
Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOffice,Progress  of  Theoretical  Physics

Progress of Theoretical Physics Supplement No. 116, l994 1
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   As  a  mathematician,  astronomer,  and  physieist, Poincare was  the  first to study  the

phenomenon  of chaos  in c]assical  mechanics,  in particular  the three-bedy-problem  of  the

Moon  orbiting  around  the Earth under  the perturbation ef  the Sun. His work  helps us  to

understand  atomic  and  rnolecular  physics, because our  intuition in these areas  is always  based
on  a classical  picture for the motien  of  the nuclei  and  electrons,  The Moon's motion  was

found to be multi-periodic  by the ear]y  observers;  Newton  explained  the main  frequencies and

calculated  the lowest terms in the corresponding  Fourier expans{on.  But  inspite of  ingeniuu$

efforts, like the work  of Hill involving as  a  starting  point a  periodic orbit  of  the full problem,
Poincar6 showed  that perturbation theory is unable  to guarantee  the convergence  of  the

Fourier expansion.  In this traditional representation,  the lunar trajectory would  be restricted
to a four-dimensional invariant terus although  the available  phase-space has eight  dimensions.

   The  invariant torl are  destroyed because of  increasing phase-lock due to perturbations,
whenever  the system  is close  to a resonance.  The  KAM-theorem  gives a  mathematical

criterion  for this loss, which  is best seen  in a surface  of  section  for such  simple  systems  as  the

Anisotropic and  the Diamagnetic  Kepler  Problem (AKP and  DKP). Instead of  invariant tori,

the  flow in phase space  involves a  double fo!iation where  each  trajectory is the intersection

of  one  leaf from  the  unstable  foliation with  a  leaf from  the stable  foliation. Neighboring
trajectories drift exponentia!ly  away  from  each  other  in the  future along  the unstable  leaf,
and  approach  each  another  in the stable  leaf coming  from  the pa$t. This  situation,  cailed
"hard

 chaos",  also  allows  for a symbolic  description of  each  trajectory in terms ef a simple

code  like binary sequences  in the AKI'.

   Einstein showed  that  the  usual  connection  with  quantum  mechanics  is valid  enly  for the
case  of  

"regular

 behavior", i.e. the  presence of  invariant tori. For classically  chaotic  systems,

VanVleck's expression  for the  propagator  seems  to be the  best starting  point, provided  it is
summed  over  all  the classical  trajectories that go  from the source  to the detector. Its trace
becemes  a sum  over  periedic orbits,  which  lends additional  weight  to PoincarE's emphasis  on

their importance  in classical  mechanics,  In trying to understand  the trace of  an  operator  as

a  function of  time,  or  the  scattering  phase-shift as  a  function of momentum,  one  runs  into

almest-periodic  functions. They  are  able  to mimic  locally any  arbitrary  smooth  functien
provided  the spectrum  of  frequencies, although  discrete, is rieh  enough.  This  unexpected,  but
smooth  behavior can  be seen  as a symptom  of  quantum  chaos,  in contrast  to the  fractal nature

of  classical  chaos.

                                    Introduction
                                                  '

    The  main  topic ef  this conference,  as  expressed  in the title, is a  question: Quantum
and  Chaos: Kow  Incompatible? Since I was  instructed by the organizers  to present
an  introduction for the non-experts  in the audience,  I will  not  try to give  a  definite
answer  to this question; rather,  I will  try to offer  some  preliminary  considerations  that

should  help in putting the later talks of  this program  into perspective.
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   When  I speak  about  perspective, I mean  the effort  to see  what  is happening now
as  part  of  a  development  that may  be at  least one  century  in the making.  To  be

precise, it started  with  the work  of  the great  French  mathematician-astronomer-

physicist Henry  Poincare in the 1880's and  1890's, more  than  a  hundred  years  ago.

For  a long time, mathematicians  remembered  him for his work  in topology, including

his discussion of  surfaces  of  constant  negative  curvature,  whereas  physicists gave  him
credit  for almost  discovering special  relativity  ahead  of  Albert Einstein, Only
astronomers  seemed  aware  of  his new  approach  to celestial  mechanics,  in particular
             

.t
the three-body-preblem, either  Sun-Earth-Moon or  Sun-Jupiter-asteroid, and  the sta-

bility of  the solar  system  in general.
   Poincar6 discovered that our  intuition had  been misled  for the tWo  centuries  since

Newton  had  found the laws of  motion  and  universal  gravitation. I will  give  you  the

most  immediate  e.xample,  the motion  of  the Moon  around  the Earth as  perturbed  by
the Sun: each  body  is assumed  to be rigid,  arid  spherically  symmetric  so  that we  can

treat each  as  if ali the mass  were  concentrated  in the center.  Such a  dynamical

system  has three times  three equal  nine  degrees of  freedom, but there are  ten constants

of  motion,  i,e. ten dlfferent functions of  the configuration  coordinates  and  momenta

whose  values  do not  change  with  time. There  are  the six  parameters  that determine

the motion  of  the center  of  mass,  the three components  of  the angular  momentum,  and

the total energy.  We  are  left with  four degrees of  freedom  for the internal motions.

