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Primordial  BIack  Holes and  Gravitational Memory
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  We  discuss the  various  wabrs  in which  primordial  black holes may  have formed in the
early  Universe and  how the efiects  ef  such  black holes can  be used  to place  constraints  on

cosmological  models.  We  shew  that  such  constraints  may  be severely  modified  if the  value

of  the grayitational 
"constant"

 G  varies  with  cosmological  epoch,  a  possibility which  arises

in many  scenarios  for the  eamly  Universe. The  nature  of  the modification  depends upon

whether  the value  of  G  near  a  black hole maintains  the value  it had  at  its formation epoch

(corresponding to gravitational mernory)  or  whether  it tracks the background cosmological
value.  This is still  uncertain  but we  discuss varieus  approaches  which  might  help te resolve

the  issue.

gl. Introduction

   It is well  known  that primordial  black holes (PBHs) could  have formed in the
early  Universe.i),2) A  comparison  of  the cosmological  density at  any  time after  the

Big  Bang  with  the  density associated  with  a  black hole shows  that  PBHs  would  have

of  order  the  particle horizon mass  at  their fbrmdtion epoch.  PBHs  could  thus  span

an  enormous  mass  range:  those  formed  at  the Planck  time  (10-43s) would  have

the Planck mass  (10-5g), whereas  those formed at  1s would  be as large as  105Mo,

comparable  to the mass  of  the holes thought  to reside  in galactic nuclei.

   PBHs  could  arise  in various  ways.3)  Since the  eatrly  Universe is unlikely  to have

been exactly  Friedmann, they would  form rnost  naturally  from initial inhomogeneities
but they  might  also  form  through  other  mechanisms  at  .a cosmological  phase transi-

tion. We  discuss these various  formation mechanisms  in S2. PBHs  could  also  have
various  types of  cosmological  consequence.  Those  larger than  10i5g could  contribute

to the  dark matter  density and  might  even  produce  observable  microlensing  effects.

Those  smaller  than  this would  have evaporated  by the Hawking mechanism4)  and

could  contribute  to the  flux of  cosmic  racys.

   Studying the fbrmation and  cosmological  consequences  of･PBHs  is important

because it enables  one  to place constraints  on  the early  Universe (e.g., on  the spec-

trum  of  density fluctuations and  the nature  of  any  phase  transitions). Indeed PBHs

serve  as  a  probe  of  times  much  earlier  than  that associated  with  most  other  
"relicts"

of  the  Big Bang. While photons decoupled at 106y, neutrinos  at 1s apd  WIMPs  at

10-iO s, non-evaporating  PBHs  go back to 10m23 s and  evaporating  ones  all the way

back to the  Planck time. Thereft)re even  if PBHs  never  fbrmed, their non-existence

gives interesting information. We  review  and  update  these constraints  in S2.

   
')
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   The  main  purpose  of  this paper  is to examine  how  the  PBH  constraints  are

modified  if the value  of  the gra:vitational 
"constant"

 G  was  different at  early  times.

As reviewed  in S3, this idea has a  long history and  should  no  longer be regarded  as

exotic.  It arises  in various  scalar-tensor  theories of  gravity and  these are  a natural

setting  for many  currently  popular  models  of  the early  Universe. A  number  of

astrophysical  constraints  suggest  the  G  could  not  have varied  much  since  the  epoch

pf cosmological  nucleosynthesis  but PBHs  would  have formed much  earlier  than  this.

Homogeneous cosmological  solutions  in such  theories have been much  studied  and

generally lead to a simple  power-law dependence of  G  on  t. However, inhomogenous
models  (such as  would  be assoeiated  with  PBH  formation) would  lead to a  value  of

G  varying  both  temporally and  spatially  and  are  much  less well  understood.

   Black hole formation and  evaporation  could  be greatly modified  in variable-G

cosmologies,  since  many  of  their properties (e.g., their radius  and  Hawking temper-

ature)  depend explicitly  on  G. However, the nature  of  the modification  depends
upolt  the  extent  to which  a  PBH  preserves  the value  of  G  at  its formation epoch

rather  than  following the  background  cosmological  value.  Barrow5)  first drew at-

tention to this problem  and  introduced two  possibilities: 
"Scenario

 A", where  G
everywhere  maintains  the background value  and  

"Scenario
 B" 

,
 where  the value  of  a

stays  constant  near  the black hole but evolves  far ewvay  from it. This last possibility
he termed  

