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   The  Clttster Variation Method (CVM) proposed  by Professor Kikuchi to study  coopera-

tfve phenornena  in solids  has played  a rnajor  role  ln the development of phenomenological  and

first principle$ theories  of  phase  equilibrium.  The  CVM  provides an  accurate  and  rigorous

framework  for the study  of  the configurational  thermod'ynamics  of  alloys.  As  such,  the

method  has been a  powerful  tool in the quest for insight into the main  contributions  to alloy

phase  stability  and  in the interpretation of  complex  and  extensive  experimental  data. The
early  successes  of  the CVM  have also  been instrumental in the development of ab-initio

methods  for the reliable  description of  phase  equilibrium  and,  in particular, of phase  dia-

grams, These  new  developments have  re]lect  heavily on  the CVM  and  on  the  theoretical  ideas

put forth ever  40 years  ago  by Professor Kikuchi, Here, we  review  the use  of  the CVM  in

the first-principles computation  of phase  diagrams, and  Present results  for the Zr-Nb system,

The  theory that emerges  is one  that incorporates the calculation  of  total energies  in the local
density approximati6n,  configurational  entropies  using  the CVM,  and  vibrational  modes  in the

Debye-Grtineisen approximation.

gl. Introduction

   A  strictly  computational  approach  to alloy  phase  diagrams  determination has

recently  emerged  as  a potentially valuable  tool in the design and  development of  new

materials,  This relativeiy  new  thrust in computational  materials  science  evolved

from  numerous  early  studies  of  simple  phenomenological rr}odels, These  models,

based essentially  on  generalizations  of  the Ising Hamiltonian, reproduce  quite well  the
rnost  important features of  alloy  phase  diagrams. The  Cluster Variation Method
(CVM) of  Statistical Mechanicsi) played  a key role  in these studies  since  it provided
an  eMcient  and  computationally  economical  way  of  describing the configurational

thermodynamic  of  alloys.2)'"6)

   The  early  success  of  the CVM  revived  the old  dream  of  computing  alloy  phase
diagrams  from  first principles; i.e., from  the knowledge  of  the alloy's  electronic

structure.  Indeed, one  of  the most  significant  recent  developments in alloy  theory,

densky functional theory and  its computational  version,  the local-density approxima-

tion (LDA),7) was  fully developed and  ready  to be applied  together  with  the statistical

models  to tackle  the delicate problem  of  alloy  stability  at  finite temperatures.

   The  implementation of  the local-density approximation,  together with the devel-
opment  of  eficient  linear methods  to study  the electronic  structure  of  solids,  led to
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fully ab-initio  calculations  of  the total energy  at  zero  temperature  of  pure meals,S)-iO)

relatively  simple  cempoundsii)'L2>  and  disordered alloys.'3)Ni5> These  quantum
mechanical  total energy  calculations  reproduced  a  wide  range  of  physical  properties

within  a  few percent  of  the experimental  values,  and  provided  conclusive  evidence  in
favor of  the local-density approximation,

   The  missing  link between  phase stability  at  finite temperatures  and  electronic

structure  was  established  by  developments  in the description of  the configurational

thermodynamics  of  alloys.  These  developments are  closely  reiated  to the  CVM.  In

the language of  the CVM,  the statistical  thermodynamics  of  the alloy  is described in
terms  of  atomic  configttrations  of  clusters  of  lattice sites.  This localized description

of  the state  of  partial order  can  be conveniently  accomplished  using  multisite  correla-

tion functions.i)'i6) Specifically, it has been shown  by Sanchez et  al.i6) that any

function of  configuration,  of  which  the  energy  is only  a  particular case,  can  be
expanded  in terms  of  multisite  characteristic  functions, the  expectation  values  of

which  are  the correlation  functions. Furthermore, the characteristic  functions form

an  orthonormal  basis in configuration  space,  Although  the cluster'expansion  can  be
applied  quite generally  to any  function that depends  upon  the configuration  of  the

system,  its usefulness  rests  heavily on  the rate  of  convergence  in terms  of  the size  and

complexity  of  the clusters.

   The cluster  expansion  applied  to the configurational  energy  results  in the well

known  Ising-like bi-linear expression  in terms  of  effective  multisite  interactions and

correlation  functions.i6> Studies of  binary and  multicomponent  alloys,  whereby  the

multisite  interactions were  determined using  ground  state  analysis  and  available

thermocherriical data, such  as  energies  of  formation, clearly  established  the usefulness

of  Ising-like models  in the description of  states  of  partial order.  However,  it should

be emphasiz'ed'that  the rigorous  character  of  the cluster  expansion  vindicates  the

seemingly  phenomenological  Ising model  as  a  fundamentally corregt  representation  of

the energy  of  partially ordered  alloys,  i.e. alloys  displaying both short-  andlor  long-

range  order.  In this representation,  the alloy  Hamiltonian  includes many-body  terms

as  well  as  temperature  ancl  volume  dependence. Issues that remain  to be fully

explored,  however, are  the range  of  interactions and  local elastic  distortions.