Mu]tiperiodic metioR

   More  than  two  thousand  years  of  observations  of  the Moon's motion  in the sky,
followed by two  hundred years  of  hard  work  by  the best theoretical physicists in the

18-th and  19-th century,  had  shown  the following: The  internal motions  of  a  three-body

system  look like the internal motions  of  four coupled  pendula.  There  are  four

fundamental frequencies, call  them  wo, wi, w2, w3, which  are  characterized  by their

periods T=2n!w,  namely

    7'l :L'  tropical month  (the time  for the Moon  to move  from  equinox  to equinox)

      
==27.32158  days; '

    T2-- anomalistic  month  (perigee to perigee)=27.55455  days;

    IZI]= draconitic month  (node, i.e. ihtersection with  the ecliptic, to node)==27.21222

        days;

measured  in mean  solar  days. The  fifth decimal corresponds  to 1 second  of  time, and

was  correctly  known  to the  Greeks. By  combining  the  tropical month  with  the period

for the Sun  returning  to the spring  equinox,

     7h==tropical year=365.2422  days ,

we  can  figure out  the second  most  familiar period in this system,  the average  time

between  new  moons  which  turns out  to be 29.53059 days.
   The  motion  of  the Moon  can  be written  as  a  Fourier series  in these  four fre-

quencies  where  all the various  linear combinations  with  integer coefficients  occur.

For  this purpose,  we  define four angles  that vary  linearly with  time, xi==tuit+xio
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lowest order  approximation  for it, with  the  help of  a  computer  doing the algebra.  We
have a similar  situation  in quantum  electrodynamics  (QED) where  the iourth order

correction  in the fine-structure constant  a==e21he  was  calculated  by Kinoshita2} at

Cornell University. By  his own  account  he had  to evaluate  891 Feynman  diagra'ms,

all of  which  are  complicated  many-dimensional  integrals that only  a  machine  can  do.
Laplace was  right,  no  human  being is able  to carry  out  the calculation.  Ironically,

with  all these  technical  refinements  we  are  now  back where  the Greeks were  2000

years  ago:  we  hqve the numerical  values  of  the coeflicients  from perturbation  theory,

but we  do not  understand  them.

   This' phenomenon  of  small  denominators  pervades  all  of  classical  mechanics,  as

soon  as  we  push  any  approximation  to higher order.  Poincare3) showed  that the
expansion  in powers  of  the parameter  m  in the lunar problem  will  eventually  lead to

a divergence of  the perturbation  procedure. On the other  hand, Kolmogoroff  tried to

find a criterion  for guaranteeing  that  a  perturbation  expansion  in a  particular  dynami-

cal  system  converges;  the proof  for his idea was  given  by Arnold and  Moser in 1963.
I will  try to explain  some  simple  aspects  of  the KAM-theorem  (for Kolmogoroff-
Arnold-Maser, c £  Ref. 4)), because they  are  basic to our  understanding  of  chaos  in

classical  mechanics,  and  that in turn  is important for the difiiculties we  face in
quantum  mechanics.  To  this end,  we  have to speak  about  phase space.

Phase  space

   The  idea of  phase  space  is already  found in the two  introductory chapters  of

Newton's Principia. The  first chapter  is entitled  
"Definitions",

 and  the Second
Definition states  in modern  English:

T72e momentum  is the Product of the mass  and  the qelocdy.
   It is understood  that  the velocity  is the rate  of  change  with  time  of  the position
of  a particle, or  more  generally, of  the configuration  of  the dynamical  systern.  The

Second  Definition, slightly  turned  around,  states  that 
"the

 rate  of  change  of  the

configuration  with  time has the same  direction and  equals  the momentum  divided by
the mass".  E. g, if the system  rotates,  the configuration  coordinate  is an  angle,  the

mass  is the moment  of  inertia, and  the rnomentum  is the angular  momentum.

   The  second  chapter  is entitled  
"Axioms

 or  Laws  of  Motion", and  the Second  Law

says,  again  in modern  English:

7-;Fze rate  of change  of the momentunz  with  time  has the same  direction and  is

Proportional to the aPPIied  force.

   Again the Second Law  is quite general, and  occurs  in many  different forms.' In
the case  oi  the rotating  body, the second  law of  motion  becomes: "The

 rate  of  change

of  the  angular  momentum  with  time  has the same  direction and  is proportionar to the

applied  torque."

   Notice that Newton  does not  state  the  Second  Law  in the form  in which  most

textbooks  offer  it, namely  the infamous "force
 equals  mass  times acceleration".

Also, Newton  is a  careful  logician: the relation  between velocity  and  momentum  is a
matter  of  definition, whereas  the relation  between  the change  of  momentum  and  the
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force is a  profound  Law  of  Nature. Therefore, we  can  expect  the Second Law  to

remain  valid  under  circumstances  that Newton  could  not  even  dream  about,  while  the

Second Definition may  change.  E. g, in a semiconductor,  the velocity  of  a  conduction

electron  is related  to its momentum  by an  anisotropic  tensor; in a magnetic  field, an

additive  term  appears  which  is the 



Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOffice,Progress  of  Theoretical  Physics

6 A4. C. Gutewiller

attached  at  every  point in phase space,  can  be tied together  to form continuous  curves

that fi11 out  the whole  space  without  ever  intersecting one  another.  But let me  warn

you:  writing  down  the Hamiltonian  U  for any  problem, and  then the corresponding
differential equations  (3), is nothingl  Our real  task is either  to construct  an  explicit

solution  like the multiperiodic  function (1), or,  if that does not  work,  to understand  at

least qualitatively the fiow in phase  space.  Poincare was  the  first to tackle this last

job,
   His results  were  so  unusual  that we  are  still struggling  to understand  wtiat

happens  in a system  with  an  arbitrary  number  of  degrees of  freedom. Therefore, I

will  immedlately restrict  the further discussion to systerns  with  two  degrees of

freedom. There  are  many  interesting problems  that can  be reduced  in this manner.

