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The phase diagram of the order-disorder transformation in binary alloys AxBi—x with bec
structure is calculated using the pair approximation of the Cluster Variational Method
(CVM). Nearest (NN) and next-nearest neighbor (NNN) interactions are considered. Two
types of pairs are taken into account: short pairs for the NN and long pairs for the NNN.
The results of our calculation are compared with the CVM tetrahedron approximation and
Monte Carlo Simulations (MCS).

§1. Introduction

The order-disorder transition in binary AxBi-x alloys with body center cubic (bcc)
structure considering long range interactions has been subject of numerous theoretical
and experimental studies.”’~® From the theoretical point of view the simplest
approximation for the study of bcc binary alloys using analytic statistical mechanics
is the Bragg-Williams-Gorsky (BWG),”"® which is equivalent to the point approxima-
tion in the hierarchy of the CVM.® From the statistical point of view the point
approximation is not satisfactory since it does not take into account the correlation
among neighboring points. The following step in the CVM hierarchy is the pair
approximation which is equivalent to the Bethe approximation” when only NN are
considered. It has been pointed out that this approximation is not sufficient to
describe the bee binary alloys with long range interactions,” however a fact is that
many of the main characteristics obtained within this approximation are unknown in
the case when long range interactions are considered. We can say without any
doubts that the pair approximation with long range interactions is still a closed door.
The next improvement in the statistical count is the tetrahedron approximation.®*¥
The cluster used in this approximation is an irregular tetrahedron with two short
edges (NN pairs) and two long edges (NNN pairs). This is illustrated in Fig. 1(a)
with dashed lines that link sites in four different sublattices. This approximation
gives excellent results®® and compare nicely with the MCS.?

In this work, we restrict ourselves to the pair approximation and its limitations
when this is applied to described the bcc binary alloys with NN and NNN interac-
tions.

*) Posthumous contribution.
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§ 2. The model and the method

For our study we divide the bcc
lattice in two interpenetrating simple
cubic (sc) sublattices: the sites in the
body centers (@) and the sites at cubic
edges (B), as illustrated in Fig. 1(a). In
our calculation we define three different

pairs as the basic clusters. They are (b)
shown in Fig. 1(b). The probabilities
&———®

associated with those pairs are re-

presented by v&f for the pair of sites in Fig. 1. (a) The irregular cluster used in the tetra-

the sublattices @ and 8 (short pair) 20 hedron approximation of the CVM.®" (b)
’ 257

. . e The three different clusters used in the pair
for the pair of sites located within the L . . _
approximation. It is worth pointing out that

: : 8,8
sublattice « (long palr) and z:; for the the clusters are drawn in scale and that the size
pair of sites in the sublattice 8 (long difference between the clusters is very small.
pair).

The internal energy

It is assumed that the internal energy is built up with pairwise interactions W%

between k-th neighbors (with £=1, 2). By defining the energy parameters as follows:

o W. for i#j,
" 0 when /=y, (1)

the internal energy can be written as
E—ANE Wyt + L W02+ WEP228) )

where N is the total number of lattice points and the super index v=(a, 8) in W&

indicates the type of second neighbors.

The entropy

The entropy expression using the basic clusters shown in Fig. 1(b) can be evaluat-
ed among several different methods. We find that Barker’s method®® is the most
convenient to use in the present case. The entropy is therefore given by

S=— ke N(45 LG+ S B LGE)+S TLGED)
BB L@O+ DL+ L@+ DL )]

~ IS L@+ S L)+ DL (2 l)+ 2 L) -6), )

where ks is the Boltzmann constant and -L(x)(=xInx—x) represent Stirling’s func-
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tion. In the entropy expression given by Eq. (3) there is the freedom to split in an
arbitrary way the coefficient related with the single site probabilities. We did this
partition such a way that the final set of equations reduces to the simplest possible
form.

Lagrange’s multipliers

In addition to the trivial Lagrange multipliers related with the normalization (A;
with 7=1, 2, 3), the pair probabilities are constrained by the fact that the single site
probabilities can be written in several ways as is indicated by the next set of equa-
tions:

=298 or xf=2z8F, | (t2)
J J

2 =3y5f or xf=3z20f. (4b)
J J

Two additional Lagrange multipliers are required in order to satisfy the consistency

relationship of the pair probabilities expressed in Egs. (4) (x2(v&f)=x(z%%) and
Ay@B) =2 (25F))

Xi (nyZ) Xi (Zz,y .

Grand potential

Since we fix the chemical potential rather than the composition in the calculation,
the thermodynamics function to be minimized is not the Helmhotz free energy (F
=FE—TS) but the grand potential defined as follows:

Q=F—3uN:, - (5)

where yx; and N(=N(zx*+x/)/2) are the chemical potential of the 7 species and its
total number respectively. Finally, the equilibrium conditions are obtained from the
minimization of the grand potential

02 092 _

Tl - B = ol (©)

=0,
- ovif

The set of equation in (6) is solved using the Natural Iteration Method'” in a two
nested iteration. The external iteration loop is for the normalization process (major
iteration)'” and the internal iteration is to satisfy the consistence relationship given
by Egs. (4) (minor iteration).’”

§ 3. Results and comparison

In Fig. 2 we present the results obtained by assuming that the interaction energies
are: Wi¥<0.0 and W{%”=0.0. In this case one obtains only two phases: the A2 or
disorder phase and the B2 or order phase. The reader may consult Refs. 1) and 2) for
information about the ground states of the bce binary alloys. The transition from B2
to A2 is a continuous transition (2nd order). When we compare the BWG approxima-
tion"#¥ (not shown in Fig. 2) with the pair approximation, we find that the pair
approximation (as well as the tetrahedron approximation) predicts a percolation
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Fig. 2. Calculated phase diagram for Wi =0.0 in
the pair (CVM-P) and in the tétrahedron
(CVM-T) approximations of the CVM. The
phase diagrams arc symmetric around X =0.5.

Fig. 3. Calculated phase diagrams for W%”=0.0
in the pair (CVM-P) and in the tetrahedron
(CVM-T) approximations of the CVM. The
MCS results are represented by circles. The
phase diagrams are symmetric around X =0.5.

threshold. This means that the system requires of a minimal concentration of the A
component in order to present an order phase. This is contrast to the BWG that
predict ordered phases in the entire range of A concentration. When the phase
diagram obtained with the CVM pair approximation (dashed line) is compared with
the phase diagram obtained with the CVM tetrahedron approximation® (continuous
line), we find that the pair approximation phase diagram is narrower than the
calculated within the tetrahedron approximation.

In Fig. 3 we present the results obtained in the case in which the interaction
energies are: W< 0.0 and Wi%”=+0.0. In this case the phase diagram presents three
phases; the A2 or disorder phase, the B2 or order phase and DOs which is a long-range-
ordered phase or superstructure.””®? The transitions from B2 to A2 and from B2 to
DOs; are continuous (2nd order), while the transition from DOs to A2 is a first order
transition and a coexisting region appears between the two phases. When the phase
diagram obtained with the CVM pair approximation (dash line) is compared with the
phase diagram obtained with the CVM tetrahedron approximation® (continuous line),
we find that the pair approximation gives very good results for the transition between
B2 and A2 and not so good for the transitions DOs to B2 and DO; to A2. There, the
pair approximation predicts a wider phase diagram than the tetrahedron approxima-
tion and the MCS results, which may be considered as the most reliable calculation.
To conclude, we can say that the pair approximation predictts mainly the same
topology of the phase diagram as that obtained within the tetrahedron approximation.
More details of the calculation and the generalization to the case in which one of the
alloy components is magnetic will be given elsewhere.'?
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