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  The  relationship  between EIIiptic Ruljsenaars-Schneider (RS) and  Calogero-Moser (CM)
models  with  Sklyanin algebra  is presented. Lax  pair representations  of  the  Elliptic RS  and

CM  are  reviewed.  R)r n  =::  2 case,  the eigenvalue  and  eigenfunction  for Lam6  equation  are

found by  using  the  result  ef  the Bethe  ansatz  method.

gl. Introduction

   A  general description of  classical  completely  integrable models  of  n  one-dimen-

sional  particles with  two-body  interactions V(qi -  th･) was  given in Ref. 1). [[b each
simple  Lie algbra  and  choice  of  interaction, one  can  associate  a  classically  completely

integrable systemi)-4)  such  as  a  rational,  hyperbolic, trigonometric  or  elliptic  CM
model.

   The  Lax  pair representation  (Lax representation)  of  a  system  is a  direct method

o £ showing  its integrability, and  the complete  set  of  integrals of  motion  can  also  be

constructed  easily. The  Lax representation  and  its corresponding  r-matrix  for ratio-
nal,  hyperbolic and  trigonometric An-i CM  models  was  constructed  by Avan  el al. 

2)

The  Lax representation  for the elliptic CM  models  was  constructed  by Krichever5)

and  the  corresponding  r-matrix  was  given by Sklyanin6) and  Braden et al. 7) There
exists  a  specific  feature in that  the  r-rnatrices  of  the Lax representations  fbr these
models  turn  out  to be  dynamical (i.e., they  depend on  the dynamical  variables)  and

satisfy  dynamical Yang-Baxter equations.8),7),9)i6)

   Fk:}r the  dynarnical r-matrix,  the  fundameutal  Poi,sson algebra  of  the Lax op-

erator,  whose  structural  constants  are  given by a dynamical r-matrix,  is generally
no  longer glosed. The quantization problem  and  its geornetrical interpretation are

also  diMcult, Considering all of  these, a  non-dynamical  r-matrix  is found for these
systems.iO),ii)  The  trigonometric  limit ofthese  results  can  be found in Ref. 42). We
know  the  Lax  representation  for a  completely  integrable model  is not  unique.  The
different Lax representations  of  an  integrable system  are  conjugate  to each  other  (for
the field system  they are  related  by a 

`gauge'
 transforrnation). The  corresponding

r-matrices  are  related  by a 
`gauge'

 transformation  which  is the  classical  dynamical

twisting relationi2)  between  those  r-matrices.

   The  RS  model  is a  relativistic  generalization of  a CM  model.  It describes a
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completely  integrable system  of  n  one-dimensional  interacting relativistic  particles.
It can  be related  to the dynamics of  solitons  in some  integrable relativistic  field the-
ory.8))i3))9))i4)  Its discrete-time version  has beeii connected  with  the Bethe  ansatz

equation  of the solvable  statistical  model.  
]5)

 Recent developments have shown  that

it can  be obtained  by a Hamiltonian reduction  of  the cotangent  bundle  of  some  Lie

group,i6)  and  can  be considered  as  the  gauged  WZW  theory. i7) T'he Laix repre-

sentation  and  its corresponding  r-matrix  fbr rational,  hyperbolic and  trigonometric

A.-i type RS  models  was  constructed  by Avan et al.2) The Lax representation  fbr
the elliptic  RS  models  was  constructed  by Reuijsenaars,i8) and  the corresponding

r-matrix  was  given by Nijhoffi5) and  Suris. i9) The  main  difference between  the  r-

matrices  of the relativistic  (RS) and  non-relativist･ic  (CM) models  is that the latter is

given in terms  of  a linear Poisson-Lie bracket, whereas  the former (RS model)  is given
in terms  of  a quadratic Poisson-Lie bracket. In contrast  with  the  dynamical  Yang-

Baxter equation  of  the  r-matrix  fbr the CM  model,  i6) the  generalized Yang-Baxter

relation  fbr the quadratic Poisson-Lie bracket (RS model)  with  a  dynamical r-matrix
is still  an  open  problem.  

