Three Comments *)

Akito Arima

Department of Physics, University of Tokyo, Tokyo 113 **)

Translater's note: This article is the translated version of a proceedings report of a talk given in the workshop "Nuclear Collective Motion" held May 18-20, 1967 at the Research Institute for Fundamental Physics (now Yukawa Institute for Fundamental Physics), Kyoto University. The proceedings was published in Soryushiron Kenkyu (vol. **35** (1967), page E47-E50), in Japanese. The translation was intended to be as direct as possible. The words in the square brackets in italic (i.e., [*italic*]) are additions by the translater. Some trivial mistakes have been corrected in the translated version.

I made, in the workshop, three comments such as

- (1) on the correspondence argument of Sakai,
- (2) on the relation of the generalized coordinate method of Yoshida and Onishi to the Ikeda model,
- (3) on the effective interaction of Bando.

In this article, I shall present some notes on comment (1). Specifically, this article consists of discussions on the relation between rotational and vibrational schemes in a boson approximation, and discussions on the classification for vibrational states.

One can classify, in general, d^N configurations in terms of SU_5 . For bosons, in particular, one does not need to make such a general statement, and, in fact, only fully symmetric states [N] are allowed. There is a subgroup O_5 for the group SU_5 . For bosons again, the irreducible representation is determined as $(\lambda, 0)$ by using the seniority λ . In Bohr's vibrational model, one can introduce variables β , γ , φ , θ , ψ instead of α_{μ} 's. The seniority λ can then be related to n_{β} as $N = \lambda + 2n_{\beta}$, where n_{β} denotes the number of the nodes of the β -vibration. (Wilet Jean). Here, we include O_4 into the canonical chain, so as to classify O_5 completely. Since O_4 is isomorphic to $SU_2 \times SU_2$, the classification of O_4 can be made in terms of four parameters. In a fully symmetric case, as is the present one, one of these four parameters can be dropped, and we need only three quantum numbers. Hence, the states of the present O_5 system can be classified completely by λ , μ , L and M. One can then prove that $L = \mu, \mu+1, \dots, 2\mu-2, 2\mu$. Note that $L = 2\mu - 1$ is missing. Thus, one obtains a beautiful classification as shown in Fig. 1. When one views this figure in the horizontal direction keeping N constant, the $n_{\beta} = 0$ part gives rise to the classification of O_5 . We shall now look at Fig. 1 differently, sweeping from the bottom upwards. As N increases one by one, we find more states, and the values of L change. One finds a clear regularity in the pattern of these variations, which actually appear to be similar to [the pattern of] rotational levels. I suspect that this [similarity] is the "correspondence" addressed by Sakai.

^{*)} Translated by T. Otsuka.

^{**)} Present address: RIKEN, Hirosawa, Wako-shi, Saitama 351-01.

Three Comments

I now present the following discussions in order to clarify the relation of the level structure mentioned above to the rotational one. Assuming that the quantity N_0 [,which is to be defined,] has an upper limit, I introduce a hypothetical s-boson so that the total number of bosons is conserved. Then, the above arguments can be applied to the classification of the states, $s^{N_0-N}d^N$. I introduce further a bosonboson interaction of the Q-Q type between bosons, and then diagonalize it. It turns out that the classification in terms of the SU_3 group is more convenient, producing [the level scheme shown in] Fig. 2. In this figure, $N_0 = 4$ is taken. In general, for fully symmetric states in the $(s, d)^{N_0}$ configuration, the following sets of the SU_3 irreducible representations emerge;

- (1) $(2N_0, 0), (2N_0 4, 2), (2N_0 8, 4), \cdots,$
- (2) $(2N_0-6, 0), (2N_0-10, 2), (2N_0-14, 4), \cdots,$
- (3) $(2N_0 12, 0), (2N_0 16, 2), \cdots,$

etc. The values of L belonging to these (λ, μ) irreducible representations are given, accordingly to Elliott, by

$$K = \min(\lambda, \mu), \min(\lambda, \mu) - 2, \cdots, 0 \text{ or } 1$$
$$L = K, K + 1, K + 2, \cdots, K + \max(\lambda, \mu),$$

where $L = 0, 2, 4, \dots, \max(\lambda, \mu)$ for $K = 0.^{*}$ Therefore, if $N_0 = 4$ (the total number of states is certainly the same between Figs. 1 and 2),

2

^{*)} In the original version, this sentence was followed by an additional statement " or 1, 3, 5, \cdots , $\max(\lambda, \mu)$ ". This was omitted in this version in order to avoid confusion, because this argument is about the general property of SU(3).

Since the eigenvalue of $(Q \cdot Q)$ is $\frac{\lambda^2 + \lambda \mu + \mu^2}{9} + \frac{\lambda + \mu}{3} - \frac{1}{12}L(L+1)$, one ends up with [the level scheme in] Fig. 2. A remarkable correspondence between Figs. 1 and 2 is noticed in the region of low excitation energy. A model with s and d bosons has also been discussed by Taruishi of the Tokyo University of Education [now Tsukuba University].

What consequences can we obtain if we suppose that the states in Fig. 2 represent those of a deformed nucleus? Once one accepts this hypothesis, one can find a way

	L=6	L=6	L=4	
L=8	L=5 L=4 L=3 L=2	L=4 L=2 L=0	_L=2 _L=0	
L=6				
L=4				
L=2 L=0				
K=0	K=2	K=0	K=0	K=0
(8, 0)	(4, 2)		(0, 4)	(2, 0)
Fig. 2.				

3

4

Three Comments

of moving from the vibrational situation in Fig. 1 to the rotational one in Fig. 2, by increasing [the strength of the] (Q-Q) [interaction] compared to $\hbar\omega_d$ (i.e., the [single-particle] energy of the d boson). For instance, [the spin sequence] 0, 2, 4, 6, \cdots starting from N = 0 0⁺ [in Fig. 1] seems to correspond to the ground state band of the rotational case [in Fig. 2], and [the spin sequence] 2, 3, 4, \cdots built on the 2 phonon [state] [in Fig. 1] corresponds to the γ band [in Fig. 2], \cdots . Now let me ask whether or not the 3-phonon sequence 0, 2, 4, \cdots starting from the state of $n_{\beta} = 0$, $\nu = 1$ and L = 0 becomes the K = 0 δ -band. *)

^{*)} The δ -band is mistyped as γ -band in the original version.