Nevertheless, neglecting  local elastic  relaxations  and  assuming  a relatively  short

range  of  interactions, configurational  free energies  can  be easily  calculated  using  the

CVM  and,  from  them,  the solid  state  portion  of  phase diagrams.

   The  success  of  the cluster  representation  for the  energy  of  alloys  led Connolly and

Williamsi7) to propose  the use  ab-initio  total energy  calculations  of  ordered  com-

pounds,  in lieu of  experimental  data, as  a  mean  of  obtaining  the set of  effective  pair

and  multisite  chemical  interactions. Although  an  extension  of  the phenomenological

approach,  the proposal of  Connolly and  Williams reflected  the degree of  confidence

with  which  total energies  could  be calculated  using  the local-density approximation,

and  opened  the door to first principles calculation  of  phase  diagrams.

   Among  the first applications  of  this first-principles approach  were  studies  of

temperature-composition binary phase  diagrams  of noble-metal  alloysi8)  and  of semi-

conductor  alloys.i9) Subsequently, numerous  other  cases  have  been investigated with
relativily  good  results20>-27) including ternary phase  equilibrium.28)
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   In general, and  neglecting  elastic  relaxations,  the irnpiementation of  the cluster

expansion  method  for any  particular systern  requires  detailed consideration  of  three

important aspects.  First is the convergence  of  the interactions in the cluster  expan-

sion  of  the Hamiltonian  which,  in general, cannotbe  ascertained  a-priori.  Several of

the studies  mentioned  above  have  addressed  this subject  and  established  criteria  for

judging convergence,  In particular, a  converged  expansion,  obtained  from  one  set  
'of

ordered  structures,  should  accurately  reproduce  the total energies  of  structures

outside  this set.  Studies that include only  nearest-neighbors  or  second-nearest  neigh-

bors interaction range  may  haVe  to be re-examined  with  this aspect  in mind.  Second
the range  of  interaction in the Hamiltonian must  be self-consistent  with  the statistical

approximation  of  the CVM.  Calculations using  well-converged  cluster  expansions  of

the Hamiltonian, but that rely  on  small  cluster  approximations,  should  also  be subject

to close  re-examination.  Finally, vibrational  modes  are  expected  to contribute

significantly  to the total free energy  apd,  therefore, they  should  be incorporated in anY

predictive theory of  al}oy  phase  equiHbrium.  Most  first-principles phase  diagram

calculations  to date have  discounted or  neglected  vibrational  effects  or  have  incorpo-

rated  vibrational  entropy  using  strictly  empirical  means.

   Here, first-principles electronic  structure  calculations  are  used  to study  phase

equilibrium  in the zirconiurn-niobium  system.  This study  incorporates the  bcc to hcp

structural  transition in Zr-rich alloys,  that  is driven by the  vibrational  free energy,  as

well  as  phase  separation  that  is determined, primarily, by  the configurational  free

energy.  The emphasis  is placed on  the development of  a predictive ab-initio  theory
of  alloy  phase  stabilitiy  that incorporates electronic  structure,  configurational  entropy

and  vibrational  modes,  It is shown  that a  cornputationally  tractable and  accurate

theory can  be achieved  by addressing  each  of  the three aforementioned  aspects  of  the

method,  In particular, for the zirconium-niebium  system,  the cluster  expansions  of

the  energy  is shown  to be well  converged,  the  CVM  is implemented  self-consistently

with  respect  to the  interactions included in the Hamiltonian, and  vibrational  modes

are  incorporated in the Debye-GrUneisen  approximation.  The result,  as  we  shall  see,

is excellent  agreement  with  experiment.

   In the next  section  we  review  the cluster  algebra  used  in description of  the

configurational  thermodynamic  of  alloys,  The  theory  provides  the formal frame-
work  for the treatment of  short-range  order  (SRO) effects  in the configurational

energy  and  is very  close  in spirit  to Kikuchi's method  for the configurational  entropy.

The contribution  to the free energy  due the vibrational  modes  is also  discussed, We

rnake  contact  with  microscopic  electronic  theories  via  the Linear Mufin-Tin  Orbital
(LMTO) approximation,  which  is used  to calculate  the total energies  of  selected

compounds  in the Zr-Nb system,

g2. Configuratgonaithermodynamics

   In this section  we  review  a  general  formalism  for a cluster  description of  the
configurational  thermodynamics  of  alloys.  The main  result  is that functions of

configuration  can  be described, quite generally, by means  of  a  cluster  expansion.  As

pointed out  in the Introduction, this expansion  suggests  that the energy  of  disordered
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alloys  may  be conveniently  characterized  from the knQwledge of  the energy  (binding
curves)  of  few  ordered  compounds.  For the sake  of  simplicity  we  consider  only

binary systems  although  the theory  can  be easily  extended  to multicomponent

alloys.i6)