20)
 Moreove.r, the Poisson bracket of  the Lax  operator  is no

longer closed,  and  consequently  the quantum  versioll  of  the  classical  L-operator has

not  been constructed,  However,  as  for the  CM  model,  a  different Lax  repre$entation

which  is conjugated  to the original  one  can  be fbund. The  corresponding  r-matrix

changes  by a  
`gauge'

 transforination. The resulting  r-inatrix  inay  be non-dynarnical,

Such a  transformation  may  be callc]d  the  classical  dynamical  twisting  of  the  associ-

ated  linear Poisson-Lie bracket. Due  to the  quadratic Poisson-Lie bracket of  the  RS
model,  there exist  dynamical twisting relations  between the r-matrices  of  Lax  opera-

tors related  by  gauge  transformations,  Such dynamical twisting is the semi-classical
limit of  the  quantum  dynamical  twisting  of  the  R-matrix  ill Ref. 12). For recent

progress  in the study  of  CM  models,  see, for example,  Refs. 21)-24),

   The  paper  is organized  as  follews: In g2, we  present  some  general fbrmulae for
dynamical  systems.  In S3, we  review  some  results  for the elliptic  RS  and  CM  models.

The non-dynamical  r-rnatrices  for the  integrable elliptic  systems  are  then  presented.
Their quantization conditions  correspond  t･o the  quantum  Yang-Baxter  relation,  and

the  R-matrix  is simply  the Z.-symmetric  Belavin model.28)  In g4, we  will present
the relationship  between  the  Sklyanin algebra6)'32)  and  the  integrable systems.  In

S5, we  will  obtain  the eigenvalue  and  eigenfunction  for the  Lam6  equation.  The

Lame  operator  is equivalent  to the Harniltonian of  the elliptic  CM  model.  Section 6
has some  brief summary.

E2. The  dynamical  twisting  of  classical  r-matrix

   A  Lax  pair (L,M) consists  of  two  functions on  the phase  space  of  the system

with  values  in some  Lie algebra  g, such  that the evolution  equations  may  be written

in the following form

dL'li7t
 

==
 [L?M], (i)
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where  [,] denotes the  bracket in the Lie algebra  g. If we  have formulated the Lax  pair
relation,  the  conserved  quantities (integrals of  motion)  can  be  constructed  easily.  It

fo11ows that the adjoint-invariant  quantities trLi (l =  1,･･･,n) are  the  integrals of

the motion,  In order  to implement  the Liouville t･heorem onto  this set  of  possible
action  variables  we  need  them  to be  Poisson-commuting. As shown  in Ref. 25), the
commutativity  of  t･he integrals trLt fo11ows if the  Lax  operator  can  be  deduced  from

the fundamental Poisson bracket

             {Li(u), L2(v)} =  [ri2(n,v), Li(u)] -  [r2i(v,u), L2(v)]

or  quadratic formi9)

          {Li (u), L2 (v)} =  LE (u)L2 (v)ri2 (u, v)  -  r2HTi (v, u)Li  (u)L2 (v)
                         +Ll  (u)s+(IL, v)L2  (v) -  l],2(v)sM(u, v)Ll(u),

where  we  use  the  notation

                 Li  =L  op 1, L2 =1  op L, a2-L  =  Pai2P,

and  P  is the permutation  operator  such  that Px  Q  y =:  y op x.
   fer the  above  relations  to define a consistent  Poisson bracket
                                                       ,

some,  constraints  on  the  r-matrices.  The  skew-symmetry  of  the

requires  that

                r2
±
1 (vl u)  ==  -r;2  (u: v)) sSl  (vl u) =  sr2  (u, v),

                   r;2  (IL, V)  -  St2  (IL, 1)) ==  TJ i2(IL, V) -  Sf2  (U, V).

For  the numerical  r-matrices  r
± (u,v),s± (u,v), some  constraint

cient  conditions)  are  imposed  on  the r-matrix  in order  to make  it

identity. 26) However,  generaliy speaking,  the r-matrices  r
± (u, v),  s

± (u, v)
dynamicai variables,  and  the Jacobi identity which  implies an  algebraic

for the r-matrices  takes a  very  complicated  form

(2)

(3)

(4)

one  should  impose

  Poisson bracket

          (5)
          (6)
conditions  (sufli-
satisfy  the  Jacobi

      depend  on

      constraint

    [Ll, Ir12, r13]  +  [r12, TJ23] +  [r32, r13]  
-t-

 {L2, rl,3}  
-

 {L3, r12}]  
-}-

 CyC.PelnyM  =  O.