The anisotropy  of  the mass-tensor  for the conduction  electrons  in a serniconductor

still  has rotational  symmetry  around  the direction of  large mass;  similarly,  when  we

apply  a  constant  magnetic  field to an  atom,  we  still  maintain  circular  symmetry

around  the direction of  the field. Every continuous  symmetry  of  this kind has the
effect  of  making  the corresponding  momentum  a constant  of  the motion,  in this case

the angular  momentum  around  the syrnrnetry  axis.  The  equations  of  motion  (3) are
thereby  reduced  frorn three pairs to two  coupled  pairs and  one  

'decoupled
 pair.

   The  Hamiltonian  for the electron  in the neighborhood  of  the donor impurity with
angular  momentum  O around  the heavy  axis  is simply,

H(u, v, x, y) ==U2+V2

e2

2ml2m2Kpt:' (4)

where  the ratio  of  the effective  masses  milm2  is about  5 for silicon,  and  the dielectric

constant  K  is about  11; this system  is called  the Anisotropic Kepler Problem  (AKP).
The  Hamiltonian  for the  electron  in the  hydrogen  atom  with  an  extemal  rnagnetic

field B, and  an  angular  momentum  O around  the direction of  this magnetic  field has an

equally  simple  Hamiltonian,

H(u, v, x, y)=u2+v2
e2+e2B28mo2c2Y

 
,22moVF,? (5)

it is called  the Diamagnetic  Kepler Problem (DKP). In both these examples,  the

coordinate  x  is the distance along  the axis  of  rotation,  and  y is the distance from this
axis.

   No  work  is done by  outside  forces on  the electron  either  in the neighborhood  of

a  donor impurity in a semiconductor,  or  in the hydrogen  atom  which  is placed  in a

magnetic  field. Therefore, the value  of  the Hamiltonian  does not  depend explicitly
on  the time  t; its value  remains  the  same  depending on  the initial conditions,  H(P, q)
==E.  In trying to understand  the fiow in phase  space,  we  can  restrict  our  attention  to

one  particular enetgy-shell;  the four-dimensional phase-space  gets  reduced  to a three-

dirnensional submanifold,  Now  we  can  try to imagine  what  the flow loeks on  the

energy-shell;  at  worst,  it is like a bowl  of  tangled  spaghettis,
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Invariant tori

   At  best, however, the system  is multiperiodic,  with  no  more  than  twc) frequencies,

cai and  to2 for each  trajectory. An  expression  like (1) is valid  for any  of  the coordi-

nates  in phase space,  always  with  the same  two  frequencies. It is not  difHcult to see

that  a  particular  trajectory lies on  a two-torus,  i.e, a two-dimensional  submanifold  of

the energy-shell  with  the topology  of  a  torus; such  a  torus in phase  space  will  be called

"invariant

 torus" henceforth. This idea of  an  invariant torus in phase  space  can  be

generalized  immediately: since  experience  shows  that vLre need  only  four frequencies
in the case  of  the Moon,  we  can  say  that  the Moon  moves  on  a  four-torus that is

embedded  in the eight-dimensional  phase-space.  For  reasons  that  are  not  at  all

obvious,  Nature has done us  a great  favor by restricting  the Moon-Earth-Sun system
to such  a  four-torus rather  than  take  advantage  of  the fuil eight  dimensions of

phase-space,

   The  presence of  invariant tori in phase  space  seems  to indicate the existence  of

a  hidden constant  of  motion,  whereby  the energy-shell  gets  further broken up  into

submanifolds  of  smaller  dimension. But Poincare showed  that in the gravitational
three-body-preblem  like the Moon-Earth-Sun,  no  function that  is analytic  in the

phase-space  coordinates  as  well  as  in the mas$e$,  can  be an  integral of  motion,  except

the ten obvious  ones  from the energy-momentum  tensor. If there is any  constant  of

motion  hidden in the lunar trajectory, it cannot  be an  analytic  function Qf  the

phase-space  coordinates,  but perhaps  some  terrible, poorly  converging  expression.

Therefore, our  efforts  to use  perturbation  theory, i.e. power  series  expansions,  will

yietd only  Iimited results,  but never  a complete  solution.

   No  general  criterion  is known  by  which  one  could  decide for a  particular dynami-

cal  system  whether  its phase  space  breaks up  into invariant tori or  not.  Poincare had

no  practical way  of  finding out,  nor  did Kolmogoroff, Arnold, and  Moser. They
relied  on  proving or  disproving the convergence  of  the perturbation expansion.  But

since  the  late 1950's the astronomers,  starting  with  G. Contopoulos5) and  centinuing

with  C. Heiles and  M.  H6non,G} have  used  an  idea of  Poincar6 in conjunction  with

modern  computers.  They  tried  to understand  the  trajectories  of  stars  in the average

gravitational  field of  a  galaxy. The presence or  absence  ef  a  
`fthird

 integral" in

addition  to the energy  and  the angular  mornentum  around  the axis  of  the galaxy

changes  the distribution of  stellar  velocities  in the neighborhood  of  the solar  system.