2.1. Clzaster opansion

   As  usual,  the configuration  of  a  crystalline  binary alloy  is described in terrns of
occupation  numbers  oi at  each  lattice site  i  For  a  binary alloy,  the occupation

numbers  take  values  +1  and  
-1

 for components  A  and  B, respectively.  Each  of  the

2" configurations  of  the binary alloy  is then given by the IV-dimensional vector  d  =={oi,

di ･･･ ,
 oN}, where  Ai is the number  of  lattice points. In general, we  want  to address  the

problem  of  describing functions that depend explicitly  on  the occupation  variables  oi,

such  as  the energy  of  alloy  formation. An  unambiguous  description of  such  functions
is obtained  by intreducing an  orthogonal  and  complete  functional basis in

configurational  space.  In the thermodynamic  limit, the dimension of  this complete
orthogonal  basis is infinite. However,  it is usually  found that  a  judicious choice  of  a

finite set  of  basis functions is suflicient  to approximate  most  physical preperties in
real  systems,  

'

   In order  to construct  the orthogonal  basis set  we  begin by  defining two  orthogonal

polynomials in the discrete variable  oi at  a  given  single  site i: the polynomial  of  order

O, ipo(ai)= 1, and  the polynomial  of order  1, ¢ i(oi)=::oi.  In the one-dimensional  dis-

crete  space  spanned  by di, these polyn6mia!s form  a  complete  and  orthonormal  set,

with  the inner product  between two  functions of  configuration,  f(oD and  g(di), defined
as,i6)

                  1
     <f(ai)-g(ai)>-2.,:=.,f(ai)g(oi), (D

The  set of  orthonormal  characteristic  functions in the N-dirnensional discrete space
spanned  by the vector  ti is obtained  from the direct product  of  the {ipo(oi), ipi(oi)},
where  i spans  all crystal  sites  (i--1,2,･･･ N). For  a  binary system,  the resulting

characteristic  functions, op.(d), are  given  by products  of the spin  operater  oi over  the

sites  of  all  possible clusters  a=={ii,  i2, ･･･ in} in the crystal:i6)

     dia(ti)= fi Oi=OiiOi2  '''  Oin･ (2)
            iEa

Accordingly, there is a  one  to one  correspondence  between  the set  of  orthogonal

functions dia(6) and  the set  of  all clusters  a  in the crystal,  including the empty  cluster

for which  ¢ e(g)-:1.

   Orthogonality of  the characteristic  functions opa(ct) is expressed  by:'6)

      1
     2N?dia(6)

¢ fi(6):=8a,e  (3a)
                                                   '

and  completeness  by:

      1
     2rv \¢ cr(O) ¢ a(d')=6o,a'.  (3b)
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If follows from  Eqs. (3) that any  function of  configuration,  F(6), may  be written･as

     F(O)==:F}rdia(O), (4)
            a

where  the sum  extends  over  all  clusters  in the crystal,  including the empty  cluster,  and

where  the projections  of F(O)  on  the orthogonal  cluster  basis, Ex, are  given  by,

     Er ==  <F(6)'  dia(O)>= iAr ;F( O)  ¢ a(O).  (5)

In general, Eq. (4) may  be simplifiecl  by noting  that the space  group  symmetry  of  the

crystal  requires  that the cluster  projection  Ex be the same  fer all clusters  cr related  by
a  symmetry  operation  (translation or  point group). Accordingly, the ciuster  expan-

sion  in Eq. (4) becemes:

     F(if)-Zlhe.(6),  (6)
            n

where  n  labels the set  ef  inequivalent clusters  in the crystai.  In the case  of  a

disordered lattice, these clusters  are  distinguished by their number  of  points and  their

geornetry. In Eq. (6), the en(6) are  given  by:

     0n( O)=  
.\.

 Oa( O)'  (7)

In view  of  the orthogonality  of  the ¢ a(O),  we  also  have:

      1
      2N7On(O)0m(d)=:=Z>zlVkSn,m, (s)

where  zn  N  is the total number  of  n-type  clusters  in the crystal.

    The  cluster  expansion,  Eq. (6), takes  a  particularly  useful  form  when  applied  to

the probability of  configuratlon  6, X(6):

             1
     X(  ct)=2rv  [1+ 

.:.,en(ti)Sn],
 (9)

where  the term  in the expansion  for the empty  cluster  was  singled  out  and,  thus, the

sum  over  the characteristic  functions exclude  the empty  cluster.  The  5n are  the

correlation  functions which,  in view  of  Eq. (5), are  also  the expectation  values  ef  the

characteristic  functions:

     6n==2"<X(O)tdior(ti)>==ZX(d)dia(6)==<dia(O)>, (le)
                          a

where  a  is any  cluster  belonging to the equivalent  set  n,

     Combinjng Eqs. (6), (7) and  (10), it follows that expectation  values  of  functions

of  configurations,  such  as  the  average  of  the configurational  energy,  can  be quite

generarly written  in the form:

     F=<F(O)>==N2ZnEl6n.  (11)
                   n

The  cluster  algebra  developed in this section,  and  in part'icular the cluster  expansion,



Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOffice,Progressof  Theoretical  Physics

136 f M. Stznchez andJ  D. Becker

provides forrnal justification to the many  recent  applications  of  the Connolly-Williams

approach  to the characterization  of  the configurational  energies  frem first principles
electronic  structure  calculations.  An  example  of  the use  of  this formalism  will  be

given  in g3 for the Zr-Nb  syste'm.

