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The structure and dynamics of glass formers are spatially inhomogeneous with typical
scale of nanometers. The influence of this inhomogeneity on the glass transition is consid-
ered. Using Lindemann criterion of melting, the locally liquid- and solid-like particles are
defined and a percolation problem for liquid and solid clusters is formulated. On the basis
of percolation theory it is shown that in strong glass formers the dynamic inhomogeneity is
higher than in fragile ones. The standard deviation of the lognormal spatial distribution of
the mean square atomic displacements (r?) is found to be equal to 0.1+-0.2 for fragile glass
formers, 0.5 for intermediate glycerol and 0.7 for strong B2O3s . The comparison with the free
volume size distribution in a fragile polymer shows a good agreeement with the predictions
of the model.

§1. Introduction

One of the important properties for characterizing different glass formers is the
degree of fragility. The latter was introduced by Angell V) and shows the speed with
which viscosity of supercooled liquid decreases with 1'/T;. The strong liquids exhibit
comparatively slow decrease of the viscosity and fragile ones exhibit a fast drop of
the viscosity with temperature near 7. The physical basis of the degree of fragility
is still not well understood.?)

In the present paper we connect the degree of fragility with the dynamical in-
homogeneity of a system. As a parameter which can characterize the dynamical
inhomogeneity we choose the mean square thermal atomic displacements (r?). In a
glass, due to the structure fluctuations, (r?) is different in different points. We will
show here that the width of the spatial distribution function of (r2) is connected
with the degree of fragility, being higher in stronger glass formers.

§2. Model

In the model, the Lindemann criterion of melting® is used which assumes that
at the melting temperature (r?) is equal to a universal fraction of the square inter-
atomic distance. Let us define locally liquid- and solid-like particles as ones with
(r%) > r? and (r?) < r? respectively, where r7 is some critical value of (r?). It is
assumed that the time window of averaging is not higher than some periods of the
atomic vibrations, i.e., it is of the order of a picosecond, to avoid the influence of dif-
fusion on (r?) in the case of the liquid-like particles. In these terms, a glass former at
any temperature contains both liquid- and solid-like regions, their relative concentra-
tion being dependent on temperature. Since these regions are distributed randomly,
a percolation approach is suitable for the problem. Two percolation thresholds are
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characteristic for the system. When temperature is raised, the first one corresponds
to a point 77 where a first infinite liquid-like cluster appears in the system. The
second threshold corresponds to a temperature 75 at which the last infinite solid-
like cluster disappears. In the continuum 3D percolation model these two points
correspond to a critical concentration p. ~ 15% of liquid- or solid-like particles, re-
spectively. ) There is also a third important temperature for the model, namely, the
temperature Ty, at which averaged over the whole system (r2), denoted by #2 is equal
to the Lindemann value 7. Obviously, due to the definition, #2(T}) < r2 < #2(T)
holds. We assume that just this temperature, 77, corresponds to the glass transition,
Ty, ~T,, ic., #2(Ty) = r2. This assumption can be considered as phenomenological
observation similar to the Lindemann criterion of melting. 56

In addition to T}, there are at least two characteristic temperatures which are
used to describe the behavior of the viscosity in the liquid-glass transition. They
are the Vogel-Fulcher-Tammann temperature 7y and the crossover temperature 7y,
Ty < Ty < Te. Ty is defined by a phenomenological fit of the viscosity at T > T}: 7)
n = noexp(B/(T" —1p)). The ratio T,/Tp is higher in strong glass formers than in
fragile one and is one of the possible measures of the degree of fragility. 2),8)

The crossover temperature 7, is predicted by the mode coupling theory (MCT)
as a temperature of an idealized glass transition. This temperature which for fragile
liquids is higher than 7}, by 30-50 K (7../T, = 1.1+1.2) is found in many experiments
(see, e.g., reviews 9) and 10)). 7. may be defined by applying a power law for
the temperature dependence of the viscosity, explicitly n o« (T —T.) ", T > T..
Indications for a crossover temperature are found also in intermediate and strong
supercooled liquids, namely, glycerol ') and BoOs.12:13) It means that 7o may have
physical meaning also in such complex liquids. In glycerol and BoO3 the ratio T, /Ty
is sufliciently higher than in fragile liquids and is equal to 1.5-1.6. Below we will show
that within the frames of the percolation approach there is a possibility to interpret
Ty, T as 177 and T, and the critical exponent v as a critical index of conductivity.

Close to the percolation threshold, variables related to the percolation can be
expressed as a power function of p — p.. In particular, the conductivity ¢ has the
critical exponent t:4) o (p — pe)t, where typically ¢t ~ 2 holds. The concentration
p(T) of atoms with (r?(T)) > 72 close to Ty can be expanded in power series of
T — Ty, so results in o oc (T —T3)", T > Th. On the other hand, MCT predicts that
within the scenario of an ideal glass transition the self-diffusion coefficient D(T')
has to vanish at the crossover point T, according to a power law as does 1 /77:9)
Do l/noc (T —T), T > Te, v=2=+3.9 Comparison of the percolation result
for o with the MCT prediction leads to the hypothesis that 75 is the crossover
temperature 7T.