Surface of  section

   Poincare obviously  found it diracult to visualize  the three-dimensional  content  of

a  bowl  of  noodles.  Therefore, he proposed  to make  a  two-dimensional  cut  in such  a

way  that no  noodle  is tangent to this 
"surface

 of  section''  X, In order  to describe the
surface  of  section  E  we  can  now  choose  internal coordinates  (P2, qz) that form  a

conjugate  pair of  momentum  and  position, while  the energy  E:=Pi and  the time  t=qi

form  the  other  conjugate  pair  in a  systern  with  two  degrees of  freedom.

   Any  pair (P2,o, e2,o) serves  as  the  lnitial condition  for a  trajectory  to start  at  time
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t ==O  in X. This trajectory will  eventually  intersect X  again  in a  point  (P2,i, q2,i) at  the

time  ti, always  at  the fixed energy  E, of  course.  This process  can  be carried  out  very

eraciently  on  a  computer  by the numerical  integration of  the equations  of  motion  (3),
Also we  can  continue  to integrate beyond  the time  ti to the second  intersection with

.X  in (P2,2, qz2) at  the time  h, and  so  on.  With  equal  ease,  we  can  go  backwards to
(P2,-i, q2,Ti) at  time  to t-i, with  the preceding  intersection in (P2,-2, qz-2) at time  t-z, etc.

   A  simple  consequence  of  Liouville's theorem  is the fact that  the map  of  E  into

itself, from (P2,o, q2,o) to (P2,i, qz,i), preserves  the element  of  area  clX==clp2de2,  This

preservation  of  the area  in the surface  of  section  is essentially  equivalent  with  the

combination  of  Newton's Second Definition and  Second Law  of  Motion, Therefore,

many  mathematicians  restrict  themselves  to the study  of  these area-pyeserving  maps,

as  a valid  substitute  for Poincare's original  map  of  X.

   The  basic character  of  this map  can  be presented very  vividly  in multicolored

splendor  with  the help of  modern  computer  technology. In, the (P2, a2)-plane, the

consecutive  points of  intersection of  a  particular trajectory  with  the  surface  of  section

E, ..., (P2,-2, q2,-2), (P2,-i, q2,-i), (Pao, q2,o), (P2,i, q2,i) (P2,2, q2,2), ..., are  plotted  in the same

color.  Even  a  casual  look at  the plot shews  immediately whether  these points lie en
a  smooth  curve  or  whether  they scatter  so  badly that no  sensible  smooth  curve  can  be
drawn  through  them.  These  two  possibilities seem  to mingle  in a  very  intimate,
fractal manner.

   If there exist  as  many  constants  of  motion  as  degrees of  freedom, e.g. an  angular

momentum  in addition  to the  energy  in our  system  with  two  degrees of  freedom, then

X  gets cornpletely  covered  with  smooth  curves.  The  multiperiodic  expansion  (1)
becomes  a  valid  solution  of  the equations  of  motion;  the smooth  curves  in E  are  the

intersections of  the corresponding  invariant tori with  X. Each invariant torus is
characterized  by the two  frequencies dii and  to2. The  ratio  of  the two  frequencies

varies  continuously  from  ene  invariant torus to a  neighboring  one.

   As.soon as  we  introduce a  perturbation,  however, some  of  these smooth  curves  in

X  and  their corresponding  invariant tori are  destroyed. The  origin  for this destruc-
tion is the phase-locking  mechanism:  wherever  the two  frequencies wi  and  w2  of  a

particular two-torus  are  resonant,  i.e, the ratio  toiko2  is a  simple  rational  number,  the

perturbation  will  cause  a whole  open  neighborhood  in phase  space  to force its two
frequencies into the same  rational  relation.  The most  striking  case  of  phase-lock is

the rotation  of  the Moon  which  is tightly coupled  to her motion  around  the  Earth so
that we  always  see  the  same  side  of  the Moon.

CIassical chaos

   The extent  of  any  particular phase-lock in phase space  depends on  the type  and

strength  of  the perturbation, as  well  as  en  how  close  any  frequency-ratio is to being

rational.  Kolmogoroff, Arnold, and  Moser  showed  that the loss of  invariant tori is a

process  that depends smoothly  on  the strength  of  the perturbation. Such aloss  can

be limited to small  regions  in phase space  that are  too small  to be noticed  ,in any

practical calculation,  or  a fortiori in any  measurement.

   On  the other  hand, the calculations  for the simple  Hamiltonian  (4) show  that for
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a  mass-ratio  larger than 2, no  invariant tori are  left in phase  space,')  The progressive

destruction of  invariant tori in the Hamiltonian  (5), as  the  magnetic  field B  is raised,

can  be seen  quite clearly  from  the multicolored  plots. I like to call  
"hard

 chaos"  this
condition  of  the phase  space  in (4); there is nothing  left over  from  the description of
a  dynamical  system  that we  were  taught  in our  courses,  and  that most  of  us  probably
keep on  teaching, On  the other  hand, the phase  space  for (5) looks like an  intimate

mixture  of  invariant tori and  chaotic  regions;  I like to call  this )atter condition  
"soft

chaos".