2.2. CT;ije ofective intevactions

   The  cluster  expansion  of  the energy  applied  to a set of  ordered  compounds  allow

us, in general, to define a  set  of  effective  chemical  interactions by  direct inversion of

Eq. (11). The  procedure  requires  assumptions  concerning  the dominant  interactions,

which  are  to be included ln the cluster  expansion,  as  well  as  the knowledge of  the

energies  and  the correlation  functions for an  invertlble set of  or,dered  compounds,  In

what  follows, we  will  assume  that the energy  of  the compounds  are  known.  In

general  they include the electrenic  binding energy  E(9), function of the volume  9,

and  temperature dependent contributions  arising  from the vibrational  modes.  We
will  return  to the computation  of  the electronic  binding energy  in g3. The. vi-

brational free energy  for each  compound  will  be approximated  using  the Debye-

Grttneisen model.  Thus, the general form  of  the energy  is2'}!Z8)

               9
     F(9, T)=  s 

kBe+E(S2)-kBT[D(@IT)-31n(1-exp(-0!T))],  (12)

where  feB is Boltzmann's constant,  D(x)  is the  Debye  function, E(9)  is the electronic

binding energy,  and  where  the volume  dependence of  the Debye temperature,  Ok, is

given  by:

     0=-  e,(aLg2)7 (13)

with  eo the Debye  temperature corresponding  to A, and  with  7 the Grttneisen
constant,

   For ordered  compounds,  the free energy  given  by Eq. (12) represents  the volume

and  temperature dependent binding energy  in the absence  of  configurational  disorder.
Defining the correlation  functions eSk) -where  fe==1, 2, v"･  m  labels a set of  m  ordered

compounds  and  n  labels the interactions included in the cluster  expansion  
-

 the

vibrational  free energy  (per atom)  for each  of  the  ordered  structures,'  Ele(9, T), takes
the form:

               m

     Iil,(S2, T)--Z2.  I4,(9, T)6Sk), (14)
               n==o

where  the coefficients  l2U(9, T)  are  volume  and  temperature dependent effective

lnteractlons.

   At a fixed volume  and  temperature, inversioh of  Eq. (14) yields:
               m

      I4,(9, T)=-2to(,n)E,(9, T),  (15)
               k=O

where  the  coefficients  tok{") are  obtained  by inversion of  the matrix  with  elements

Zn6nCle).

   Note that volume  relaxation  is to be incorporated globally  by  minimizing  the free
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energy  functional with  respect  to 9, in addition  to the usual  minimization  with  respect

to the  correlation  functions $n. This grobal volume  relaxation  plays  an  important

role  in alloy  formation. It should  be emphasized,  however, that local elastic  relaxa-

tions, which  are  expected  to be present in disordered alloys,  are  not  inclqded in the

present treatment.

2.3.' Co"yigurational entropy

   Since the introduction of  the CVM  in 1951 by  Kikuchi,i' the method  has been
reformulated  using  a number  of  different points of  view.  Here, we  briefly review  the

derivation of  the CVM  based on  an  exact  Mdbius  transformation  and  a strictly

algebraic  approach.i6) This particular derivation clearly  shows  the CVM  to be a

generalization of  the rnean-field  ideas that have been so  successfully  used  in statistical

mechanics.

   We  begin by introducing the probability distribution for cluster  ev, X}if(6a), which

is given by the sum  of  the X(O)  over  all configurational  variables  ai outside  cluster

ev. Here, da stands  for the vector  of  occupation  numbers  in cluster  ev. The  probabil-
ity distribution allows  to define effective  cluster  Hamiltonians, llh(6a), through  the

relation:

     Xh(ifa) =exp(-llh(6a),{leT).  (16)

The cluster  Hamiltonians include, in addition  to the bare interactions in each  cluster,

the mean  field effect  of  the lattice. As  shown  in S 2.1, the Hlr(da) can  be written  in
terms  of  the characteristic  functions hssociated to cluster  a. The  most  general form
for Ha(Oa) is:

     .llh(oa)  ==  leTlnZev+2'hp`"' ipp( at), (17)
                     pEa

where  the prime  in the sum  indicates the term  corresponding  to the empty  cluster,

which  has been singled  out  as  kT  ln Za, is excluded.  The  effective  interactions hpCev)
are  the projections of  the cluster  Hamiltonians on  the orthogonal  basis according  to