`tgravitational
 memory"  . There  would  be illteresting modifications  to the

cosmological  consequences  of  PBH  fbrrnation in both cases  but they  would  be more

dramatic in Scenario B,

   Barrow  &  Carr6) considered  the implications of  these two scenarios  in detail and
we  will  review  some  of  their conclusions  in S3. However, they did not  address  the

issue of  gravitational memory  itself and  we  turn  to this in g4. Although the problem

is still not  resolved,  we  will  report  on  several  interesting developments. These  are

described in more  detail elsewhere7)  and  exploit  two  important equivalences.  The

first equivalence  is between scalar-tensor  thegries and,general  relativity  with  a  scalar

field. This comes  about  because these two  theories are  related  by a  confbrmal  trans-

formation and  this means  that  the  problem  of  .gravitational  memory  can  be  probed

by investigating the formation and  evolution  of  a black hole in a  cosmological  back-

ground  containing  a scalar  field. This leads to fbur variants  of  the  gravitational
memory  scenario,  which  we  describe in S5. The  second  equivalence'  is between  a

scaJar  field and  a  stiff' fiuid (with equation  of  state  p･= p). This allows  one  to re!ate

the issue of  gravitational memory  to the problem  of  black hole accretion  in a Uni-
verse  containing  a  stiff fiuid. This problem  has already  been investigated by  several

people and,  as  discussed in S6, their findings lead to several  new  insights,

g2. PBH  formation  and  constraints  on  the  early  Universe

   One of  the most  important  reasons  for studying  PBHs  is that it enables  one  to

place limits on  the  spectrum  of  density fluctuations in the early  Universe. This is

because, if the PBHs  form directly from density perturbations,  the fraction of  regions

undergoing  collapse  at  any  epoch  is determined by the root-mean-square  amplitude

E of  the  fluctuations entering  the horizon at  that  epoch  and  the equation  of  state
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p =:  orp (O <  or <  1). One  usually  expects  a  radiation  equation  of  state  (7 =  1/3)
in the  early  Universe. In order  

'to
 collapse  against  the  pressure, an  overdense  region

must  be larger than  the  Jeans length at  maximum  expansion  and  this is just v15F
times the horizon size. On  the other  hand, it cannot  be larger than  the horizon size,
else  it would  form a  separate  closed  universe  and  not  be part of  our  Universe. 8)

   This has two  importarrt implications. Firstly, PBHs  forming at  time t should

have of  order  the  horizon mass  then:

                      M(t) eEii

3

;t ki lo'5(lo-t23 
,)g

 (2 1)

Secondly, for a  region  destined to collapse  to a PBH,  one  requires  the fractional
overdensity  at  the  horizon epoch,  6, to exceed  or. Providing the  desnity fiuctuations
ha;ve a Gaussian･ distribution and  are  spherically  symmetric,  one  can  infer that  the

fraction of regions  of  mass  M  which  collapse  is9)

                      fi(M) r-  c(M)exp  [-2,(7M
2

 ),], (2 2)

where  c(M)  is the  value  of  E when  the  horizon mass  is M.  The  PBHs  can  have
an  extended  mass  spectrum  only  if the fiuctuations are  scale-invariant  (i.e., with  c

independent of M)  but this is expected  in many  scenarios,  Recent hydrodynamical
calculations  fbr £he 7 =  113  case  have refined  these  estimates  sornewhat:  Niemeyer

&  JedamzikiO) find that one  needs  6 >  O.8 rather  than  6 >  O.3 to ensure  PBH
formation, and  Shibata &  Sasakiii) reach  similar  conclusions,  but the  same  basic

picture  still applies.

   Allother interesting development has been the  application  of  
"critical

 phenom-
ena"  to PBH  fbrmation. Studies of  the  collapse  of  various  types of  spherically

symmetric  matter  fields have shown  that there is always  a  critical  solution  which

separates  those configurations  which  form a  black hole from those which  disperse
to an  asymptotically  flat state.  The  configurations  are  described by  some  index p
and,  as  the critical  index p. is approached,  the  black hole mass  is found  to scale  as

(p -- pe)n for some  exponent  n. This effect  was  first discovered for scala[r fieldsi2)
but subsequently  demonstrated for radiationi3)  and  then more  general fluids with
equation  of  state  p ==  7p. 

i4),
 15)

   In all  these studies  the  spacetime  was  assumed  to be asymptotically  flat. How-

ever,  Niemeyer  &  Jedamziki6) have recently  applied  the  same  idea to study  black

hole formation in asymptotically  Flriedmann models  and  have  found  similar  results.