   Hard  chaos  is the opposite  extreme  to what  you  might  call  
"regular

 behavior",
that is the condition  where  al} of  phase space  is covered  with  invariant tori. Iam

convinced  that most  dynamical  systems  Iive in the intermediate condition  of  
"soft

chaos"  which  is a  mixture  of  regular  behavior and  hard chaos;  but our  ability  to

describe such  systems  effectively  is still very  poor. The  KAM-theorem  shows  that

regular  systems  are  not  generic; their structure  can  be destroyed by  an  arbitrarily

small  perturbation. Hard  chaes,  on  the other  hand, is generic; it is stable  against

suraciently  small  perturbations, Therefore, it should  receive  priority in our  research

compared  to regular  behavior; meanwhile  we  must  work  to understand  soft  chaos

better than we  do now,

   Without  going  into details,Iwant to mention  that the phase  space  for asystem
with  hard chaos  has also  a  very  characteristic  structure,  There  are  two  foliations,

i.e. two  families of  smooth  two-dimensional submanifolds  where  each  family covers

the entire  phase  space.  Each leaf from one  family intersects the ieaves from  the other
family in a transverse  manner;  obviously,  the intersection of  two  leaves belonging to
different families is a submanifeld  of  dimension one:  it is a particular trajectory, i.e.
a  solution  of  the equations  of  motion  (3). Moreover, each  trajectory  can  be uniquely
characterized  by a code,  e.g,  an  infinite string  of  binaries whose  interpretation is quite
closely  related  to the appearance  of  the trajectory. E.g. in the  Anisotropic Kepler
Problem  (AKP), each  binary simply  records  the sign  of  the consecutive  intersections

of  the trajectory with  the x-axis.

   Many  physicists are  surprised  to find that  the trajectories in such  a simple

dynamical system  as  the AKP  should  be in a one-to-one  relationship  with  infinite
sequences  of  e's and  1's. The  AKP  seems  to be closer  to tossing a  coin  than  to a

regular  machine  which  repeats  ad  infinitum what  it did in the past. The  two  leaves
whose  intersection defines the trajectory are  called  the stable  and  the unstable  leaf,
because they  play  special  roles.  If instead of  starting  at  the point (P2,o, q2,o) of  X  we

choose  a  nearby  initial condition  (Pf2, q'2), this neighboring  trajectory will  drift away
exponentially  from  the original  one  while  approaching  the  unstable  leaf. If we

forlow these two  trajectories back  into their past, the neighboring  one  again  drifts
away  exponentially  from  the  original  one,  but it does so  by approaching  the stable
leaf. Every  trajectory in hard chaos  is exponential}y  unstable  in this manner.

Periedic orbits

   The  existence  of  a stable  and  an  unstable  leaf whose  intersection defines a

trajectory becomes  very  striking  when  we  look at  a trajectory that  closes  itself
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smoothly  in phase space,  Such  a  solution  of  the equations  of  motion  (3) appears  in

phase  space  as  a  simply  closed  loop; it is cailed  a  periodic  orbit,  If its initial

condition  in E  is (Pze, q2,o), then  for some  positive integer n  we  have  (P2,n, qzn):=(P2,o,

q2,o). Of course,  the same  equality  also  holds for the intersections 2n, 3n, ..., as  well

as  for -n,  
-2n,

 
-3n,

 .... The  periodic  orbit  is a  fix-point for some  power  of  the

Poincare map  of X  into itself.

   Again  it comes  as  a  surprise  to many  physicists that a system  with  hard chaos  has
many  periodic orbits.  In the case  of  the AKP  a  periodic orbit  defines a.binary

sequence  that  repeats  itself, and  vice  versa  a  repeating  binary sequence  defines a

periodic  orbit.  That  Ieads essentially  to 2" periodic orbits  of  length n, i,e., which

close  smoothly  after  n  intersections with  the surface  of  section  X, In a regular

system  only  those trajectories are  periodic  whose  frequency ratio  is a  rational

number.  Therefore, the tetal number  of  PO's in regular  systems  grows  only  as  a

power  of  their period, i.e. their time for srnooth  closure,  whereas  in chaotic  system

their number  grows  exponentially  with  their period.

   Poincar68) felt that the periodic orbits  in any  dynaMical  system  contained  the

secret  Eor understanding  the system.  He  said  in the third chapter  of  his great  treatise,
"The

 New  Methods  of  Celestial Mechanics":
"LV]zat

 makes  these Pen'odic solutions  so valuablq  is that thay qffeny in a  manner  of
speaking the only  opening throtrgh which  we  might  t7:y to Penetmte the fortress which

has the ropulation  of being impragnable."

   He  died in the same  year  1913 when  N. Bohr succeeded  in explaining  the spectrum

of  the hydrogen atom  on  the basis of  ciassical  mechanics  by restricting  the values  of

the angular  momentum  to multiples  of  h. Four years  later, Einstein9} gave  a more

general  interpretation to Bohr's "quantization
 rules".  Nobody  appreciated  Einstein's

paper until  40 years  later, and  even  then it took another  ten years for physicists to

read  the last paragraph  where  Einstein quotes Poincare.

Semi-classical quantum-mechamics

   Einstein first discusses the example  of  a  particle moving  in a  circularly  symmetric

potential, and  he finds that it moves  on  an  invariant torus in phase  space,  Then  he

explains  that  all  the various  schemes  for quantizing  a  dynamical  system  are  based on

the assumptien  that the phase space  is foliated into invariant tori, and  the rule  for

finding the energy  levels is the following: On each  torus define two  topologically

independent contours,  Ci and  C2, and  calculate  in any  canonical  coordinate-system  the

contour  integrals over  Pidoi+P2do2; then  find the energies  where  both contour  inte-

grals are  integer multiples  of  Planck's quantum,

     1,pdq=2nirk, Lpdtr=:2n2rrh. (6)

Until after  his death in 1955, Einstein was  still the only  physicist who  knew  anything

about  invariant tori.