Eq, (5),
   The  fundamental problem  is to relate  the cluster  Hamiltonians  Uh(tfev) to that of

the whole  crystal:

     H(6)==kTlnZ+X'I,le ¢ p(ctB), (18)
                    B

where  Z  is the usual  partition function and  the l/li are  the bare interactions introduced
in S 2.2. The  relationship  in question can  be established  through  an  exact  M6bius
transformatjon.  This transformation  defines irredttcible cluster  Hamiltonians, Hb,
through  relations  of  the form:i6)

Hh(6a)  ==  2  Hle( dp) ,

       a!fi
(l9)

where  the sum  runs  over  all the subclusters  B of  ev, including a.  Equivalently, the
crystal  Hamiltonian is given by
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     H(d)-2'Hle(6p),  (20)
            p

where  the sum  runs  over  ali clusters  in the crystal.

   The key approximation  made  in the CVM  is that of  neglecting  the irreducible

energy  contributions  Ha  for clusters  larger than  a  given  maximum  cluster.  This

closure  condition  aliows  us  to express  the crystal  Hamiltonian  H  in terms of  sum  of

irreducible contributions  over  a  subset  of  clusters  that, once  symmetry  is considered,
is finite. Furthermore, since  there is a linear relation  between  the effective  and  the

irreducible cluster  Hamiltonians, we  may  express  Eq, (20) as:

     U(6)=Zt'aaU.(gcr),  (21)
            a

where  the sum  runs  over  all clusters  in the crystal  contained  in the set of  maximum

clusters.  ,The  coefficients  aa  are  given by

      :'faB-1, (22)
     e]a

where  the equation  is valid  for each  subcluster  a  of  the maximurn  cluster,  and  where

the  sum  runs  over  all  subclusters  B of  the maximum  clusters  that  contain  or  equal  a.

In general, the computation  of  the ap  and,  particularly, the bookkeeping  of  cluster

probabilities are  somewhat  tedious for large clusters  andlor  lattices of  low symmetry.

However, using  simple  group  theoretical argurnents  the procedure  can  be easily

programmed  in a  computer.

   Equation  (21) is the fundamental  CVM  relation  for the  mean-field  Hamiltonians

Hh(Oa). The  equation  may  be cast  in the form  of  a  set  of  algebraic  noniinear

equations  by  projecting  onto  the basis of  orthogonal  characteristic  functions di.(6a):

     <H(O)" ¢ a(6a)>==::"aa<Ua(da)'Oa(tfa)>,  (23)
                     a

which,  for the empty  cluster,  gives

     leTlnz=:Z"aalnZa (24)
             a

and,  for the other  clusters  included in the approximation:

     I!h=2"apha(fi'. (25)
          p

Equation (25), derived here following a generalized mean-field  approach,  correspond

to the usual  minimization  conditions  of  the CVM  whereas  Eq, (24) gives the CVM
equilibrium  free energy.

   A  point  of  some  practical interest is that the algebra  developed in g2.1 is of

course  applicable  to finite clusters.  Thus, introducirig syrnmetry  and  the notation

established  in g 2.1, the cluster  probabilities are  given by

     XL,(6.)=t. [1+ .i{.;.  e.{")( o.)E,.] (26)

with  the em(")(tim) now  given by
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e.(n)(o.)= Z  V¢ a(6a)  ･
 aEnt

(27)

Here  the  sum  is restricted  to arl  clusters  a  of  type m  that are  contained  in a  given

cluster  B of  type  n. These  relations  follow by straightforward  application  Qf Eqs. (7)
and  (9) to a finite cluster  n,

   Furthermore, imposing the crystal  symmetry  to the mean-field  cluster  interac-

tions ha{fi}, and  with  the help of  Eqs. (16), (17) and  (27), the self-consistency  relations,

Eq. (25), can  also  be written  as

    
Lan

 I'1=-feT.Z..amam 21m 7. {E}n(M)(Om)lnXin(Om)･ (28)

Thus, in order  to solve  Eq. (28) numerically,  it is convenient  to use  the correlation

functions 8n as  the set  of  independent variables.  In many  instances this choice

facilitates the  use  of  ethcient  methods  for solving  nonlinear  equations,  such  as  the

Newton-Raphson algorithm,  since  the Jacobean of  the system  can  be calculated  in a
straighttorward  manner.

g3. The  Zr-Nb  systema

   The  total energies  as  a  function of  atomic  volume  of  seven  hcp and  ten bcc lattice

structures  were  calculated  for different compounds  of  the form  ZrxNbi-x. As

mentioned,  these calculations  use  only  atomic  numbers  and  atom  positions as  input

and  are  expected  to correctly  reproduce  O K  ground  state  properties.

