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The relationship between Elliptic Ruijsenaars-Schneider (RS) and Calogero-Moser (CM)
models with Sklyanin algebra is presented. Lax pair representations of the Elliptic RS and
CM are reviewed. For n = 2 case, the eigenvalue and eigenfunction for Lamé equation are
found by using the result of the Bethe ansatz method.

§1. Introduction

A general description of classical completely integrable models of n one-dimen-
sional particles with two-body interactions V' (¢; — ¢;) was given in Ref. 1). To each
simple Lie algbra and choice of interaction, one can associate a classically completely
integrable system D-4) such as a rational, hyperbolic, trigonometric or elliptic CM
model.

The Lax pair representation (Lax representation) of a system is a direct method
of showing its integrability, and the complete set of integrals of motion can also be
constructed easily. The Lax representation and its corresponding r-matrix for ratio-
nal, hyperbolic and trigonometric A,,_; CM models was constructed by Avan el al.?
The Lax representation for the elliptic CM models was constructed by Krichever®
and the corresponding r-matrix was given by Sklyanin 6) and Braden et al.”) There
exists a specific feature in that the r-matrices of the Lax representations for these
models turn out to be dynamical (i.e., they depend on the dynamical variables) and
satisfy dynamical Yang-Baxter equations.8):7):9),6)

For the dynamical r-matrix, the fundamental Poisson algebra of the Lax op-
erator, whose structural constants are given by a dynamical r-matrix, is generally
no longer closed. The quantization problem and its geometrical interpretation are
also difficult. Considering all of these, a non-dynamical r-matrix is found for these
systems. 10 11) The trigonometric limit of these results can be found in Ref. 42). We
know the Lax representation for a completely integrable model is not unique. The
different Lax representations of an integrable system are conjugate to each other (for
the field system they are related by a ‘gauge’ transformation). The corresponding
r-matrices are related by a ‘gauge’ transformation which is the classical dynamical
twisting relation 12) between those r-matrices.

The RS model is a relativistic generalization of a CM model. It describes a
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completely integrable system of n one-dimensional interacting relativistic particles.
It can be related to the dynamics of solitons in some integrable relativistic field the-
ory. 8):18),9),14) Ttg discrete-time version has been connected with the Bethe ansatz
equation of the solvable statistical model. ' Recent developments have shown that
it can be obtained by a Hamiltonian reduction of the cotangent bundle of some Lie
group, 10 and can be considered as the gauged WZW theory. 17) The Lax repre-
sentation and its corresponding r-matrix for rational, hyperbolic and trigonometric
Ap_1 type RS models was constructed by Avan et al.?) The Lax representation for
the elliptic RS models was constructed by Reuijsenaars,'® and the corresponding
r-matrix was given by Nijhoff'®) and Suris.'® The main difference between the 7-
matrices of the relativistic (RS) and non-relativistic (CM) models is that the latter is
given in terms of a linear Poisson-Lie bracket, whereas the former (RS model) is given
in terms of a quadratic Poisson-Lie bracket. In contrast with the dynamical Yang-
Baxter equation of the r-matrix for the CM model, 1% the generalized Yang-Baxter
relation for the quadratic Poisson-Lie bracket (RS model) with a dynamical r-matrix
is still an open problem. 20) Moreover, the Poisson bracket of the Lax operator is no
longer closed, and consequently the quantum version of the classical L-operator has
not been constructed. However, as for the CM model, a different Lax representation
which is conjugated to the original one can be found. The corresponding r-matrix
changes by a ‘gauge’ transformation. The resulting r-matrix may be non-dynamical.
Such a transformation may be called the classical dynamical twisting of the associ-
ated linear Poisson-Lie bracket. Due to the quadratic Poisson-Lie bracket of the RS
model, there exist dynamical twisting relations between the r-matrices of Lax opera-
tors related by gauge transformations. Such dynamical twisting is the semi-classical
limit of the quantum dynamical twisting of the R-matrix in Ref. 12). For recent
progress in the study of CM models, see, for example, Refs. 21)-24).