Computer simulations show that the distribution of (#2(7")) can be described by
a lognormal function, 'Y P(x) = (2r0?) /2 exp(—(In(+?) /7(T))?/20?). The width
of the distribution, o, is a measure of the dynamical inhomogeneity. In Ref. 15)
it was shown that under the condition that 7T} and T coincide with Ty and 71,
respectively, one has the following relation:
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Since below Ty 7%(T) o< T it means that o = In(T}/Tp). As it was mentioned above,
the ratio T,/Tp is a measure of the degree of fragility of a glass former. Thus, the
spatial fluctuations of (r2) are higher in strong glass formers than in fragile ones. The
width o of the In(r?) distribution can be chosen as a measure of the inhomogeneity.
This parameter, as found from the ratio 7,/Tp, increases from 0.1+0.2 for such
fragile glass formers like CKN, PS, salol to 0.5--0.7 for intermediate glycerol and
strong BoO3 and to 1--1.2 for the most strong silicates. 8)

The predictions of the model were checked by comparison with the data on
7#2(T) obtained by inelastic neutron scattering for polybutadiene, polystyrene, se-
lenium, o-terphenil and glycerol. '®) A reasonable agreement was obtained between
experimental data and the model. Another possible check comes from the positron
annihilation lifetime spectroscopy (PALS) data on the size distribution of the free
volume holes. The computer simulations show that distribution of In{r?) coincides
with that of ~ (2/3)InV}/Vp where Vj is some reference volume. ') This is under-
standable since the dynamical inhomogeneity is caused by the structural one and
the coefficient 2/3 corresponds to what one can expect from dimensional arguments.
Hence, according to the model, the size distribution function of the free volume
holes should have the larger width oy the stronger the glass former. Additionally,
the model predicts that (2/3)o; ~ 0 = In(T,/Tp). There are the PALS data for
the distribution of free volumes in poly(vinyl alcohol) (PVA).'®) One can expect
that it is a fragile glass former like poly(vinyl acetate). For the latter the fragility
is close to that of CKN 17 so we take as a rough estimate of o for PVA the value
0.08%) like for CKN. The lognormal fit of the free volume distribution function for
PVA from Ref. 16) gives o ~ 0.1 (Fig. 1) which corresponds to o ~ 0.07, in good
agreement with the expecting value. Another way to find o is the examination of
deviation from the gaussian law neutron scattering function S(g,t). If (r?) are in-
homogeneously distributed than g-dependence of S(q,t), in general, deviates from
the simple exp(—Ag?) dependence, typical for dynamically homogeneous harmonic
solid.

In the present approach the only parameter which distinguishes strong and frag-
ile liquids is the degree of the dynamical inhomogeneity, i.e., o. This parameter
determines also the relative size of the interval between T, and T,. If one supposes
that the viscosity in the interval between T}, and T, depends only on the concentra-~
tion of the liquid-like regions then in coordinates scaled by the magnitude of this
interval one has to obtain a master plot for the viscosity of the strong and fragile
liquids. Such coordinate can be chosen, for example, to be (T, /T)(T. —T) /(1. —T}).
In Fig. 2 log[n/n(Ty)] vs this scaled temperature is shown. Instead of T, we used
some fitting temperature 7, which provides coincidence with a master curve. For
the latter, log[n/n(T})] vs the scaled coordinate of OTP with T, = T, was chosen.
Figure 2 shows the master plot for the viscosity of some liquids, both for fragile
(like OTP) and strong (like B2O3). Deviations from the master curve occur only at
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Fig. 1. Lognormal fit of the free volume distribution in PVA, PALS data from Ref. 16).

T > T,. The temperature T, which provides the best coincidence with the master
plot is close to the T, values reported in the literature. 9),18) However, for polymers
the master curve is different, reflecting the topological difference of the structure
between polymeric and non-polymeric materials. In more detail this scaling of the
viscosity data is discussed in Ref. 18).
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Fig. 2. Logarithm of viscosity in the scaled coordinates, see the text.

NI | -El ectronic Library Service



Publication O fice, Progress of Theoretical Physics

Fragility as a Measure of Dynamic Inhomogeneity of Glass Formers 391
§3. Conclusion

In conclusion, there is a connection between the dynamical inhomogeneity of
glass formers and their degree of fragility: strong glass formers are more inhomo-
geneous than fragile ones. This property is reflected in higher fractional intervals
(Ty — To)/Ty and (I — T4) /Ty in the strong glasses formers. It is shown that the
quantitative measure of the dynamical inhomogeneity, the width o of the lognormal
distribution of (r?), correlates with the ratio T} /Tp, which is one of the definitions
of the degree of fragility. In particular, we obtained o to be equal 0.1+0.2 for frag-
ile glass formers, 0.5 for intermediate glycerol and 0.7 for strong BoOg. This value
is also close to 2/3 from the width of the free volume size distribution as it was
demonstrated here for a fragile polymer system.
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