   The  bcc-based structures  lnvestigated include the pure elements  with  the  tungsten

structure  (bcc), the Zr3Nb  and  ZrNb3  compounds  with  the D03  structure,  and  ZrNb
with  the B2 and  the B32  structures.  Total energies  were  also  calculated  for four
simple  tetragonal  structures,  with  stolchiometry  ZrNb  and  ratio  cla==O.5,  Prejected

unit  cells  for these .tetragonal  structures,  labeled IZ}, with  i--1 to 4, are  shown  in Fig.

1(a). The  following hcp-based cornpounds,  with  ideal cfa  ratio,  were  calculated:  the

oe
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Table I. Correlation functions for compounds  basecl on  the bcc structure,  The  last row  indicates the

   coordination  numbers  zn  for each  cluster.

StructureEmptyPointPairPair(2nd)Pair(3rd)'rriang･Tetra.

bcc(A) 1 1 1 1 1 1 1

DO,(A3B) 1 lf2 o o 1 -1/2 -1

B2(AB) 1 o -1 1 1 o 1

B32(AB) 1 o o -1 1 o 1

DOs(AB3) 1 LV2 o o 1 112 -I

bcc'(B) 1 -1 1 1 1 -1 1
'rl(AB)

1 o o -1/3 LV3 o -lf3

T2(AB) 1 e -V4 lf3 o o o

T3(AB> 1 o o o -lf3 o -113

T4(AB) 1 o o V3 -173 o --113

an 1 1 4 3 6 12 6

Table  II. Correlation functions for compounds  based  on  the  hcp  structure,  The  last row

   indicates the coordination  numbers  zn  for each  cluster.

Structure EmptyPointPairPair(2nd)Triang.Tetra.

hcp(A) 1 1 1 1 1 1

DO,,(A3B) 1 lf2 o 1 -1!2 -1

Pmma(AB> 1 o -113 1 o 1

Pmmn(AB) I o o -1 e -1

DO,,(AB3) 1 -112 o 1 IX2 -1

hcp(B) l -1 1 1 -1 1

LiRh(AB) 1 o o -1 o -1

Hl(AB) 1 o -Y6 o o o

X;2 1 1 6 3 8 2

pure  elements  with  the hcp structure  the Zr3Nb  and  ZrNb3 with  the DOig structure,  and

ZrNb  with  the LiRh, Pmmn  and  Pmma  structures,  plus an  additional  structure  labeled

Hl. The projected  unit  cells  for the all the  ZrNb  compounds  based on  the hcp

structure  are  shown  in Fig. 1(b).

   The  correlation  functions Sn(k) and  the coordination  numbers  an for selected

clusters  are  shown  in Table  I for the bcc and  in Table  II for the hcp-based structures.

In both cases,  the clgsters  included in Tables I and  II are: the empty  cluster,  the point
cluster,  first-' and  second-neighbor  pairs, and  the triangle and  tetrahedron  clusters.

For the bcc structures,  third-neighbor  pairs are  also  included,

3.1. Electronic strztcture  calcuintions

   The  total energies  were  calculated  in the local-density approximation,  with  the

electronic  structure  in each  case  determined using  the linear muflln-tin  orbital

NII-Electronic  
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method30)  in the  atomic  sphere  approximation  (LMTO-ASA) with  combined  correc-

tion te'rms. This approximation  renders  the total energies  correct  to first order.30}

The Hedin-Lundquist exchange-correlation  potential was  used,3i)  and  spln-orbit  cou-

pling was  not  included.

   For  phase  diagram 6omputations, a relative  accuracy  for the energy  of  formation
of  the different compounds  of  the order  or  better than 1mRy  is usually  requirecl.

Thus, the numerical  accuracy,  particularly' when  comparing  compounds  calculated

with  different structure  matrices,  needs  to be ascertained  carefully.  For  all struc-

tures, the convergence  of  the Ewald  sum  for the structure  matrix  was  assured  by
increasing the number  of  vectors  (both in real  and  k-space) until  a  doubling of  the

nUmber  of  vectors  produced  a change  in the resultitig  total energy  of  no  more  than  O.1

mRy  per atom.  The mesh  density in k-space was  tested similarly.  For  bcc strue-
tures, a rnesh  of  650 k-points in the irreducible wedge  of  the Brillouin zone  was  used.

   The  caiculated  total energy  binding curves  for the pure elements  and  cornpounds

are  accurately  described by  a Morse function ef  the form:29)

     E(9)=A-2Ce-A(r-ro)+Ce-2A(r-ro),  (2g)

where  E(S?) is the calculated  electronic  binding energy  of  the rigid  lattice and  A, C,
A, ancl  fl) are  futing parameters. Here, the variable  r  is the Wigner-Seitz atomic
radius  related  to the volume  per  atom  by the relation  9==(4rr13)r3. For  the corn-

pounds,  r  is the  ofective Wigner-Seitz radius  obtained  from  the average  of  the

constituent  atomic  volumes.  It follQws from  Eq. (29) that rb  is the Wigner-Seitz
radius  corresponding  to the minimum  in the bincling curve  and  that C  is the cohesive

energy  of  the rigid  lattice.