The paper is organized as follows: In §2, we present some general formulae for
dynamical systems. In §3, we review some results for the elliptic RS and CM models.
The non-dynamical r-matrices for the integrable elliptic systems are then presented.
Their quantization conditions correspond to the quantum Yang-Baxter relation, and
the R-matrix is simply the Z,-symmetric Belavin model. 28) In 84, we will present
the relationship between the Sklyanin algebra®:32) and the integrable systems. In
§5, we will obtain the eigenvalue and eigenfunction for the Lamé equation. The
Lamé operator is equivalent to the Hamiltonian of the elliptic CM model. Section 6
has some brief summary.

§2. The dynamical twisting of classical r-matrix
A Lax pair (L, M) consists of two functions on the phase space of the system

with values in some Lie algebra g, such that the evolution equations may be written
in the following form

dL
dt
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where [,] denotes the bracket in the Lie algebra g. If we have formulated the Lax pair
relation, the conserved quantities (integrals of motion) can be constructed easily. It
follows that the adjoint-invariant quantities trL’ (I =1,---,n) are the integrals of
the motion. In order to implement the Liouville theorem onto this set of possible
action variables we need them to be Poisson-commuting. As shown in Ref. 25), the
commutativity of the integrals trL! follows if the Lax operator can be deduced from
the fundamental Poisson bracket

{L1(u), L2(v) } = [r12(u,v), L1(w)] = [ro1(v, u), La(v)] (2)

or quadratic form 19

{L1(u), L2(v)} = L1 (u) La(v)r5(u, v) — 15, (v,u) L1 (u) Ly(v)
+L1(u)sT (u,v)La(v) — Lo(v)s™ (u,v) L1(u), (3)
where we use the notation
L1 =L®I1, Lo =1® L, ao1 = Pays P, (4)

and P is the permutation operator such that Pxr @ y =y ® =.

For the above relations to define a consistent Poisson bracket, one should impose
some constraints on the r-matrices. The skew-symmetry of the Poisson bracket
requires that

Tzil(va’UJ) = w""1i2(u7 v), 3;1 (v, u) = s15(u,v), (5)
o (u,0) — sty (u,0) = 15 (u,v) — $12(u,v). (6)

For the numerical r-matrices ¥ (u,v), s™(u,v), some constraint conditions (suffi-
cient conditions) are imposed on the r-matrix in order to make it satisfy the Jacobi
identity. 26) However, generally speaking, the r-matrices r¥(u,v), s (u,v) depend on
dynamical variables, and the Jacobi identity which implies an algebraic constraint
for the r-matrices takes a very complicated form

(L1, [r12,713] + [r12, 23] + [r32,713] + {L2,713} — {L3,712}] + cyc.perm = 0.
(7)

It should be remarked that for a given integrable system, we can choose different
Lax formulations. The r-matrices corresponding to different Lax formulations are
generally different. So, in some cases, we can transform a dynamical r-matrix into
a non-dynamical r-matrix. '9>11) The different Lax representations of a system are
conjugate to each other: if (f), M ) is another Lax pair of the same dynamical system
conjugate to with the old one (L, M), it means that

L - -

'NEZ — [L, M],

L(w) = g(u)L(w)g™" (u),

~ 1 d -1
3w = 9(u)M(wg ' (w) - (o)) g~ (w), ®)
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where g(u) € G whose Lie algebra is g. Then we have
Proposition: The Lax pair (L, M) has the following r-matrix structure

{L1(u), La(v)} = [F12(u, v), L1(u)] — [F21(v,u), L2 (v)], 9)

where

F1a(u,v) = g1(u)g2(v)riau, v)gr (W) g5 ' (v) + g2(v){g1(w), La(v) g1 (u)g; ' (v)
+%[{91(U),gz(v)}9f1(7b)951(v), g2(v) La(v)g5 H(v)]. (10)

