  notation  to classify  approximations.  The  original  Kikuchi

approxirnation  is formulated on  a set Ao, which  consists  of  a  singleton,  a doubleton
and  a  square.  We  express  this set  Ao  simply  by  the notation  (124). In Kikuchi's

approximation  we  introduce three kinds of  mean-fields  (variatiQnal parameters)  Ai, A2

and  As, Remark  that Ai and  A2 act  on  a single  spin,  whereas  A3 acts  on  a product  of

a  pair of  spins  as  shown  in (2e2). Because  the  spin  product (e,g. SxSx+e,) is invariant

under  the total inversion of  spins  {Sy}---{-Sy} (i.e. Zi-symmetric), the roie  played by

A3 to determine the trial function f("") is quite different from  those by  Ai and  A2 as

discussed by Minami,  Nonomura  and  the present  authors  for the multi-effective-field

theory.i2) We  will  call  in this paper  the mean-fields  acting  on  a single  spin  or  a

product  of  an  odd  number  of  spins  odd  meanfielcls,  and  call  those  acting  on  a  product

of  an  even  number  of  spins  even  mean;Eelcis.  For  example,  we  say  that Kikuchi's

approximation  has two  kinds of  odd  mean-fields  (Ai and  A2) and  one  kind of  even

mean-field  (A3), Then  we  propose, for example,  a notation  [124; 2, l] to express

simply  Kikuchi's approxirnation.  Using  this notation,  Bethe's approximation  and  the

cactus-square  approximation  are  denoted by  [12; 1, O] and  [14; 1, O], respectively.  In

general, an  approximation  obtained  by a set  of  clusters  A==:{Bi, B2, ･+', Bn} with  no

kinds of  odd  mean-fields  and  ne  kinds of  even  mean-fields  will  be abbreviated  to

[IBillB2['" Bnl; no,  ne],  where  Bi denotes a  number  of  sites included in a  set  Bi.

   In this paper  we  consider  other  two  simplified  versions  of  Kikuchi's approxima-

tion, which  are  denoted by [124; 2, O] and  [24; 1, O]. The  former was  called  Yvon's

square  approximation  in Ref, 11), The  latter can  be viewed  as  an  Ising spin  versioni3>

of  the first approximation  found in the paper  by 0guchi and  Kitatani,i`) where  they

studied  the quantum  Heisenberg model  by  the CAM.
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S3. Beyend  Kikuehi's approximation

   In this section  we  report  some  trial te improve  Kikuchi's approximation,  which

was  briefly reported  in Ref. 11).

3.1. Cube apt)raximation

   We  consider  the Ising model  on  Z`, where  d23  is assumed.  Let C  be the
following cluster

     C=:={x+lei+mej+ne-Osl  l, m,  nSl},  (3e1)

where  i# i, i=#k, i=#k and  l, m  and  n  are  integers. That is, C  is a cube  consisting

of  eight  sites. We  add  C  to the previous set  Ao,

     Ac=AoUC,  (3e2)

and  we  use  Ac as  a  set of  basic clusters  as  below.

   The free energies  for the singleton  and  the doubleton are  the same  as  (2･2a) and

(2･2b), respectively.  However,  (2･2c) should  be replaced  by the following free energy

     F({x, x+  ei, x+  ej, x+  ei+  ej})

       =:-feBTIog[Trexp/I"[.I+(y4-1)Aa+vBAs]S<2)+ysA6S(2"+vsAsS(`)

         +[(xm2)Zi+2(y4-1)A2+vsi14]S(')t2/sA7S(3)],  (3e3)

where

     S(i) ==  Sx+  Sx+ei+ Sx+ei+ej +  Sx+ej ,

     S(2)=SxSx+ei+Sx+etSx+ei+ej+Sx+eitejSx+ej+SxtejSx,

     S(2') =  SxSx+ei+ei+ Sx+eiSx+ef ,

     S(3)!=rSxSx+eiSx+ei+es+Sx+eiSx+ei+evSx+ej+Sx+ei+eiSx+ejSx+Sx+ejSxSx+ei,

     S(4):=:SxSx+etSx+ei+eiSx+eJ, (3'4)

and

     vs==2(d-2).  (3･5)

Here  we  have  newly  introduced three kinds bf even  mean-fields,  2s, A6 and  As and  two
kinds of  odd  ones,  A4 and  A7, which  are  acting  from  cubic  clusters.