                                                                   (7)

   It should  be remarked  that for a  given integrable system,  we  can  choose  different

Lax  formulations. [I]he rJ-matrices  coTresponding  t･o different Lax  formulations are

generally different. So, in some  cases,  we  can  transform a  dynamical r-rnatrix  into
a  non-dynamical  r-matrix.  

ie)'ii)
 The  different Lax  representations  of a  system  are

conjugate  to each  other:  if (L, M)  is another  Lax  pair of  the same  dynamical  system

coajugate  to with  the  old  one  (L, M),  it means  that

                dL  ny N

                
"liTt

 
-

 [L,M],

                L(n) ==  g(u)L(u)gthi(u),

                th(.) =  g(.)M(.)g-i(u)  -  (gt g(u))  g-i (u), cs)
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where  g(u) E G  whose  Lie algebra  is g, Then  we  have

Proposition:  The  Lax  pair (L,M) has the fbllowing r-matrix  structure

            {Li(u), L2(v)}  =  [rNm(u, v), Li(u)]  
-

 [rN2i(v, u), L2(v)], (9)

where

  r-i2(zt, v) ]=  gi (u)g2(v)ri2(u, v)gii  (u)gii (v) +  g2 (v){gi(u), L2(v)}gii(u)gii(v)
            1

           +i[{gi(u),g2(v)}gi(u)gii(v),g2(v)L2(v)g,-i(v)]. (lo)

   For a  given  Lax  pair (L, A4) and  the corresponding  TJ-matrix,  if there exists  a  g
such  that

    hi2 =  {gi (?m)g2 (v)ri2 (u, v)gi  (u)g2-i(v) +  g2 (v){gi (tt), L2(v) }gi(ii)gi Cv)
          1

        +2[{gi(u),g2(v)}gi'(u)gii('v),g2(v)L2(v)gii(v)]  (ll)

and

                        Oqih12=Qpjh12=O  (12)

then a  non-dynamical  Lax represclltation  of  the system  exists.

   By  a  straightforward  calculation,  we  can  also  find that the twisted Lax  pair

(L, Af) and  the  corresponding  r-matrix  r"i2 satisfy

   [Ll, [i12, r:13] +  [T"12, 7N'23] +  [y"32, rrv13j +  {L2, F13} -  {L3, rN12}]  +  cycl.perm  =  0,

                                                           (13)

   Similarly, fbr the quadratic form, the Lax  pair (L, M)  has the  following r-matrix

structure

        {Li(u), L2(v)} :=  Zi(u)L2(v)fi,(u,v) -  rN'i2(u,v)Li(u)i2(v)

                      +  Li(u) r, ±t2(u, v)  L2(v) -  L2(v) sA' 
-,2(u,

 v) Li (u), (14)

where

r"i2(?t,v)

f t2 (U, V)
S"+12(?Z,W)

Srv 
M12(U7

 V)

A12(u,v)

A12(u,v)

=  gi(tt)g2 (v)ri2 (u, v)gii(u)gii(v)  -  Ai2(u, v)  +  A2i(v, u),
=  gi(zs)g2 (v)rtuu, v)gi  (u)g,-i(v) -  Aii2) (u, v) +  ZSS? (v, u),
=  gi (u)g2(v)st2 (u,v)gii(u)gii(v) -  A2i(v, u)  -  Ai',) (u, v),
=  g-, (iL)g2 (v)si/, (zL, v)gii  (u)gi 

i
 (v) -  ZSi2(., .)  -  AS',) (., u),

=:=L,-i(.)A,,(.,.),  ,IIIi,)(,,,.)=A,,(.,.)Zii(.),

=g2(V){,gi(u),L2(v)}gi`(u)gii(v)