For a given Lax pair (L, M) and the corresponding r-matrix, if there exists a g
such that

hig = {g1(w)g2(v)r12(u, v) g7 (u)gy *(v) + g2(v){g1(w), La(v) } g7 (u)gy " (v)
+%[{91(U),gz(v)}gf Hu)gy ' (v), 92(v) La(v) g3 (v)] (11)
and
By;h1a = By, hna =0 (12)

then a non-dynamical Lax representation of the system exists.
_ By a straightforward calculation, we can also find that the twisted Lax pair
(L, M) and the corresponding r-matrix 712 satisfy

(L1, [F1a, 18] + [F12, Fo3] + [F30, 713] + {La, 713} — { L3, 712}] + cycl.perm = 0.
(13)

Similarly, for the quadratic form, the Lax pair (L, M) has the following r-matrix
structure

{L1(w), La(v)} = L(u) La(0)ia(u, ) — 7y (u, v) L1 (u) Ly (v)
+L1(w)3{5(u, 0) La(v) — La(v)315(u,v) La(u),  (14)

where

! Ao (u,v) + Ag (v, ),

A (u,v) + A (v, ),

o (u,v) = g1(w)g2(v)rip(u, v)gr  (u)gy * (v) —

i (u,v) = g1(w) g2 (V)75 (u, v)g; ' (u)gy * (v) —

51 (u,0) = g1(u)ga(v) s (u, v) g7 (w)g3 } (v) — Ay (v,w) — AT (u,0),

375 (u, ) = g1(u) g (v)s1(u, v)g7 (w)g3 L (v) — Ara(u,v) — A5 (v, ),

Avo(u,v) = Lyt () Ara(u,v), AY (u,v) = Ara(u,v) L5 (v),

Ara(u,v) = ga(v){g1(w), La(v) g1 *(u)g3 ' (v)
+§[{g1<u>,gz<v>}g;1<u>g;1<v>,gz<v>Lz<v>g;1<v>J (15)
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There are still relations:

FZil(U)u) = —7:-1{:2(“’7))’ 531(’0’1‘) = EIQ(U’U)v

Pa(u,v) — 53 (u, v) = Fip(u, v) — §5(u, v). (16)

And also we have, for given Lax pair (L, M) and the corresponding r-matrices,
if there exists a g such that

g1(u) g2 (v)s75 (u, v) g7 () g3 * (v) — A (v, u) — ALY (u,v) = 0,
91(u)ga(v)s7y(u, v) g7 (w) g3} (v) — Ara(u, v) — ALY (v,u) = 0,
hi2(u,v) = g1(uw)g2(v)ria(u, v)gr ' (u)gy ' (v) — Ara(u,v) + Az (v, u)
= g1(u)g2(v)ry (u, v) g7 (w)g3 * (v) — A (u,v) + AP (v,u) (17)
and
Og;h12 = Oph12 =0, (18)

then a non-dynamical Lax representation with Sklyanin Poisson-Lie bracket for the
system exists.

§3. Lax pair for elliptic RS and CM models

We first define some elliptic functions:

09) (u) =6 { ; Z n } (u,n7), o(u)=2~0 [ % } (u,7),
2 2
0[ Z ] (u, ) = Z exp{im[(m + a)*r + 2(m + a)(z + b)]},

' (w) = 0.{6Y) ()}, o' (u) = Bu{o ()}, €(u) = duflno(w)},  (19)

where 7 is a complex number with Im(7) > 0.