   The  cubic  cluster  C  has six  faces, each  of  which  is a  square.  Let  9i denotes the
i-th face and  h(9i) be a contribution  from S?i (i=1, 2, ･･･, 6). The  free energy  of  the

cube  C  with  mean-fields  is given by

                           6

     F(  C) =`  feB Tlog[TrexpB2h(S?i)].  
'
 (3e6)

                           ir-1

Assume  that 9i is a  square  {x, x+ei,  x+ej,  x+ei+ej}.  Then  we  obtain
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     h(S2i)=lll-[J+(v4-2)i13+2(ys-1)As]S(2)+(vs-1)A6S(2')+(vs-1)AsS(`)

            +-±-[(aL3)Ai+2(v4-2)A2+3(vs-1)A4]S`i'+(bls-1)A7S`3',  (3･7)

where  S(i)'s are  given by  (3･4). The  expressions  for other  h(9i)'s are  obtained  from

(3e7) by  appropriate  transformations.

   It is easy  to find that

     f( C) =F(  C) -6F({x,  x  +  ei, x  +  ej, x  +  ei +  ej}) H- 12F({x, x  +  ei})-8F({x})  .

                                                                 (3"8)

The  free energy  is assumed  to be

     f("c)--Zn(Bi)f(Bi), (3･9)
          BiEAc

where  n(Bi)'s  are  given by  (2-7) and

     n(C)=:=i;liau4ys･  (3elO)

For d=3, for exainple,  we  obtain  the following expression  for (3"9) by  using  (2･5) and

(3o8),
                                            '

     f(Ac) =-  F(  C) -3F({x,  x  +  ei, x  +  ej, x  +  ei +  ej}) +3F({x,  x  +  ei}) L  F({x}) ,

                                                                (3"11)

which  corresponds  to Eq. (1) in'Ref. 11).
   The  rnean-fields  {Ai} are  determined by the following eight  simultaneous  equa-

tions,

      aa,l, f{AC) ==  O, i-  1, 2, +･･,  8. (3･12)

   We  called  this approximation  the cube  approximation  in Ref. 11). By  using  the

notation  introduced in g2.2, it is denoted by  [1248; 4, 4]. 
'

   Two  types  of  simplified  versions  of  the cube  approximation  are  considered;ii)  a

cactus-cube  approxirriation  denoted by [18; 1,O] and  Yvon's cube  approxirnation

denoted by  [1248; 3, O].

3.2. 7'Zznoji atipraximation

   In order  to improve  Kikuchi's approximation  for the  two-dimensional  Ising

model,  we  introduce another  approximation,  whigh  was  called  the Tanoji approxima-

tion in Ref. 11). Let Tl and  1-li be the following clusters,

     Tl={x+nei+me21OSnK1,Of{  mK2},  (3413a)

     7}i:={x+nei+me2IOKnS2,OKmS2},  (3"13b)

where  n  and  m  are  integers. The cluster  Tl is a set of  six  sites arid  T2 consists  of  nine

sites. 
'
 We  take the union  of  Ao and  Zrl U T2 as  a set  of  basic clusters;

NII-Electronic  
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     !IT=  AoU  TIU  71i･ ･ (3'14)

The  reason  why  we  call  this approximation  the Tanoji approximation  as  in Ref. 11)

is that the figure made  of  the nine  sites  of  1'> and  the bonds connecting  each  nearest-

neighbor  pairs of  sites  seems  to be a  Chinese character  which  we  Japanese call  Tbunoji,