   But he also  realized  that  they  were  the exception  among  systems  in classical
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mechanics,  and  he quotes  Poincar6 in the last paragraph  of  his paper  of  1917 to claim
that his own  quantization  scheme  was  of  no  use  in three-body  problerns. He  had  no

suggestion  about  how  to quantize those  systems  where  no  invariant tori were  avail-

able  to do the job. Som'e efforts  were  rnade  to tackle  such  problems,  in particular the
spectrum  of  the helium atom  which  was  the obvious  candidate  after  the hydrogen

atom  had been explained.  But without  understanding  the classical  behavior of  the

three-body-problem, there was  no  chance  of  making  any  progress.

   Finally in 1925/26 Heisenberg and  Schrddinger vLrere  able  to formulate the correct
version  of  quantum  mechanics.  It is important to appreciate  what  happened in less
than twelve  months,  after  the best people in the field had tried for about  25 years. At

the same  time, we  have  to realize  that quantum  mechanics  has undergone  nothing

more  than  purely  technical improvements  and  some  rather  straightferward  generali-
zations,  Nevertheless, the success  of  the  original  idea has been overwhelming;  no

experiment  has been found to contradict  quantum  mechanics.

   Its fundamental recipe  is extremely  simple.  First, we  have  to write  down  a

Hamiltonian, H(za, v, x, y), exactly  the same  as  in classical  mechanics,  such  as  (4) for
the AKP  and  (5) for the DKP,  as  long as  the  electronic  spin  is di･sregarded. (Of
course,  the inclusion of  the spin  is very  significant,  but it is no  more  than  a technical
rnatter.)  Then, we  reinterpret  the definition of  the  energy,  E=-  If(u, v, x, y) in terms
of  operators  in a  Hilbert space,  by  making  the following assignments,

E  
->
 ih oOt , u 

->
 
-･
 ih-b-Oth-, v-} 

-
 ih oOy .

That  Ieads to the time-dependent

di(x, y, t), e.g, for the AKP,

     ihadiL h2 o2ip h2 o,di

(7)

Schroedinger-equati.on fer the wave  function

e2

ot 2m,Sx22m20y2  rc :c2+y2gb.
(8)

Finally, we  need  a few rules  to establish  the relations  between  the mathematics  and

the experimental  measurements,

   Let me  emphasize  whatIsaid  before: These  three initial steps  in solving  a

particular problem  like the AKP  or  the DKP  are  riothing ! Nor is the further step  that

may  be necessary  occasionally  when  the  IIamiltonian has some  obvieus  symmetries,

such  as  rotations  or  the interchange of  identical particles. We  can  all leam how  to
reduce  the Hamiltonian  accordingly,  alld  should  get no  credit  for doing it correctly.
We  are  then  left with  trying  to understand  the dynamics  of  special  problems  like the
AKP,  DKP,  or  the helium atem,  not  to mention  QED  or  QCD  where  we  are  still

groping in the dark.

   Right at  the beginning of  modern  quantum  mechanics,  Brillouin, Kramers,  and

Wentzel  found a  simple  method  for writing  approximate  solutions  of  Schroedinger's
equation  Iike (8) with  the help of  classical  trajectories. It is important to realize  that
the WKB-method  works  only  for systems  with  one  degree of  freedom, or  systems  that
have as  many  constants  of  motion  as  degrees o'f freedom, and  where  the variables  can

be separated.  KelleriO) was  the first to point out  the connection  between WKB  and

the existence  of  invariant tori in phase  space,  as  well  as  Einstein's quantization  rules
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(6), Starting with  VanVIeck,]i) however, there were  some  isolated efforts  to' solve

Schroedinger's equation  on  the basis of  classical  trajectories, without  worrying  about

their dynamicai  nature.  But  the mathematical  resUlts  were  always  limited to short

times, and  were  obtained  without  any  awareness  of  classical  chaos.

   Until less than 25 years  ago,  nobody  took  up  Einstein's challenge,  as  formulated

in the Iast paragraph  of  his 1917 paper: find the quantum-mechanical  energy-spectrum

on  the basis of  classical  mechanics,  even  when  there are  no  invariant tori. The

solution  lies in a  method  that I started  studylng  in 1967,]2) and  that led to a  very

general resulti3)  which  is now  known  as  the trace formula. Its derivation is techni-

cally  lnvolved, and  will  not  be given in this paper; for a  general  account  cf, Re£  14),

In order  to convey  some  idea about  its origin,  however, we  will  discuss a  related  topic

that is more  general, and  a  little easier  to present  to a  non-expert  audience.

Riding  with  the quamtum  wave  on  a  ciassieal  trajectory

   The  propagator K(q, t; q', t') is the probability  arnplitude  for a system  te start  in
the configuration  q' at  time  t', and  be found in the configuration  q at  the time  t. It

is a  special  solution  of  Schroedinger's equation  that vanishes  for times t<tr, and

therefore requires  a  special  6-function excitation  on  the right-hand  side,

     (ih eOt 
-H(-ihOlOq,

 q, t))K(q, t; 4, i') =-  6(q-q')6(t-t') . (g)

If we  can  calculate  the propagator  for a  particular dynamical  system,.  we  are  able  to

find the quantitative answer  to any  problem,  e.g., we  get the  response  to some  weak,

external  electro-magnetic  pulse if we  know  the state  of  the system  at  time  t'.