    1

  +l2[{9i(iL),92(v)}gii(u)gii(v),g2(v)L2(v)yii(v)] (15)
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There  are  still relations:

               rN2
±

1(v,u)  =  -r'V
±

12(u,v),  sN2+1(v,u)  ==  gl-2(?-,V),

                  rNl2(u,v)  -  sN+i2(u,v)  =  ffi2(u,v) -  snyi2(iL,v).  (16)

   And  also  we  have, fbr given Lax pair (L,M) and  the corresponding  r-matrices,

if there exists  a g such  that

           gi (u)g2 (v)st2 (u, v)giumi(u)gii(v)  -  A?i (v, u) -  A:i2) (u, v) =  o,

           gi(u)g2(v)si2(?i,v)gii(u)gii(v) 
-  Ai2(u, v)  -  A5ii)(v, u)  ==  e,

       hi2 (u, v)  =  gi (u)g2(v)ri-2 (u, v)gii(u)g2-i(v)  -  Ai2 (u, ･v)  +  A2i(v, u)

              =J  gi(u)g2(v)rt2(u,v)gi(u)gii(v) -  Ali,)(u,v) +  ZSSi,)(v,u) (17)
and

                          6qih12 =Clpjh12  ==  07 (18)

then a  non-dynamical  Lax  representation  with  Sklyanin Poisson-Lie bracket fbr the
system  exlsts.

             g3. Lax  pair  for elliptic  RS  and  CM  models

   We  first define some  elliptic functions:

              o(j)(,,)=o[ l "I S 1 (?i,nT), a(?t)  =:  e[ t/ 1 (u,T),
                        L2]  L2J

         e [ Z ] (u, r) ==  
..2.

0

wu

O

 
..

 exp{ir[(m  + a)2r  + 2(m  + a) (x +  b)]},

          e'(j)(u) =  O.{e(j)(u)}, a'(u)  =  0.{a(u)},g(u) =  O.{lna(u)}, (19)

where  T  is a  complex  number  with  Im(T)  >  O,

   The  Ruijsenaars-Schneider model  is a  system  of  n  one-dimensional  relativistical

particles interacting by  a  two-body  potential. In terms  of  the canonical  variables

pi,qi (i =:  1,-･･,n) enjoying  the canonical  Poisson bracket

                {pi,pj}=O, {qi,qj'}=O, {qi,pj･}=6ij･, (20)

the Hamiltonian  of the system  is expressed  as  i8)

            ff =  mc2  t?.i cosh  (p, 
iclli,
 (a(qk  

+.72

 ?-a

 
(kq)j
 
te

 
-7)

 )
i

), (2i)

where  qo･ib =  th 
-
 qh, rn  denotes the  particle mass,  c  the speed  of  light, and  7 is

the  coupling  constant,  The  above  defined Hamiltonian  is known  to be  completely
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integrable.i8),27) As we  mentioned  above,  the Lax representation  (La[x operator  of

the  classical  L-operator)  is one  of  the  most  effective  ways  to show  that  the  system

is integrable, One Lax  representation  for the  elliptic  RS  inodel  was  first formulated
by Ruijsenaars: i8)

   LR(iL); =  
eP,,'

(O.v(<+htq;,)ii,,ii.Y) 
,l"It,(

a({bkHM,,
",1()gCT

,(,II2k'
 

"7)]
;,
 i,p ..  1, n

                                                              (22)

Here, we  use  another  Lax  representation  ZR20)

                
LR(u)S･--ePia.()U.llbfl,2'++7?),"-j

cr(.7(+qti,lik).