   In this approximation,  we  introduce 44 kinds of  mean-fields.ii)  Among  them, 5
kinds of  mean-fields  act  on  a  single  spin  as  given  by S(i}, 11 kinds on  products  of  spin

pairs as  S(2> or  S(2') 
,
 13 kinds on  three-spin products as  S(3), 10 kinds on  four-spin

products as  S{4}, 4 kinds on  five-spin products and  one  on  six-spin  products. The

explicit  expressions  for F({x, x+ei,  x+e2,  x+ei+e2}),  F(  Tl) and  F(  7'li) are  rather

lengthy. So we  do not  give them  here. Only we  remark  that

     f( 71) =-  F( 71)-2F({x, x+  ei, x+  e2, x+  ei +  e2})+F({x,  x+  ei}) ,
 (3･15a)

     f( l'li)=iF(7>)-4F(Tl)+4F({x,x+ei,x+e2,x+ei+ez})-F({x}), (3e15b)

and

     f("T)- Z  n(Bi)f(Bi)
          BiEiAT

        =f({x})  +  2f({x, x  +  ei})  +f({x,  x  +  ei, x  +  e2, x  +  ei  +  e2})  +  2f( Z) +f(  7>) .

                                                             (3･16)

It should  be remarked  that if we  substitute  {.l7(Bi)} for {f(Bi)} in (3･16) by using  (2e5)
and  (3･15), the  terms  F({x, x+ei})  and  F({x}) are  canceled  and  we  obtain

     f(Ar' ==  F( 7>)-2F( 71)+F({x,  x+  ei, x+  e2, xt  ei+  e2}) ,
 

'
 (3'17)

which  corresponds  to Eq. (2) in Ref. 11). This approximation  is abbreviated  to

[124691 22, 22].

   If we  omit  the contribution  from  71, we  obtain  a  simplified  version  of  the Tanoji

approxirnation,  In this case,  F(71)==f(7-1)=e and

     F( n)  i=  f( 7>)+4f({x, x  +  ei, x  +  e2, x  +  ei +  e2}) +  12f({x, x  +  ei}) +  9f({x}) .

                                                             (3･18)

Then by (2･4) and  (3･18), we  find that the  relation  (3･15b) shall  be changed  te

     f( 1>) ==  F( 7>) -4F({x,  x  +  ei, x  -  ez, x  +  ei +  e2}) +4F({x,  x  +  ei})  
L

 F({x}) ,

                                                             (3･19)

By  neglecting  f( Tl) in (3t16) and  use  (3-19) instead of  (3･15b), we  obtain

     f(ATXr) ==  F( 7L)-3F({x,  x+  ei, x+  e2, x+  ei +e2})+2F({x,  x+  ei})  
,
 (3'20)

which  corresponds  to Eq. (3) in Re£  11).

   In its simplified  versions,  we  take  into account  only  8 kinds of  the odd  mean-fields

and  6 kinds of the even  mean-fields  among  44 kinds, which  is dehoted by [1249; 8, 6]. '

g4. Coherent  anomalies  of  approximations

The magnetization  of  the system  is obtained  from  the approximate  free energy
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f(A} by

     m=  o(BOH)(-  k,IT f(A))･ (4･1)

In principle, we  can  determine the equation  of  state

     m-  m(  T, H') (4e2)

for each  approximation  by the CVM,  though the explicit  expression  will  be quite

lengthy. Here  we  will  discuss critical  phenomena  in the Ising models.  In order  to do

it, the behavior of  (4･2) only  in the vicinity  of  the critical  temperature  7Z should

be studied.  Because  the phase  transition of  the Ising model  is of  second  order,  we

can  assurne  that m  is small  near  the critical  temperature 71 in a weak  external  field
H<1.  In this case,  we  can  find that the equation  of  state  (4-2) shows  the same

structure  for any  approximation  given  by  the CVM  as

     a(  T)m=-  b( T)nz3+c( T)H+  o(m3,  H), (4o3)

where  a(T),  b(T) and  c(T)  are  functions of  the temperature.  Then we  find that
a(T)  changes  its sign  at  some  temperature 7'1] in decreasing T, whereas  the signs  of

b(T) and  c(T)  do not  change  at  7'L ih general.