The Ruijsenaars-Schneider model is a system of n one-dimensional relativistical
particles interacting by a two-body potential. In terms of the canonical variables
pi,gi ( =1,---,n) enjoying the canonical Poisson bracket

{pi,pj} =0, {a,4} =0, {a,p;} =74, (20)

the Hamiltonian of the system is expressed as 8

H = mc? En: cosh (Pj 11 {O'(ij + 7)o (gk —7) }%) , (21)

2(q.
j=1 ket o (451)

where ¢;x = g; — qx, m denotes the particle mass, ¢ the speed of light, and v is
the coupling constant. The above defined Hamiltonian is known to be completely
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integrable. 1%):27) As we mentioned above, the Lax representation (Lax operator of
the classical L-operator) is one of the most effective ways to show that the system
is integrable. One Lax representation for the elliptic RS model was first formulated
by Ruijsenaars: 18)

1
i _ePio(gituty) vy folge +v)olge—n|* . .
R(U)j — (] 7) H{ (J 7) (J ) ’ i, J ___1)

— oo 7/n,_
o(v+g)o(w) i o%(qjk)
(22)
Here, we use another Lax representation L 20
X i ePo(u+gy + o (v + gjk

o(wolgi+7) o o(g)
Ly can be obtained from the standard Ruijsenaars’ Lr(u) by using a Poisson map

kT
G —> Gi, Pi—Dpi+ —1 H (g +7) (24)
ki qu - 7)

Following the work of Nijhoff et al., 20) the fundamental Poisson bracket of the
Lax operator Lr(u) can be given in the following quadratic r-matrix form with
dynamical r-matrices

{Lr(u)1, Lr(v)2} = Lr(u)1Lr(v)ary(u,v) — Tf%(%“)iR(u)liz}(vb
+Lg(u)1815(u, ) Lr(v)2 — Lr(v)2siy(u, v) Lr(u)1, (25)

where

r12(u,v) = a12(u, v) — s12(uw) + s21(v), 5w, v) = arz(u,v) + ufy + uy,
sia(u,v) = s12(uw) +uly, s, v) = s21(v) — upy (26)
and
uy =Y &(gji £ 7)eu ® ey,
ij
a12(u,v) = riy(u,v) + Y E(u —v)es @ ei + Y E(gij)en @ e,

i=1 it
0 0(gij +u —v) s = i
v) = =3 (La(wo,L 5 ® .
r12(%; v) ; o (i) o (u — v)e i ®e€ji,  s12(u) % ( r(u)0y R(U))j €ij & €jj
(27)
The following properties are satisfied:
rg:l(vau) = _TitQ(ua'U% 33—1(7}7“’) = s19(u, v),
ria(u, v) = sfy(u,v) = r3(u, v) = sp(u,0). (28)
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Here we would like to reformulate the Lax formulation for the RS model. Define
an n ® n matrix A(u;q) as:

. . . n n-—1
Au; )5 = Alu, qu, -+, gn)s = 09 (u +ng;— Yk + 5 ) . (29)
k=1

Here we should point out that A(u; q); corresponds to the intertwiner function qﬁg»i)

between the Z,-symmmetric Belavin R-matrix 2329 and the A% | face model. 3031
Define

g(u) = A(u; 9)Alg),  Alq)j = hi(q)55,

hi(q) = hi(ar, -+ qn) = s o(gn)

We can construct the new Lax operator L(u) as

L(u) = g(u) Lr(u)g ™ (u). (31)

More explicitly, it can be written as:
n 1 '
Z _(— u+n7>Q)§cA_1(u, Q)?epka 7’).7 = 1727"'7n‘ (32)

It can be proved that the fundamental Poisson bracket of L(u) can be given in the
quadratic Poisson-Lie form with a nondynamical r-matrix:

{L1(u), La(v)} = [r12(u — v), L1(u) L2(v)]. (33)
Here the numerical r-matrix is the classical Z,-symmetric r-matrix. 32 It takes the
form
riy(v) =
Iy 09 (0)90~D (4 Iek (6'C—3) (v o' (v . .
(1~ 5@')9(!—9')((3)9(%‘—0((0)) + 5i5j ( 9(:‘-;‘() )(U) - ;é;}) if i+j=10+1 mod n .
0 otherwise