   In order  to include the  vibrational  modes,  as  discussed in g 2.2, an  estimate  of  the
Debye  temperature  and  the GrUneisen constant  is needed  for each  compound.  For
cubic  rnetals,  Moruzzi  et  al.29) have  shown  that  accurate  estimates  of  Debye  tempera-

tures can  be obtained  directly from the calculated  electronic  binding energies  by
assuming  isotropic longitudinal and  transverse  sound  velocities,  a  Poisson's ratio

                   7.0
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Fig. Z. Ground  state  diagram for bcc-based compounds  in the Zr-Nb  system.
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approximately  equal  to 113, and  a  ratio  of  shear  to bulk modulus  of  O.3. As shown

by  Moruzzi  et  al.,29) these assumptions  are  supported  by  experiment.  The  relation  for

the Debye  temperature  at  the equilibrium  volume  is:

eo=G.[  
7MloB]if2

(30)

with  the proportionality constant  Gc ==41.63  K  sec  for cubic  systems.

   The  assumptions  above  are,  in general, not  applicable  to hexagonal metals  as

there are  five independent elastic  constants  and  a  more  pronounced  anisotropy.  For
simplicity  we  also  adopted  Eq. (30) for the hcp systems,  but with  a numerical  constant

Gh=:45.95K sec,  This numerical  coethcient  was  chosen  in order  to reproduce  the  a

-B  (hcp-)bcc) transition temperature  of  1193K  observed  in pure Zr. We  note  that

with  this choice  of  Gh  the Debye  temperature  of  hcp Zr turns out  to be 300,75 K, in

close  agreement  to the experimental  value  of  291 K.

   The  results  of  the  electronic  structure  calculations,  in the form  of  the Morse

parameters  and  the Debye  and  GrUneisen constants,  are  summarized,  respectively,  in

Tables III and  IV, for all the bcc, except  structure  T4, and  the hcp compounds

Table III. Morse parameters,  Debye temperature  and  Grimeisen constant  for bcc-based

  compouncls.

Compoundro[au]a[au-L]D[Ry] A[Ry] e,[K] T

Zr(bcc) 3,40 O.83 O,699 O.701 269 1.42

Nb(bcc) 3.17 1,e4 O.743 O,743 409 1.65

ZrsNb(D03) 3.34 e,87 O.720 O,724 284 1.46

ZrNb(B2) 3.28 O.93 O,717 O.724 301 1.53

ZrNb(B32) 3.28 O.94 O,719 O.722 304 1.53

ZrNb(Tl) 3.28 O.94 O,713 O.718 303 1.54

ZrNb(T4) 3.28 D.93 O.716 O,722 302 1.53

ZrNb(T5) 3.28 O.93 O,715 O,720 302 1.53

ZrNb2<DOs) 3.22 O.99 O,731 O.734 323 1,59

Tab!e IV, Morse  parameters, Debye  temperature  and  GrUneisen  constant  for hcp-based

   cornpounds.

Compound ro[au]A[au'i]D[Ry] A[Ry] e,[K] r

Zr(hcp) 3.42 O,86 O.689 O.689 301 L46

Nb(hcp) 3.19 1.04 e.722 O.748 370 1.65

zr3Nb(DOig) 3.36 O.88 O.706 O.717 314 1.49

ZrNb(Pmma) 3.30 e.94 O.702 e.722 330 1.55

ZrNb(Pmmn) 3.30 e.94 O.696 O.715 331 1.ors

ZrNb(Hl) 3.30 O.94 e.7oe O.720 330 1.55

ZrNb(LiRh) 3.30 O.94 e.694 O.714 330 1.56

ZrNbs(DOig) 325 O,99 O.708 O.733 350 1.60

NII-Electronic  



Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOffice,  Progress  of  Theoretical  Physics

Zije Role of the Cluster V2zriation Method 143

investigated. A  ground  state  diagram indicating the  energy  of  formation for the bcc
based compounds  at  their equilibrium  volumes  is shown  in Fig. 2.

   The convergence  of  the cluster  expansion  for the bcc structure  was  ascertained  by
comparing  ground-state  energies  obtained  from  electronic structure  calculations  for
compounds  outside  of  the basis set, with  energies  predicted  by the cluster  expansion

itself. Using  a  basis set of  six  compounds,  that includes the pure elements,  the D03,

B2 and  B32  structures,  allows  a  cluster  expansion  up  to second-nearest  neighbors

(including three- and  four-body terms). The  basis was  also  augrnented  with  a simple

tetragonal  structure,  Tl, in order  to include third-nearest neighbors  pair interactions.
The  results  are  shown  in Table  V, where  the LMTO  energy  of  formation for each  of

the compounds  outside  the basis set is given  (second columns),  together  with  the

difference between this energy  and  that predicted  by the cluster  expansion.  The

comparison  is done for the expansions  carried  out  up  to second  (colurnn labeled
Second) and  up  to third neighbor  interactions (columns labeled Third). For  the

expansion  including third neighbors,  the errors  for each  of  three possible  basis sets  are

shown.  The jnclusion of  third-nearest neighbors  yields a  slight  improvement  in the

compound  energy  for the additional  tetragonal  structures,  T2, T3 and  T4.