 (23)

Lit can  be obtained  fir:om the standard  Ruljseiiaars' LR(u)  by using  a Poisson map

                 qi -  gz･ pi 
-->

 pi +Sin  
,",,
 g:gif:gj. (24)

   Following the work  of  Nijhoff et  al,, 
20)

 the  fundamentai Poisson bracket of  the

Lax operator  LR(u) can  be given in the following quadratic r-matrix  forin wit-h

dynamical r-matrices

     {Lit (u)i, LR(v)2} =  LR(u)i LR  (v)2ri-2 (u, v) -  rt2 (?L, v) LR(u)i LR(?))2

                      +LR(tL)  tst2 (?L, v)ZR(v)2  -  LR(v)2si2 (u, v)ZR(vi)1,  (25)
where

    ri2  (u, v)  ==  a-t2(u,  v)  -  s12(u)  +  s21  (v), rt2  (u, v)  =  a12  (u, v)  +  u;2  +  ui2,

             St2  (U, V)  =  S12(U)  +  Ut2,  5i2  (U, V)  ==  S21  (V) -ui2  (26)

aiid
                      '

 ui2  =  Ze(op ± 7) ei, x  ejJ･,

       ij

 ai2(u,  v) =  r92(u,  v) +  E6(u -  v)ei,  a} eii +  Eg(qiu-)eii op ej･o･,

                   i=1  ifj

 r?2(u,v)  
-

 lltll, .C'((qq,(l,)il(?,', 
--

 
ii))

 eii' X  eji, si2(u)  
-

 l;,i), (ZR(u)ayZR(u))li ez, X  e,,i･

                                                              (27)

The  following properties are  satisfied:

               r2
±

1 (v, u) =]  -r"2  (u, v), s"1 (v, u) =  si2 (u, v),
                  rt2  (u, v) -st2  (u, v)  =  ri>  (u, v) -sT2  (u, v),  (28)

NII-Electronic  
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   Here we  would  like to reformulate  the Lax fbrmulation for the RS  model.  Define

an  nXn  matrix  A(u;q) as:

        A(u; q)S･ !i A(tL,qL,･･-, q.)S･ =  e(i) (u +nqj  - tll.;sk +  
"

 li 
i) (2g)

             '

Here we  should  point out  that  A(u;a)3･ corresponds  to the intertwiner function ipS･i)
between the Z.-symmmetric  Belavin R-matrix  28)' 29) and  the  AS-).i face model.  30),3i)

   Define

                  g(u) -  A(u;q)A(g), A(g)S･ -- hi(q)6S,

                                            1

                    
hi(q)

 
=-:

 
hi(qi,''',qn)"

 I-I,#, .(q,,)'  (30)

We  can  construct  the new  LaJc operator  L(u) as

                       L(u) ==  g(zL)ZR(u)g-i(u), (31)
More  explicitly,  it can  be written  as:

        L(u)S- =

 tll.ii, .(ior)A(zs  +nx  q)"kA-i(u;q)SePh, i,o' 
--
 1,2,･･･,n, (32)

It can  be proved that the fundamental Poisson bracket of  L(aL) can  be giyen in the

quadratic  Poisson-Lie form with  a  nondynamical  r-matrix:

                 {Li(u),L2(v)} =  [ri2(u-v),LiCu)L2(v)]. (33)
Here the  numerical  r-mat･rlx  is the classical  Zh-symmetyic  r-matrix.32)  It takes the

form

 rg-,k･ (v) -

 ( S-6S')o9't(-'l}?g9il-z:l)(7e)

 
+6S'6,;h'

 ("'X'(I:l()")(v)r :li(l?'v)) lif,,Z,
'

 
,".(,:i'i

 
inOd

 
"
 ,

                                                               (34)

   We  know  the Zh symmetric  r-matrix  satisfies  the nondynamical  classica}  Yatng-

Baxter equation

            [r12(Vl 
-

 V2)7r13(Vl  
-

 V3)]  +  [r12(Vl 
-

 V2)7  r23(V2  
-

 ?J3)]

                          +[r13(Vl-V3),r23(V2  -- V3))  ==  O. (35)
We  also  know  that this r-matrix  is antisymmetric  and  Z}, symmetric:

             Antisymmetry:  -r2K-v)  =r-t2(v),

             Zn  op Z}tSymmetry  : ri2(v)  =  (a op a)ri2(v)(a  op a)  
rmL,

 (36)
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where  a  = g,h,  and  g,h  are  nXn  matrices  defined as:

                     hij'=6i+i,j'modn, gij' 
un-

 wZ6i,J'･  (37)

For convenience,  we  also  define another  n  X  n  matrix

                         Ih!I},,,.,-ga2hai,  (3s)
where  ai,  a2  E Z. a-nd tv =  exp(2Ti/n).