(34)

We know the Z, symmetric r-matrix satisfies the nondynamical classical Yang-
Baxter equation

[r12(v1 — v2),r13(v1 — v3)] + [r12(v1 — v2), 23 (V2 — v3)]
+[ri3(v1 — v3), res(ve — v3)] = 0. (35)

We also know that this r-matrix is antisymmetric and Z,, symmetric:

Antisymmetry :  — ro1(—v) = r12(v),
Zn ® ZySymmetry : r12(v) = (a ® a)r12(v)(a ® a) 7}, (36)
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where a = g, h, and g, h are n ® n matrices defined as:
hij = 0it1jmodn,  Gij = W'6; . (37)

For convenience, we also define another n ® n matrix
Iy = Iy 00 = 9g72h, (38)

where a1, a0 € Z, and w = exp(27i/n).
Next, we will consider the non-relativistic limit of the Lax operator L(u). First

rescale the momenta {p; }, the coupling constant v and the Lax operator as follows: 20)
oy ._ — o (P5\
pi = —ﬁpw nry = /887 L(“‘) =0 _’ITL_ L ('LL) (39)

Here notation L' is introduced. The non-relativistic limit is then obtained by taking
the limit 8 — 0. We have the following asymptotic properties

L'(u)s = 85— (Z{A(U; q)5A(u; )5, — 505 (A(u; )f) A (g q)ﬁ*’}) +0(B%).

k
(40)
If we make the canonical transformation
s 0
p; = p; — —=—InM(q), M(q) =[] o(ay), (41)
n 0q; !
1<J
we finally obtain the Lax operator of the elliptic A,,—1 CM model 10)
. L'(u)t — &
Dow(w) = - fim =% (42)
- PP 2 5 InM(g)
Here we have
{Lem(u)1, Lem(v)e} = [riz(u — v), Lom(uw)1 + Lem(v)2). (43)

For the newly constructed Lax representation L(u), the quantization becomes
no longer difficult. Define the Z,-symmetric Belavin’s R-matrix as:

0" (O)o(wo(v=Th) 0D @0 D (wiv=Th) ¢ ;4 i _
Rél;(u) = { a/(U)B(O)(v)U(U—I—\/_——Th) g(i—l)(\/_—lh)eu_j)(v) if 2 +j= I+k mod n
0

otherwise.
(44)

We know this R-matrix satisfies the quantum Yang-Baxter equation

Ri2(uy — u2) Ris(u1 — ug) Ros(ug — us) = Ras(ug — us)Riz(u1 — ug)Ria(u1 — u2).
(45)
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The R-matrix is Z, symmetric in the sense that
Riz(u) = (a®a)Ri2(u)(a®a)™t, a=g,h. (46)
By taking the special limit 7 — 0, we can obtain the classical Z,, symmetric r-matrix
Ria(u)lnso = 1@ 1+ v/ =1hria(u) + o(h?). (47)

Now let us study the quantum L operator, using the usual canonical quantization
procedure

R 0 .
pjﬁpjz—-v—lhé&f, G —q, Jj=1,---,n (48)
J

The corresponding quantum L-operator can be formulated as:

1 n

7(7) 2 Al + AT e

_ 1 - + mATL( )k "Fhaqk 49
- _(“‘" Z ’U, nysq us;gjre ( )

It should be remarked that this quantum L-operator is simply the factorised dif-
ference representation for the elliptic L-operator.31):33) The above defined quantum
L-operator satisfies the quantum Yang-Baxter relation

R]_g(u - v)il(u)f}2(v) = ﬁg(v)ﬁl(u)ng(u - ’l)). (50)
The proof can be found in Refs. 31),34),33) and 35).