For a  variety  of  initial density perturbation profiles, they  find that the  relationship

between the PBH  mass  and  the the horizbn-scale density perturbation  has the form

                           M=  KMH  (6- 6c)", (2'3)
where  MH  is the horizon mass  and  the constants  are  in the range  O,34 <  or <  O.37,

2.4 <  K  <  ll.9 and  0.67 <  ti. <  O.71 for the  various  configurations.  Since M  -  O as

6 -  6., this suggests  that PBHs  may  be  much  smaller  than  the  particle horizon at

formation (although it is clear  that  a  fluid description must  break down  if they  are

too small)  and  it also  modifies  the  mass  spectrum.  
i7),

 
i8)
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   These  developments  might  be regarded  as  refinements  of  the  original  scenario

since  they  all  presuppose a  relationship  of  the form (2･2), However,  in some  situations

Eq. (2･2) would  fail qualitatively. Ifor example,  PBHs  would  form more  easily  if the
equation  of  state  of  the Universe were  ever  soft  (7 <1).  This might  apply  if there
was  a  phase  transition which  channelled  the  mass  of  the  Universe into non-relativistic

particles or  which  temporally reduced  the pressure. In this case,  only  those  regions

which  are  suMciently  spherically  symmetric  at  maximum  expansion  can  undergo

collapse;  the (lependence  of5  on  E would  then  be weaker  than indicated by Eq. (2･2)
but there would  still be a  unique  relationship  between  the two parameters.  

i9)

   The  fluctuations required  to make  the  PBHs  may  either  be primordial  or  they

may  arise  spontaneously  at  some  epoch.  One  natural  source  of  fiuctuations would

be inflation20),2i) and,  in this context,  E(M)  depends implicitly on  the  infiationamy

potential. Indeed many  people have studied  PBH  fOrmation in inflationary scenarios
as  an  important way  of constraining  this potential.22)-28) Recently the Gaussian
assumption  has been questiolled in the infiationary context,29),30)  so  Eq. (2･2) may

not  apply,  but one  still finds that fi depends very  sensitively  on  E.

   Some  fbrmation mechanisms  fbr PBHs  do not  depend on  ha;ving primordial fluc-

tuations at  all. Pbr exarnple,  at  any  spontaneously  broken symmetry  epoch,  PBHs

might  form through the collisions  of  bubbles of  broken symmetry.  
3i)

 
'
 
33)

 PBHs  might

also  form spontaneously  through the  collapse  of  cosmic  strings.  
34)

 
"
 
38)

 In these cases

P(M) depends, not  on  E(M),  but on  other  cosmological  parameters, such  the bubble
formation rate  or  the string  mass-per-length.

   In all these scenarios,  the  current  density parameter  npBH  associated  with  PBHs

which  form at a  redshift  x  or time t is related  to fi by 9)

      S2pBH =  I3s?R(1 +z)  s lo6el (iik)
Mi!2

 Fv loi8fi (loMtsg)
-i/2,

 (2 4)

where  S2R Fs 10m4  is the  density para[meter of  the  microwave  background and  we  harve

used  Eq. (2･1). The  (1 +  z) factor arises  because the radiation  density scales  as (1 +
x)4,  whereas  the  PBH  density scales  as (1 +x)3. Any  limit on  S2pBH therefbre places

a  constraint  on  5(M) and  the constraints  are  summarized  in Fig. 1. The  constraint

fbr non-evaporating  mass  ranges  above  1015g comes  from requiring  S2pBH <  1. Much

stronger  constraints  are  associated  with  PBHs  which  were  smaller  than  this, since

they would  have evaporated  by now.  Fbr exarnple,  the constraints  below 106g are

based on  the (not necessarily  secure)  assumption  that evaporating  PBHs  leaye stable

Planck mass  relics,  in which  case  these relics  are  required  to have less than  the critical

density. 23)i39),40)  Other constraints  are  associated  with  the  generation of  entropy,

modifications  to the cosmological  production of  light elements  and  the contribution

to the  cosmologica!  or-ray background. ,

   The  constraints  in Fig. 1 are  discussed in detail by Carr et al. 
23)

 but we  note

that Kohri &  Ybkoyama4i) have recently  improved  the constraints  on  rs(108 
-
 leiOg)

which  come  from cosmological  nucleosynthesis  considerations.  Here we  wish  to em-

phasize  that the strongest  constraint  is the  cosmic  ray  limit associated  with  the