   From  the above  observation,  the temperature 7}, defined by a zero  of  a(  T) can

be regarded  as  an  approximate  critical  temperature.  In Tables I and  II, we  show  the

critical  temperature of  each  approximation  discussed in the  previous sections  for the

two-  and  three-dimensional  Ising models,  respectively.  It should  be remarked  that

the approximation  denoted by [124; 2, 1] is Kikuchi's approximation.  The  approxi-

mations  [1249; 8,6] and  [12469; 22,22] in two  dimensions and  [1248;4,4] in three
dimensions have  lower critical  temperatures  than  Kikuchi's, which  implies that they

improve  Kikuchi's approximation.  It should  be remarked  t]hat we  can  find the value

of  71, of  [1248; 4, 4] in the origlnal  paper  by Kikuchi (see Eq. (D7,8) in Ref. 1)), where

he called  it the cubic-cell  approximation.

Table I. CAM  data of  the approximations

   obtained  by the CVM  for the Ising model  on  the

  square  lattice. There  was  a  typographic  error

   in Table I of Ref. 11). The  correct  value  of  the

   eritical temperature  in the  Tanoji  approxima-

  tion  is feBTcU=:'2,3463e as  shown  below.

approximations kBTclf xrm

[12;1,D] 2,88539o'5

[14;1,Ol 2.77078o'58541

[24;1,O] 2.70319o'64869

[1.7.4;2,e] 2.62534o'73799

[124i2,ll 2,42567l'41697

[1249I8,6] 2.386431'73e34

[12469;22,221 2.346302'35463

Table  II, CAM  data of  the approximations

   obtained  by  the CVM  for the Isi ng  model  on  the

   cubic  lattice,

approximations ntTc!f x-

[12;1,O] 4.93261o'25

[14;1,e] 4.89275o'25811

[24i1,O] 4.86517o'26402

[18;1,O] 4.83951o'27078

[124;2,O] 4.761e7e'28880

[1248;3,O] 4.70604o'30956

[124i2,1] 4.60973o'4

[1248;4,4] 4,58099o'41292
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   In any  approximation  obtained  by the CVM,  the magnetization  m  appears  qt 71,
with  a  criticar  exponent  3e=1!2 and  the zero-field  susceptibility  xe diverges there with

a critical  exponent  7o= 1, as derived from  (4"3). In other  words,  critical exponents

obtained  by the CVM  are  classical  ones  (showing the same  values  as  given by, a  simple

mean-field  approximation)  and  there is no  improvement.  The values  of  critical

exponents  are,  however, different from their classical  values  if the dimensionality is

Iess tha,n the upper  critical  dimension du. It is shown  by the renormalization-group

argument  that du==4 for the Ising model.

   In 1986, one  of  the present authors  (M. S.) generally discussed the convergence  of

approximations.9)  He  concluded  that when  the true value  of  the critical  exponent  is

different from the classical  value,  the critical  coeMcients  of  the classical  singularities

of  approximations  will  diverge as  the approximation  converges  to the exact  one  with

raising  the degree of  approximations.  As  an  example,  we  consider  here the suscepti-

bility xo. The  critical  coefHcient  x- is defined by

xo --  af T  -7i]7} 
+  o(o (4･4)

for O<  T-  71]<[1. It can  be calculated  from a(T)  and  c(T)  in (4s3). Let 7U* be the

exact  value  of  the critical  temperature and  let

8==7h-Wny (4･5)

As  shown  in Ref. 9), x- should  behave asymptotically  as

x- -- a-(r-1) 
, (4･6)

as  the approximation  converges  to the exact  one.  Because  the convergence  of

approximations  rneans  71]. 7h' as  raising  the degree of  approximations,  xJ will  show

the asymptotic  divergence (4･6). This phenomenon  is called  the coherent  anomaly.9)

   In the coherent-anomaly  method  (CAM), the dependence of  x- on  a is essential  and

a  series  of  approximations  in which  the relation  (4･6) holds asymptotically  for the
lirnit 6->O is called  a  Ct`IA4 canonical  sen'es  or  simply  a  canonical  series.9)  If we  find
a method  to derive a canonical  series  of  approximations,  we  can  estimate  the true

values  of  critical  exponents  following the CAM,9)･i5)

   Tables I and  II show  x- as  well  as  TL for the approxirnations  given  by  the CVM.