§4. RS and CM models related with Sklyanin algebra

We introduce here some notation for elliptic functions:

1 ol
a()—e[%jw}(w),

2
oot ++/=1h) oo(v/—1h)
oa(v/=1R)  oo(u+/=1h)

The above mentioned quantum R-matrix can be rewritten as following up to a scale:

= ZWa(u)Ioz ®I;1> (52)

Wa(u) =

(51)

as before a = ay,a9 and ; € gn,i =1,2.
The quantum L-operator L obtained in the last section can be represented by
the generators of Sklyanin algebra S,:

L(u) =" Va(u)I4Sa, (53)
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where

/
] _
oot ++/—1RE) , — n—1

Valu) = n00(w)ou(v/—1h)’ 7

(54)

where § is a constant.
The quantum Yang-Baxter relation (49) gives the defining relations of the Sklyanin
algebra: 32),6)

Z w’n—al-i-(ﬁl—’n)(w—a2)ga+ﬁ_27(0)0g(2\/—1h)
> Oy—a(V=11) 0ot g—~(V—1R)0y (v —1h)og—y(V=1n

with «;, Bi, Vi € Zn,1 = 1,2.
We can give a realization of the generators of Sklyanin algebra as:

o/ ThZE
So =3 Sjae Y0 (56)
J

)Sa+,3—‘/37 =0, (55)

Here we introduce the symbol S}, for the elliptic function

Sy = (—1) ™0 (vTh) T[ 2201 i), (57)

Py o0(gjk)

Next, we will consider the classical limit of the above defining relations. Letting
i — 0, the quantum R-matrix become the classical r-matrix, and we explicitly have
the elements of the r-matrix in (34) presented in the last section, here we use another

notation
R(u) = 14 +/=1hr(u) + O(R?). (58)
The classical r-matrix is written as:
r(u) = Zwa(u)la@).f;l, (59)
where
wo(u) =0,
0a(u)og(0)
we(u) = —————=—, a# 0. 60
(u) 70 (0)0 (1) # (60)
In order to consider the classical limit of f), we first present the classical limit of
Vo (u):
oo(u') + v/—1héah(u') + O(h?
noo(u)oo(v/—1h)
/ — Pt . N
Va(u) _ Ua(u ) v—1h gga(u )Ua(O)Z Ua(u )Ga(o) + O(hg),
no(0)oo(w’)  nog(u') : a2(0)
a # 0. (62)
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From the definition of the operator S, we easily have

Sa =Y _ Sia ( Y O(h2)> (63)
J

dq;

In the limit & — 0, the elliptic functions S;, take the forms:

Sjo = o(v/—1h) {1%—\/_7352 og k) +0(h2) (64)

o (L)™Mg Ua(‘]]k) Oq O 2

o = 0ROV L5000 ”Fh( DR m)*o(h)
a # 0. (65)

So, we have

VG — — [.o0()]  V=1h oolggk) 0 2
Vo(u)So = 1+ /=1 {ﬁao(u,)} +— ij ‘5];_ 0(a) 5%} +0(r%)
VT 20D ] VTR 8
=1+4++/—1h {gao(u,)] + - ; _ 8%} +O(hY), (66)
Va(u)Se = v/—1h(—1)™ oa(u) Z H oa(gjk) Z oo (gjk) _ +O(h2)
“ nao(u’) j k;éj UO(q]k:) k;éj O'a(Qj ) a J
a # 0. (67)

here we have >, > p.; 5%&’“—; = 0, because —QE—:%:—% is an odd function.