   Next, we  will  consider  the non-relativistic  limit of  the  Lax  operator  L(u). First

rescale  the  momenta  {p, }, the  couplillg  constant  7 and  the  Lax  operator  as  fo11ows: 20)

              pi :=  -6p2,  nor :=  fis, L(?th) 
'=a(Ili'IS)

 L'(u), (3g)

Here notation  L' is introduced. The  non-relativistic  limit is then obtained  by taking

the  limit 6 -  0, We  ha;ve the fbllowing asymptotic  properties

  L'(u)S･ -  6.'i･ 
-
 5 (\{A(u; q)kA(u;  q),kp'k 

-
 se.(A(u;  g)Zi )A-i(u; g),k･ }) + o(62).

                                                              (40)

If we  make  the canonical  transformation

                        sO

                
P:''P;'-EzsaJ,inM(q);

 
M(q)-tl.ia(qij),

 
(4i)

we  finally obtain  the  Lax  operator  of  the  elliptic  A.mi  CM  mode}iO}

               
LcM(u)S'

 
=:

 
-,bi."o

 
L'(U//

-

 
6'2i

 
,;.,:-#szil.M(,)'

 (42)

Here  we  have

           {LcM(u)i, LcM(v)2} =  [r-t2(u -  v), LcM(u)i +  LcM(v)2]. (43)

   For the newly  constructed  Lax representatioll  L(u), the quantization  becomes
no  longer dificult. Define the  Z.-symmetrtc  Belavin's R-matrix  as:

  .s,k(.)..,(,.,9('i!}(,gl7.Y.7.."i.=Erihk)e,(:i'IY)'ctr'X(f,lil,l)<.h)' gf,,z.
'

x.{,:.i+k 
modn

                                                              (44)

NVe know  this R-matrix  satisfies  the quantum  Yi}ng-Baxter equation

 R12(ul -  u2)R13(ul  -  u3)R23(u2  
-

 u3)  ==  R23(u2 
-

 u3)R13(ul  
-

 2t3)R12(u].  
-

 U2).

                                                              (45)
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The  R-matrix  is Z}, symmetric  in the sense  that

                Ri2(u) = (aXa)Ri2(u)(aXa)Mi, a=g,h.  (46)
By  taking the special  limit h 

->
 O, we  can  obtain  the classical  Zh symmetric  r-matrix

                 Ri2(u)lh.o ==  1X1+  V=i]hri2(u)+o(h2), (47)

    Now  let us  study  the quantum  L operator,  using  the  usual  canonical  quantization
procedure

                              o

              Pj-foj=rmAhoqji  qj-97  j' 
rmrm
 
1,`''?n･

 (48)

The corresponding  quantum  L-operator can  be formulated as:

            Z(u)ge 
=

 .(
17)

 t?.,A(u +  n7;  q)ZtA-i(u;g),kefila

                  =

 .(ior) tll.;, A(u +  nty; q)rAnai(u;  q)EenV=rhe[lx . (4g)

   It should  be remarked  that this quantum  L-operator is simply  the factorised difl
ference representation  for the  elliptic  L-operator.3i);33) The  above  defined quantum
L-operator satisfies  the quanturri Yleing-Baxter relation

                        A A  A A

               Ri2(u 
-
 v)Li  (u)L2(v) =  L2 (v)Li (u)Ri2(u -  v).  (50)

The  proof can  be fbund in Refs. 31),34),33) and  35).

        fi4. RS  and  CM  models  related  with  Sklyanin  algebra

   We  introduce here some  notation  tbr elliptic  functions:

                           a.  (u) -e  [ i/ l #'i ] (u, 7),
                         o'.(u+VIIIih)  ao<FIh)

                  UIa(u) =

                                                               (51)
                           aa(V=Th)  ao(u+Ah)'

The  above  mentioned  quanturn R-matrix can  be rewritten  as following up  to a  scale:

                       R(iL) -2VVr.  (u)It, op lji, (s2)
                              a

as  befbre dv =- al,a2  and  ai  E  Zn,i=  1,2･

   The  quantum  boperator L obtained  in the  Iast section  can  be represented  by
the generators of  Sklyanin algebra  S.:

                         L(u) ==2Il,(u)IZ,S.,  (53)
                                a
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     \a-f--a(V=iih)a.+e-,･(An･)a.(Ah)as-.,(FIh)
with  dvi, K3i, ori c Z.,,i =  1,2,

   "re can  give a  realization  of  the  generators of  Sklyanin algebra  as:

                        Sa =2  S,7ae 
T"iVilfi'

 SZJ. (56)
                             'i

Here we  introduce the symbol  S.i. for the elliptic  fiinction

                                      a.(V=-iihC  +  qJ'k)

               
S,icM=(ml)eviaa(Ah)

 
,fiti

 .,(q,)  
'
 

(57)

   Next, we  will  consider  the classical ]imit of  the above  defining relations,  Letting

h -  O, the  quantum  R-rnatrix become the  classical  r-matrix,  and  we  explicitly  have

the clements  of  the r-matrix  in (34) presented in the  last section,  here we  use  another

notation

                     R(u) =  1+  V=iihr(z`)+O(h2). (58)
rThe

 classical  r-matrix  is written  as:

                       r(u)=2w,,(u)J?,  G) Ili'i, (59)
                              a

where

                      Wo(?L)  =  0,

                             a.(u)a6(O)

                                      ,
 dvlO.  (60)                      
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Errorn the definition of  the  operator  S., we  easi}y  have

                Sev 
=

 ;. &a (1 -nAh  ziiL. +O(h2  )) + (63)

In the  limit h -  O, the  elliptic  functions Sia take the fr)rms:

  S,-a(vr=Th) [i+vTiih6 
,2,,
 gi[gl.:l+O(h2)], (64)

  Sja= (-i)aLaa(o) tli 
a.a,:qq,'l,ki

 [i + Ah  (gft:gi +c,2tj 
a.2:g:I.:i)

 +o(h2)]  ,

                                 al0.  (65)

So, we  have

 i6(u)so -  i+  v=ih [cgi[:,Ii] + 
)(l;h

 \ [c 
,z,,
 
a.i:ig:l

 -nzjZ;.]  +o(h2),

        
-:

 i+  v=i]h [e gi ::Ii] +  
,(lllh

 l [-nz;Z;] + o(h2), (66)

 i/}z(u)Sa -  fih(-i)ai .U.a,(("i)-) Z,]) 
,H#.
 ::tqj',h)) [c 

,Ei,.
 
a.2[gl:l

 
-nzjli;]

 +O(h2),

                               alO.  (67)

here we  ha;ve Ej･ £ h;j･ 
=ggs:gt!tktg,:l

 =:  o, because ['}25Zt?l,lg,B is an  odd  function,

   We  can  finally expand  the  quantum  L operator  in the  order  of  h when  we  take
a  limit h -  O. However, we  fiyst introduce some  notation

              L(u) =  EVZ, (u)S. f. =]  1+  VTihl(u) +O(h2),  (68)
                    or

where  l(u) is the classicalloperator.  Wt] may  represent  i(u) in terms  of  generators
of  the "classical"

 Sklyanin algebra  sa:

                          C a6(ut)

                                 
mZVa(U)Sa･

 (69)                     
t(U)

 
:Eao(u')

 
a

The  function v.(u)  is defined as:

                           1

                    
Vo

 (U)= h, (70)

                    v. (u) =:  iaa 
(.-,'

().a,g 
(O),

 ax  o. (n)
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   R'om  the above  obtained  results,  we  can  realize  thc  generators of  the  
"classical"

Sklyanin algebra  in the following fbrms:

                o

       
SO
 

=:

 \"eq,.: 
(72)

      sa =(-1)aiaa(O)\,fff,  
a.cr,((ck,k))

 [n oOq, -E:t,  :lr:t'2] - afO  (73)

On  the  other  hand, here Nsre can  say  we  give a  definition of  the generators of  the
"classical"

 Sklyanin algebra,

   In the classical  limit, the quantum  Ylring-Baxter relation  becoines the  fbllowing

                  IZi(u),l2(v)] ==  [ri2(u-v),li(u,)+l2(v)i, (74)
Subst-itute the  Z-operator with  the generators ofthe  

"classical"
 Sklyanin algebra,  and

through  tedious  calculation,  we  have

                  [sca sv] =  (warv2 r  osop cri) (a6iO)) sa+7.  (7s)

On  the other  hand, we  find that {Ih} satisfy  a  similar  relation

                     [f.,Il,]=(cvai7'2-cva2Ti)L,,+7. C76)
So, after  rescaling  s.,  we  find {s.} and  {I.} satisfy  the same  algebra.