   Such a  process  can  be viewed  in an  almost  purely  classical  picture: The  system

moves  from  the  configuration  q' at  time  t' along  a  classical  trajectory to the

configuration  q at  the time t, and  carries  with  it the VanVleck  probability-arnplitude,

     Kb(q, t; q', tt)-(2nih)-n'2 IOZR!0qOq' exp[(ilh)R(q,  t; a', t')- i{6]. (10)
The  crucial  ingredient into this expression  is the action,  also  called  Bamilton's

principal function, because he  was  the  first' to use  it,

     R(q,  t; q', t')-.Llt(pdtr-H"(p,  q, t)dt), (11)

which  is also  the integral over  the Lagrangian  along  the classical  trajectory from qr
at  t' to q at  t. We  have  assumed  n  degrees of  freedom; the  vertical  bars under  the

square-root  sign  in (10) imply the n  by n  determinant for the matrix  of  mixed

derivatives. Finally, the angle  di in (10) is a special  phase  that has to do with  the

caustics  along  the trajectory: a  fan of  trajectories all of  which  start  in q' at  time  t',

going  off in slightly  different directions, may  collapse  at certain  later times; it is as  if

there was  a  wall  from  which  the system  is refiected,  and  looses the phase n12  every

time  that happens. At the same  time the determinant of  mixed  derivatives becomes
infinite and  changes  sign,  so  that the classical  propagator  (10) is certainly  not  a  good

approximation  to the propagator  K

NII-Electronic  
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  . VanVleck's amplitude  has a  simple  interpretation. The  determinant under  the

square-root,  including the normalization  by  (2nh)", is a  probability  measure,

     L(q, t; q', t')-(2nh)-"102RvaqOq'l.  (12)
It tells us  the likelihood for the classical  system  to start  in a  small  volume  dnq' near
q' at  time  t', and  arrive  in the small  v･olume  d"q near  q at  time t, The quantum-
mechanicai  probability-amplitude  has an  absolute  value  equal  to the square-root  of

the classical  probability, and  a  phase angle  equal  to I{amilton's principal function.

Even  the phase  loss coming  from  the  caustics  along  the way  is obtained  from  a  more

detailed investigation of  classical  trajectories,

   We  have to ask  ourselves  how  the VanVleck's amplitude  (10) compares  with  the

quantum-mechanical  propagator K(q,t;q',tt) which  is a  solution  of  (9). If we

consider  for simplicity's  sake  a  conservative  system  where  the tiine does not  appear

explicitly  in the Hamiltonian, as  in the AKP  or  the DKP,  the propagator  depends  only

on  the time-difference, t -  l''; equivalently,  we  can  set  tf=O without  loss of  generality.
If t>O  is very  small,  there is only  a  finite number  of  classical  trajectories from  q' to

q, unless  the potential energy  increases very  steeply.  As  the t increases, there are

more  and  more  different trajectories; each  of  them  passes  a  number  of  caustics  before
reaching  q, and  the phase-angle  in (le) has to be adjusted  accordingly,  We  shall

assume  that the propagator becomes approximately  the sum  over  the individual

contributions  (10) from  each  classical  trajectory.

   The  information contained  in this sum  over  classical  trajectories is, therefore,

analyzed  as  if it was  similar  to the exact  formula fort>O,

     K(q, t; q', O) ;-Zdij(q)  ipj2'(q')e-iE't'", (13)
                 J

where  dij(q) is the eigenfunction  belonging to the eigenvalue  Ej of  the Hamiltonian.
The  right-hand  side  is a  Fourier expansion  in time  that yields a  set  of  frequencies toj
=EYh  with  the Fourier coefficients  given  by the product  of the eigenfunctions

ipj(q)ipjX(q'). Does the sum  over  the VanVleck amplitudes  (10) as  a  function of  t' have
such  a  structure,  when  it is Fourier  analyzed?

Traee formulas

   Rather than to ansvLrer  this general  question,  we  try a  simpler,  preliminary  test

which  might  also  be more  directly related  to a  measurement.  As  an  example,  take an
experiment  where  the dipole-moment  Dop is obtained  as  a function of  time, so  that we
would  like to know  the function,

     :;.](i D..17')e-zE'`th 
wu-'
 :l,]D,-e-itu'` ==  k"q[DopK(q, t; q', O)]q=q･ . (14)

Notice that we  are  really  calculating  the trace of  the operator  preduct DopK.  The
last expression  in (14) is an  integral over  configuration  space  that we  can  try to

evaluate  even  when  the prc)pagator  K(q, t; qt, O) is replaced  by  its classical  approxi-

mation,  i.e., the sum  over  the VanVleck  amplitudes  (10).
   Let us  consider  what  happens  when  we  calculate  the trace of  (10) in the special
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case  Where  Dop  is the identity. We  have  to find a  classical  trajectory that goes  from

the initial configuration  q' to the final configuration  q in the given  time t, except  that
'the

 two  configurations  are  now  the same,  i.e., q'==q. Such a.trajectory  forms a loop
in configuration  space,  but the initial momentum  P' is generally  different from  the final

momentum  
'P,

 i.e. the initial and  the final directions of  motion  are  different. Such

loop-trajectories in configuration  space  are  not  hard to  find; moreover,  the

configuration  q'=q  can  be moved  continuously  while  keeping the time  t fixed and
deforming the  closed  loop-trajectory accordingly.  The  energy  E  of  the loop-
trajectory changes  continuously  in this process; the explicit  calculatidn  ymay not  be

easy.