We can finally expand the quantum I operator in the order of & when we take
a limit 4 — 0. However, we first introduce some notation

=Y Va(u)Salo =1+ v~1hi(u) + O(h?), (68)

where [(u) is the classical | operator. We may represent [(u) in terms of generators
of the “classical” Sklyanin algebra sq:

u) = Eoow) Vo (u)s
1) = 2~ 2 vel)se (69)
The function v, (u) is defined as:
vo(u) = ;12—, (70)
Vo (u) = _1_0a(u’)0,a(0) a #0. (71)
n  oo(u)
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From the above obtained results, we can realize the generators of the “classical”
Sklyanin algebra in the following forms:

S0 = Zn————, (72)

Sa: ZHUoijkz {

i ki 70 (95%)

o oo (gjk)
0; g;j %(m)} 0

On the other hand, here we can say we give a definition of the generators of the
“classical” Sklyanin algebra.
In the classical limit, the quantum Yang-Baxter relation becomes the following

[11(w), l2(v)] = [r12(u — v), 1 (u) + l2(v)]. (74)

Substitute the [-operator with the generators of the “classical” Sklyanin algebra, and
through tedious calculation, we have

s 59] = (w7 oy (2D (75)

On the other hand, we find that {I,} satisfy a similar relation
Lo, Iy] = (W™ = w7 ) Iy, (76)

So, after rescaling s,, we find {s,} and {I,} satisfy the same algebra.

Finally we should point out that if we substitute 3— by the corresponding
canonical variable pg, the [-operator will become a T-operator, and the commu-
tative bracket on the left-hand side of the above relation (74) will change to the
standard Poisson-Lie bracket. Here we rewrite as:

{Ti(u), Ta(v)} = [r12(u — v), T1(u) + T2(v)]. (77)
§5. CM model, Gaudin model, Lamé-equation and the Bethe ansatz

For the difference factorized operator L, we can find some commuting fami-
lies which are related to conserved operators. By using the fusion procedure, the
commuting family take the form

Dy = tr[L(u) ® - - ® L(u)P™],

there are m L’s above, P™ is the anti-symmetric projector. In the classical limit, we
also have a similar commuting family

am(u) = Z Vo (u Vg, (W) Say S Ty ® - Lo, P, (78)
a;#0
where o; € Z2,i=1,---,m. Let ' =0, so u = ug = nT“l — nh&, and after rescaling
a;(u), we have
m(up) = Z Say S tt[lay ® -+ ® Iy, P™]. (79)
Oc'L'#O
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We will discuss a special case n = 2, explicitly we have

so1 = 2001 (0) {5‘;601(((1‘11122)) N ?01((;1122)) <3?11 - 3(‘912> } ,
cholin) _owlan) (0 _ 0 )},

=9 0 -
$10 010( ){f UQ(Q12) O'O(q12) oq1 0qo

_ 011(q12) B o11(qi2) [ O B 0
s11 = 2011(0) {5 70(q12) o0(q) (8(]1 qu> } . (80)

We will calculate the non-trivial conserved operator

oa(W)o_a(u) “aia
dag(u) = SaS_qw M1, 81
2( ) a};a Oo (0)0'__04(0) ( )

After some tedious calculations, we have

by %@ o0 ()(a ‘9)+4 92

JO(Q) ( ) oq1 0qo 8q16q2
KA S ) o))
- <8‘11 " 5’@2) A ) { oo(u’)? Jo(u’)} ’ (82)

where ¢ = q1 — 2. ThlS relatlon is just the same as that obtained by Hasegawa.36)
Since 1 and 8q1 + 3o; are also conserved quantities defined above, after some
tedious calculations we have another conserved operator

& _oplg) O L& &2 of(q)
o0(q) 8g ' 4 aolg)

We can change it to a more familiar form. Let £ = 23, and suppose 1 and A are an
eigenfunction and eigenvalue of the above Hamiltonian

(83)

Hep = Mip. (84)

At the same time, we introduce a transformation of this eigenfunction v = 1[o¢(g)]?,
we thus have the following relations:

z | oo(q) d oo(q) | ~ a7
Hiloo())’ = [dqg S 6203((])} Bof @) = 43005 (@)} (85)
This means:
d2 d? . -~
'Y = [ gz HAB ) glnaom)} b = 4. (86)