   Finally we  should  point out  that if we  substitute  e9, by the corresponding

canonical  variable  pk, the l-operator will  become  a  T-operator, and  the  commu-

tative bracket on  the left-hand side  of  the above  relation  (74) wil} change  to the

standard  Poisson-Lie bracket. Here  we  rewritc  as:

                {CIii (u), [lh (v)} =  [ri2 (u -  v),  T-L (u) +  71} (v)]. (77)

  g5. CM  modeE,  Gaudin  model,  Lam6-equation  and  the  Bethe  ansatz

   For the difference factorized operator  L, we  can  find some  commuting  fami-
lies which  are  related  to conserved  operators.  By  using  the  fusion procedure, the

commuting  family take  the  form

                     D., =  tr[Z(u) ci) ･ ･ ･ x  L(u)pl'n],

ther'e are  m  L's above,  P-M i's the  anti-symmetric  projector, In the classical  limit, we

also  have a sirriilar commuting  family

          a7n  (U) =  2  Vai(u)  ' ' ' Vctz.(Vl)Sai  
'
 
'
 
'
 Scr.tr[JL:i  X  

'
 
"
 
'
 Itt.. P-M], (78)

                 atlO

where  cri c Z,k,i= 1,-･･,m. Let u' =  O, so  u=uo  =  
"ii

 -nhe,  and  after  rescaling

at(u),  we  have

               am  (uo) =  Z  sen  ･･･ sdvmtr[Jt,, O･･･X  I.. P-M]. (79)
                       ailO
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   Next, we  will  calculate  the eigenfunction  and  eigenvalue  of  the  above  defined

Lam6  opeTator  ff. Here  we  first review  some  of  the results  obtained  by  Felder and

Varchenko, 39) [I]he difference operator  L which  is equivalent  to So, one  generator of

the Sklyanin algebra  when  n  =  2, is given by

           Lv(q) -  
00(q.,lq2)h'S)ip(q

 - 2h) + 
OO(q.,iq2)hP)

 zb(q + 2h) (s7)

This difference operator  is also  called  the q-deformed  Lam6  operator,  In the  frame-

work  of the  quantum  inverse scattering  method,  there is a  result  as follows: 
39}

   Let (tl,･･･,tm,c) be a  solution

h -  0, the difference operator  becomes:

            L -  2+  4h2 [,`ii, -  2s g2[$ S!i + 62 
C,,rti

'

E,gl] + o(h`)

(89)

(90)

(91)

We  find the  term  with  order  h2 is cxactly  t-he Hamiltonian presented in relation  (85)

                    H-  ,d,

2,

 -2s  g2 [gi ,d,+B2  :i
'

:,gi (g2)

Since we  already  know  the eigenfunction  of  the difference operator  L is th(q) =

eCq  HbS･=1 ao(q  +  tj) which  does not  depend on  h, we  need  onl}r expand  the  eigenvalue

of  L  in the  order  of  h. "la can  obtain  the eigenvalue  of  the  Lam6  operator  H

     , -  2-  4h [, + tf.}, g2[l;i] +sh2c  [c + }l.l}., gillli]

         -,,2.2  . ,,2h2 fo'z
'

f,o,) . 4h2 (tf.li, [3i･::;i]
2

 + 2 ;{.l}, gi21Sgi:ili l
         +4h2 (i - 2s) t?, [a.t:

'

 :,`fi - (gi E`,3)
2

] + o(h4) (g3)
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At  the  same  time  we  take the limit h -  O fbr the Bethe ansatz  equation,  obtaining
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