   The  finite temperature  free energy  calculations  were  performed  using  the CVM  in

the tetrahedron-octahedron approximation  for the hcp alloys,  which  is consistent  with

the second-nearest  neighbor  interactions
included in the  Hamiltonian. For the

bcc structures, the maximum  clusters

used  were  the bcc octahedron  plus the

nine  points bcc unit  cell, which  explicitly

include up  to the third-nearest neighbor

pairs. Thus, the CVM  approximations

for both the bcc and  hcp structures  are

consistent  with  the range  of  interactions
assumed  in the cluster  expansion  for the
energy.

   The  resulting  phase  diagram is

shown  in Fig. 3 along  with  experimental

data from Flewitt,32) Lundin and  Cox,33)
Roger  and  Adkins,3`) and  Abriata and
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Fig. 3. Calculated phase diagram  for Zr-Nb

   compared  with  experimental  data.

Table  V. Energies of formation for the four tetragonal structures  from the

   LMTO  caiculations  and  the associated  errors  obtained  frem  the cluster'

   expanslons.

Structure E[rnRy] Errorinclusterexpansion[mRy]

(LMTO)Second Third

ZrNb(Tl) 3.3 O.15 o,oo-D.37-e.15

ZrNb(T2) 4.6 O,39 O,28 o.oo e,17

ZrNb(T3) 4.1 o.3e O.15-O,22 e.oo

ZrNb(T4) 5,O 1.23 ID9 O,71 e.93
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Bolcich.35) The  top of  the predicted  miscibility  gap  is at  1248 K  and  a concentration

of  62% Nb, 1.3% below the measured  1261 K  at  61%  Nb. As rnentioned,  the relatien-

ship  between  bulk modulus  and  the Debye temperature for the hexagonal structures

was  adjusted  to reproduce  the  a(hcp)-B(bcc)  transition of  pure  Zr. We  emphasize,

however, that this ad-hoc  adjustment  gives  a  Debye temperature  (300.75 K) that is
approximately  3%  higher than the experimental  value  (291 K). With  the adjusted

Debye  

'temperature,
 the predicted monotectoid  equilibrium  temperature  (855 K) is

within  6,5% of  the measured  temperature  (893 K).

g4. Conc]usions

   The  fundamental  theoretical background  needed  for the first-principles calcula-

tion of  phase  diagrams was  briefly reviewed  and  applied  to the Zr-Nb system.  The

method  involves the characterization  of  the electronic  structure  of  ordered  com-

pounds, an  expansion  of  the energy  in terms  of  multisite  characteristic  functions (or
correlation  functions), the  use  of the CVM  to calculate  configurational  free energies,

and  the implementation of  the Debye-Grifneisen approximation  for treatment  of  the

vibrational  modes.  It was  shown  that excellent  agreement  with  experiment  can  be

achieved,  provided  a  converged  c}uster  expansion  and  a  consistent  CVM  approxima-

tion are  used.  The  issue of  vibrational  free energies  was  also  investigated. It was

shown  that a semi-empirical  estimate,  in lieu of  first principles phonon  spectrum

calculations,  can  be obta.ined  following the approach  proposed  by Moruzzi  et  al,29) In

the case  of  Zr-Nb  this latter contribution  is crucial  since  it determines the a(hcp)

.B(bcc)  transition in Zr-rich alloys.  For  the Zr-Nb system  it was  also  shown  that a

sufficiently  accurate  description of  the miscibility  gap  can  be accomplished  using

ab-initi.o methods  without  adjustable  parameters. The  amount  of computational

work  is not  excessive  in this systern,  although  one  should  expect  that, fer other

systems  where  interactions are  of  longer  range,  numerical  and  practical complica-

tions may  arise.

   The  CVM  has played  a  prominent  role  in both phenomenological  and  first

principles calculations  of  phase  diagrams, not  only  by providing  an  ethcient  way  of

computing  configurational  entropies  but also  by the establishing  a  systematic  descrip-
tion of  short  range  order  in alloys  which,  ultimately,  led to the development  of  a

cluster  expansion  for the energy  and  to the Connolly-Williams method.  Thus,

although  much  work  remains  to be done, it appears  that we  are  on  the way  to a truly

predictive first-principles theory  of  alloy  phase stability.  Ameng  the problems  that

are  likely to be the focus of  future work  are  the effect  of  elastic  relaxations  and

applications  to multicomponent  systems.
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