    The  expression  (10) is good  only  in, the classical  limit where  h is small  compared

to the integral (11). As we  change  the initial-final configuration  q'==q in order  to do

the integration in the trace (14), the value  of  the integral (11) varies.  The  exponent

in (10) changes  rapidly,  while  the determinantal factor varies  slowly.  Therefore, we

can  apply  the method  of  steepest  descent, i.e., the  main  contribution  to the integral

over  q'=a  comes  from  the configuration  space  where  the action  integral (11) over  the

loop-trajectory is stationary  with  respect  to the variation  of  q'==q. The  standard

argument  from  classical  mechanics  shows  that the initial momenturn  p'==p, the final

momentum,  i.e., only  those loop-trajectories matter  that  close  smoothly,  the periodic
orbits.

    The  quanturn-mechanical  trace (14) is thereby  approximated  by

      ,.,i.i.,b,,,ApoexP[ £Y[1(pde-Hdt)-yn121, (is)

where  y  counts  the caustics  along  the periodic  orbit.  The amplitude  Apo depends not

only  on  the operator  Dop, but very  importantly on  the character  of  the periodic  orbit,

As  a  general  rule, the less stable  the orbit, the smaller  the amplitude  Apo. Since a

classically  chaotic  system  has rnany  periodic  orbits,  one  might  have hoped  that the

amplitude  Apo guarantees  the convergence  of  the sum  over  periodic  orbits  in (15).
But that does not  happen; the convergence  of  (15) is conditional,  and  depends crucially
on  the cancellation  due to the phase-factor.
    The  sum  over  the VanVleck  amplitudes,  or  in particular, the trace formula in one

or  the other  of  its dlfferent versions,  does provide  some  of  the essential  features of

quantum  mechanics,  in spite  of  its purely classical  origin,  The sum  of  the classical

probabilities for the different classical  trajectories converges  absolutely,  whereas  the

sum  over  the VanVleck  amplitudes  depends critically  on  the phase  relations  as

expressed  in the action  integral occurring  in the phase  factor. Iam  convinced  that

with  the proper  skill  we  will  be able  to extract  most  of  the qualitative information

about  quantum  d'ynamics, including its chaotic  features, from  simple  expressions  of

this kind.

What  is quantum  chaos?

   The  contrast  between  classical  and  quantum  mechanics  shows  up  in this context

in a way  that is directly related  to the issue of  chaos.  If we  ask  for the  probability
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that certain  events  occur  in a  classical  problem,  e.g., getting  from the source  to the

detector in a  scattering  experiment,  we  have  to add  up  the classical  probabilities (12).
The  resulting  sum  is generally  convergent,  although  individual terms  may  have  strong

singularities,  and  appear  as  well  as  disappear rather  unexpectedly.  Such  singular-

ities with  a  fractal structure  become  especially  noteworthy  when  we  study  the  events

as  a function of  the energy  E  rather  than  of  the time  t, as  we  have  done  sofar.  For

an  experjmentalist,  this erratie  behavior is quite unphysical,  and  shows  that  some  fine

details in classical  mechanies  cannot  be real,

   The  serniclassical  expression  (15) however does not  have this chaotic  character;

it will  tend to smooth  over  the rough  spots,  particularly when  viewed  as  a  fu

k about,  e.g., the scattering  amplitude

as  a function of  the wave  vector.  We  now  have a  function,

f(t)==Zaje-"A'`, XlaA2<co,
     i' .i

(16)

where  the coefficients  aj are  complex;  the frequencies 2.i are  real,  and  ordered  accord-

ing as  their absolute  value.  (The sum  over  1' may  represent  either  a  sum  over

quantum-mechanical  energy-levels,  or  a  sum  over  classically  periodic orbits.)  Such
a  sum  is reminiscent  of  the Fourier expansion  (1) 'for the coordinates  of  a multiply

periodic classical  system  like the Moon-Earth-Sun.  But  there is a  profound

difference: the set  of  frequencies nj is infinite and  linearly independent, i.e., there exists

no  finite set  of  frequencies an  such  that every  Aj becomes a  linear combination  of  the

to's with  integer coeflicients.

Almost  periodic functions

   Such functions were  first studied  by  H. Bohr, the yc)unger  brother of  Niels, at

about  the same  time as  his olcler  brother explained  the spectrum  of  the hydrogen

atom.  Unfortunately, Harald  called  these funetions 
"almos't

 periodici', by which  is

meant  that they  repeat  themselves  with  a certain  precision e provided one  shifts  the

independent variable  t far enough,  from  t to t+  T(e).  The  technical definition of

almost  periodic  is a  little more  complicated,  but there is a  very  readable  explanationi5)

in a  small  book  by H, Bohr  himself  that was  translated into English after  WWII:

Given e>O,  there exists a･ le7zg'th L(e) such  that eveT:y interval (a, a+L)  contains  a

translation number  T(E)  such  that lf(X'+r)-f(t')lgE,
   Can such  functions be represented  in the form  (16) ? Before answering,  we  need

the definition of  what  Bohr called  a 
"trigonometric

 polynomial",  s(t),  It is a  finite

sum  over  trigonometric  functions with  arbitrary  frequencies and  amplitudes,

          N

     s(t)=  :] aneiU'it, (17)
          n=l

where  again  t
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