10i5g PBHs  evaporating  at the  present epoch.42)m46)  Indeed the recent  detection

of  a Galactic 7-Tay background,47) measurements  of  the  antiproton  fiux,48) and  the
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discovery of  very  short  period 7-ray burts,49) may  even  provide positive evidence

fbr such  PBHs. This is discussed in detail elsewhere.50)  The  constraints  on  6(M)
can  be converted  into constraints  on  E(M)  using  Eq. (2･2) and  these are  shown  in

Fig. 2. Also shown  here are  the  (non-PBH) const-raints  associated  with  the spec-

tral distortions in the  cosmic  microWave  background  induced by  the  dissipation of

                                                         NII-Electronic  
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intermediate scale  de4sity perturbations and  the  COBE  quadrupole  rneasurement,

as  well  as  lines corresponding  to various  slopes  in the  E(M)  relationship.

   Finally it should  be emphasized  that there has been pamticular interest recently
in whether  PBHs  could  htrve formed at  the quark-hadron  phase  transiti6n at  10-5s.
This is because the horizoll mass  is of  order  IMo  then, so  such  PBHs  would  naturally

have the  sort  of  mass  required  to explain  the  MACHO  microlensing  resuks.5i)  One
might  expect  PBHs  to form  more  easily  at  that epoch  because of  a  temporary  soft-

ening  of  the equation  of  state,  If the QCD  phase  transition is assumed  to be of  lst

order,  then  hydrodynamical calculations  show  that the value  of  6 required  for PBH
formation is indeed reduced  below the value  which  pertains in the radiation  case.52)

This means  that  PBH  formation will  be strongly  enhanced  at  the QCD  epoch,  with

the  mass  distribution being peaked around  the  horizon mass  then. i8)

   Since the focus of  this meetiiig  is gravitational waves,  it should  be emphasized

that one  of  the interesting implications of  the PBH  MACHO  scenario  is the possible
existence  of  a  halo population  of  binarzt black holes. 53) In this case,  there  could  be
108 binaries inside 50 kpc and  some  of  t･hese could  be coalescing  due to gravitational
radiation  losses at  the  present epoch.54)  Current interferometers (LIGO, VIRGO,
GEO,  TAMA)  could  detect such  coalescences  within  50 Mpc, corresponding  to a

few events  per  year. Future space-borne  interferometers (such as  LISA  or  OMEGA)
might  detect 100 coalescences  per  year. If the associated  gravitational waves  were

detected, it would  provide  a unique  probe  of the  halo distribution (e.g. its density

profile and  core  radius),  
55)

g3. Cosmology  in varying-a  theories

   Most  variable-G  scenarios  associate  the  gravitational 
"constant"

 with  some  form
of  scalar  field ip. This notion  has its roots  in Kaluza-Klein theory, in which  a

scalar  field appears  in the  metric  component  gss associated  with  the  5th dl'mension.
Einstein-Maxwell theory then requires  that this field be related  to Gf.56) Although
this was  assurned  constant  in the original  Kaluza.Klein theory, Dirac57) noted  that

the  ratio  ofthe  electric  to gravitational force between two  protons  (e21G7n;) and  the

ratio  of  the  age  of  the  Universe to the  atomic  timescale  (t/t.) and  the square-root  of

the number  of  particles in the universe (VIiilfiF) are  all comparable  and  of order

1040. This unlikely  coincidence  led him to propose  that these relationships  must

always  apply,  which  requires

G  o( t-1, GM!R  ew  1, (3･1)

where  R  A)  ct  is the horizon scalle. The first condition  led Jordan58) to propose a
theory  in which  the  scala[r  field in Kaluza-Klein theory  is a  function of  both space
and  time, and  this then implies that G  ew  ip-i has the same  property.  The second

condition  implies the Mach-type  relationship  ip N  MIR,  which  suggests  
59)

 that ip is a
solution  of  the wave  equation  llip rw  p. This motivated  Brans-Dicke (BD) theory, 60)
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in which  the Einstein-Hilbert Lagrangian is replaced  by