As  expected,  x- becomes  larger as  (Zl] decreases. This implies that x- will  diverge if
we  can  raise  the degree of  approxirnations  infinitely. In order  to examine  the

canonicality  of  the CVM,  we  plot these data on  the log6-logz- plane. The  exact

critical  temperature  for the square  lattice is given  by  Onsager  as

le, TUicf=={tanhmi(J2-1)}-i

=:2.269185...  . (4･7)

The  most  reliable  value  for the cubic  lattice may  beZ6)n"2D)
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Fig. 1. The  resu]ts  are

  shown,  where  we  have used  the  value  given by

  (4･7). The  ]ine is obtained  by  the ]east-

  squares  fitting and  its slope  is -O.74995.
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Fig. 2. The  results  for the cubic  lattice are  shown,

  where  we  have used  the va]ue  given by (4･8),
  The  line is obtained  by the least-squares fitting

   and  its $]ope  is -O.2926,

(4"8)

Figures 1 and  2 are  the results  for the square  Iattice and  the cubic  lattice, respectively,

where  we  have  used  the values  given by (4･7) and  (4-8). The  lines in the figures are

obtained  by the least-squares fitting and  the slope  of  them  is given by O.74995 for Fig. 1

and  O.2926 for Fig. 2. Because  r=714=1.75  for the two-dimensional  Ising model  by
the exact  solutions  a  =O  

,
 B=118 and  the scaling  relation  a+2B+r==2,  the slope  in

Fig. 1 should  be O.75 if the reiation  (4･6) is exact.  For the three-dimensional Ising

model,  the reliable  estimatesi6)rv20) for 7 are  given between  1,24 and  1.25, Then  the

corresponding  slope  in Fig. 2 is O.24 --O.25.

   Figure 1 shows  that the relation  (4･6) holds quite well  in the two-dimensional

case.  Of course,  we  cannot  conclude  the canonicality  from a finite set  of  approxirna-

tions, because it is defined as  the asyrnptotic  behavior of  approximations.  However,
Fig. 1 suggests  that the CVM  will  provide  a  canonical  series  in this case.  How  about

the three-climensional case?  The  plots in Fig. 2 are  rather  scattering  and  the slope  is

greater than  the expected  value.  It is considered  to come  from the fact that the basic
clusters  for the approximations  discussed here are  rather  small  in the  three-

dimensional system.  As a  matter  of  fact, the basic clusters  in Ao are  all  two-

dimensional, and  if we  use  only  three approximations  which  take into account  the

cubic  cluster  C  as  a basic cluster,  the slope  of  the line obtained  by the least-squares
fitting is reduced  to O.2730. We  expect  that the slope  will  become the desired value,
if we  can  include the approximations  formulated by  using  a  3× 3× 3 cluster  as  a  basic

cluster,  because such  a  cluster  may  correspond  to the Tanoji cluster  71i in two

dimensions.

g5. Copmcluding remarks

   In the present  paper  we  have given  a  brief review  of  Kikuchi's approximation  and

its sirnplified  versions  at  first, Then  we  have reported  our  trial te improve  them,
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We  calculated  the critical  temperatures 71] and  the critical  coecacients  of  the suscepti-

bility x- of  the  seven  kinds and  the eight  kinds of  approximations  obtained  by the

CVM  for the two- and  the three-dimensional  Ising models,  respectively.  The result  of

the two-dimensional  system  suggests  that the approximations  by the CVM  may

construct  CAM  canonical  series, In three dimensions, the approximations  discussed

here are  still  in the low  level, in comparison  with  those  in two  dimensions. However,

we  expect  that the CVM  will  provide  a  canonical  series  also  for the  three-dimensional

systems.

   The  CVM  preposed  by Kikuchi') is a systematic  rnethod  to improve  approxima-

tions for phase  transitions. The  monotonic  convergence  of  approximate'expressions

of  the free energy  to the exact  one  was  proved  by Schlijper.6)'7) However,  the

convergence  of  TL to the exact  value  71]* is still an  open  problem, because the

convergence  of  the magnetization  has not  yet been  proved.  The  CAM  canonicality

is a  property  of  the convergence  rate  of  approximations.  Then  it may  be hard  to

prove  the canonicality  of  the CVM.  However, as  demonstrated in the present paper,
the  CVM  will  be  a  powerful method  to study  critical  phenomena  by cornbining  it with

the  CAM,  if it is confirmed  that it provides a  canonical  series.
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