One finds that H' is simply the Hamiltonian of the CM model, see, for example,
Refs. 3),4),37) and 38). It is also connected to the Lamé operator, see Ref. 39) and
the references therein.
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Next, we will calculate the eigenfunction and eigenvalue of the above defined
Lamé operator H. Here we first review some of the results obtained by Felder and
Varchenko. 39 The difference operator L which is equivalent to Sp, one generator of
the Sklyanin algebra when n = 2, is given by

oo(q + 2h53) oo(q — 2hp)
o0(q) oo(q)

This difference operator is also called the g-deformed Lamé operator. In the frame-

Ly(q) = Y(q — 2h) + ¥(q + 2h). (87)

work of the quantum inverse scattering method, there is a result as follows: 39)
Let (t1,--+,tm,c) be a solution of the Bethe ansatz equations:
) - la T My 83
ao(t +2h26) H s +2h) et b (88)
such that ¢; # t; mod Z + 77 if i # 5. Then
B
¥(q) = e[ [ oolq + t;), (89)
J
is a solution of the g-deformed Lamé equation L = ey with eigenvalue
B
4h, ti+ (28 —2)h
— G_QECO—O( /8) H UO( J +( ﬁ ) ) (90)
o0(2h03) =1 00 (tj + 206h)
By taking the special limit & — 0, the difference operator becomes:
d? : d
L =2+ 4n? gp0@ 4 o6(@)] | gty (91)

dg>  oolg)dg " oo(q)
We find the term with order A2 is exactly the Hamiltonian presented in relation (85)

_iQ__ oplq) d 2‘70(@)
H=432 "5 oola) da o oo(q)’ 52)

Since we already know the eigenfunction of the difference operator L is 1¢(q) =
e H -1 00(g+1t;) which does not depend on %, we need only expand the eigenvalue
of L in the order of h. We can obtain the eigenvalue of the Lamé operator H

e=2—4h |c

OIS ENEAIE ob (t:)ob(t;)
42+ 42R2 70 4 gp {JZ [—ZJ—} +23 a—i——]}

0(0)
8 [ _n ( i
0 oy (tj) . UO(tJ)
+4h (1 Qﬁ)jz_:l |:00(tj) <UO(tj)>
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At the same time we take the limit 2~ — 0 for the Bethe ansatz equation, obtaining

op(ti) 5~ oolti —t5) _
et 'Bao(ti) j%% oo(ts — tj) . o

Considering this Bethe ansatz equation, we can finally find the eigenvalue of the
Lamé operator A, ‘

B ' "
oo (t;) 200 (0)
A=(1-28 IR Ak (95
=20 l‘; aoofj)} 75(0) )
Here we have the results:
Let (t1,--+,tm,c) be a solution of the Bethe ansatz equations:
/ /
og(ti) og(ti — t5) .
- "——_—_:()7 :17"'7 s 96
C+ﬂao(fi) Z.Go(ti—tj) ‘ ? (49)
337
such that ¢t; # t; mod Z + 72 if i # j. Then
B
¥(q) = e [ oolg +t5) (97)
J
is a solution of the equation
d? oo(q) d | ,200(q)
Hy(q) = |75 — 2020 —+0 ¥(q) = 44(q), 98
V@) [dQQ oo(q) dg 00(q) @ @ (98)
with eigenvalue
=] I ON

We can also obtain these results by directly using the algebraic Bethe ansatz method

for the Agl) Gaudin model,40) just like the algebraic Bethe ansatz for the XYZ
Gaudin model. V)

§6. Summary

We review some developments concerning the non-dynamical structure of the
elliptic RS and CM models. We also give a solution to the Lamé equation. The
eigenfunction and eigenvalue for the Lamé operator are found through the results of
the Bethe ansatz.

The results of the last sections are only for the n = 2 case. For general n, we can
also obtain the eigenvalue and eigenfunction for the generalized Lamé operator by
using the algebraic Bethe ansatz method for the sl(n) elliptic Gaudin model. The
conserved quantities also correspond to the Hamiltonian of the elliptic CM model.
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