                       L=  ipR- [ii ip"ip,u9""+Lm , (3'2)

where  L.  is the matter  Langrangian and  the constant  w  is the BD  parameter. The

potential ip then  satisfies

                            Dip=(2.81  3) 
T, (3'3)

where  T  is the trace of  the.matter stress-energy  tensor, and  this has the required
Machian  form. Since ip must  have  a  contribution  from local sources  of  the form
Xi(mi/ri), this entails  a  violation  of  the  Strong Equivalence Principle. In order  te

test this, the PPN  formalism was  introduced. Applications of  this test in a  variety

of  astr,ophysical  situations  (involving the solar  system,  the binary pulsar and  white

dwarf cooling)  currently  require  lwl >  500, which  irnplies that the deviations from

general relativity  can  only  ever  be small  in BD  theory. 6i)

   The  introduction of  generalized scalar-tensor  theories, 62) 
-
 64) in which  w  is itself

a  function of  ip, led to a  eonsiderably  broader' range  of  variable-G  theories. In partic-
ular,  it permitted the possibility that  w  may  have been small  at  early  times  (allowing
noticeable  variations  of  G  then) even  if it is large today. In the last decade interest
in such  theories  has been revitalized  as  a  result  of  early  Universe studies.  Inflation
theory  

65)
 has made  the  introduction of  scalar  fields almost  mandatory  and  extended

inflation specifically  requires  a  model  in which  a  varies.33)  In higher dimensional

Kaluza-Klein-type cosmologies,  the  variation  in the sizes  of  the  extra  dimensions

also  naturally  leads to a  variation  in G,66)m68) The  currently  popular low energy
string  cosmologies  necessarily  involve a  scalar  (dilaton) field69) and  bosonic super-
string  theory, in particular, leads 

70)
 to a  Lagrangian  of  the  form (3,2) with  w  :=  -1.

   The intimate conllection  between  dilatons, inflatons and  scalar-tensor  theory

arises  because one  can  always  transform  from  the  (physical) Jerdan  frame to the
Einstein frame, in which  the Lagrangian has the standard  Einstein-Hilbert form7i)

                        L=R-2ip,.th,.gPV+Lm.  (3･4)

Here  the  new  scalar  field ip is defined by

                          dip=(2wi3)
i!2

 E!it; (3 s)

and  the barred (Einstein) metric  and  grewit ational  constant  are  related  to the original

(Jordan) ones  by

            g.. ==  A(ip)2g.., G-  [1+a2(ip)]A(ip)2a, aiA'/A,  (3-6)

where  the function A(ip) specifies  a conforrnal  transfbrmation. Thus  scalar-tensor

theory can  be interpreted as  general relativity  plus a scalar  field.

   The beha;viour of  homogeneous cosmological  models  in BD  theory is well  under-

stood.  
72)

 Their crucial  feature is that they are  vacuum-dominated  at early  times but
always  tend  towards  the general relativistic  solution  during the radiation-dominated
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era.  This is a eonsequence  of  the fact that the radiation  energy-momentum  tensor is

trace-free [i.e, T  =  O in Eq. (3-3)]. This means  that the full radiation  solution  can

be approximated  by joining 4 BD  vacuum  solution  to a  general relativistic  radiation

solution  at  some  time  ti, which  may  be reganrded  as  a  free parameter  of  the theory.

However,  when  the  matter  density becomes  greater than  the  radiation  density at

t. nu  10iis, the  equation  of  state  becomes  that  of  dust (p ==  O) and  G  begins to vary

again.  Fbr a  ic =  O model,  one  can  show  that in the three eras6)

G  ==  Go(to/t)", a  oc  t(2-")!3, (t >  t.) (3･7)

G  =  G. i  Go (tolt,)n, a oc tl12, (ti <  t <  t,) (3･8)

      G  ==  a.(t/ti)-("+V4II:ii2)!2, a  oc  t(2-"rmtw)!6,  (t <  ti) (3･9)
where  Go is the value  of G  at the  current  time to, n  =- 2/(4+  3w) and  (to/t,) fti 106.

   Since the BD  coupling  constant  is constrained  by lcvl >  500, which  implies

lnl <  O.OOI, Eqs. (3･7) to (3･9) imply that the deviations from general relativity
are  never  large if the value  of  n  is always  the same.  However,  for reasons  explained

below, it is also  interesting to consider  BD  models  in which  n  and  w  can  violate  the

current  constraints.  This allows  considerably  more  exotic  behaviour, especially  in

the vacuum-dominated  era. In particular, we  note  the fo11owing features:6) models

with  w  <  -3/2  are  probably excluded  because the energy  density of  the  scalar  field
is negativel  models  with  -3/2  <  w  <  -4f3  undergo  power-la;w inflation during the

vacuum-dominated  era  because the exponent  of  t in the expression  for a  in Eq. (3･9)
exceeds  1; models  with  

-4/3
 <  w  <  O can  bounce  during the  vacuum-dominated  era

because this exponent  is negative.

   The  beharviour of  cosmological  models  in more  general scalar-tensor  theories

depends on  the form of  bl(ip) but they still retain  the feature that the general rela
tivistic solution  is a  late-time attractor  during the radiation  era.  Since one  requires

G  fu  ao to 10%  at  the epoch  of  primordial  nucleosynthesis,  72) one  needs  the  vacuum-

dominated phase to end  at  some  time t. <  1s. The theory approaches  general rela-

tivity in the weak  field limit only  if w  -> oo  and  w'lw3  -> O (where a  prime denotes
d/ddi) but w(ip)  is otherwise  unconstrained.  Barrow &  Carr consider  a  toy model  in
which

2w  +  3 =:  26(1 
-

 ip1ip.)-a,
where  or and  6 are  constants.  This leads to

2cv +  3 oc  t-or1(2-a), w7w3  oc  t(i-2a)1(i-a),(t  <  tv)

(3･10)

(3･11)

so  one  requires  112 <  a  <  2 in order  to hewe w  -  oo  and  wt/tu3  -> O as  t -  oo.  In

the or =  1 case,  one  finds

Goctm2Af(3-A), aoct(1-A)/(3-A),  AE  31(2P).(t  <  tv) (3-12)
During  the vacuum-dominated  era,  such  models  can  therefore be regarded  as  BD

solutions  in which  w  is determined by the parameter  rs and  unconstrained  by any
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Iimits on  w  at  the present epoch.  After t., G  is constant  and  one  has the standard
radiation-dominated  or  dust-dominated behaviour.

   On  the assumption  that a  PBH  of  mass  M  has a temperature  and  mass-loss

rate4)

                    T==  (8rGM)-i, iut Rs  -(GM)-2,  (3･13)
with  G  having the value  G(t) in Scenario A  and  G(M)  in Scenario B, Barrow  &  Carr
calculate  the  evaporation  time  7  fbr various  values  of  the parameters n  and  ti in BD
theory. The  results  are  shown  in Fig. 3(a) for Scenario A  and  Fig. 3(b) for Scenario
B. Here  M.  is the mass  of  a PBH  evaporating  at  the  present epech,  M.  is the mass

of a  PBH  evaporating  at  time  t, and  Mt,it is the mass  of a  PBH  evaporating  at the

pTesent  epoch  in the standard  (constant G) scenario.  In Scenario A  with  n  <  
-1/2,

there is a  maJximum  mass  of  a  PBH  which  can  ever  evaporate  and  this is denoted
by M...  The results  for the scalar-tensor  with  w(di)  given by  Eq. (3･10) with  cM =  1
are  shown  in Fig, 3(c) for Scenario B  with  various  values  of  the  parameters A and

t.. The corresponding  modifications  to the  constraints  on  fi(M) in all three cases
are  shown  in Fig. 3(d), which  should  be compa[red  to Fig. 1.
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Fig. 3, Dependence  of  the PBH  evaporation  time 7  on  initial mass  M  in (a) BD  theory  with

   Scenario  A,  (b) BD  theory  with  Scenario B, (c) scalar-tensor  theory with  a  =  1 and  Scenario

   B. Also shown  are  (d) the modifications  to  the constraints  on  B(M) in these cases,
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                54. Black  ho!es  in scalar-tensor  theory

    In BD  theory  Hawking73)  showed  that, providing the weak  energy  condition

holds, the gradient of  ip must･  be zero  everywhere  for stationary,  asymptotically  fiat
black holes. This means  that such  black holes are  !'dentical to those in general
relativity.  This result  can  be generalized to all  scalar-tensor  theories and  suggests

that such  theories are  in agreement  with  the  
"no-hair"

 theorem.

    Numerical  calculations  support  this theorem.74)-76)  An  Oppenhiemer-Snyder
type  collapse  reveals  outgoing  scalar  gravitational radiation,  which  radiates  awacy

the scalar  mass.  When  all the scalar  mass  is lost. the black hole settles  down  with                                          '

a  constant  scalar  field to the  Schwarzschild form. The scalar  radiation  generated
in this way  would  be of  great interest in itself. As  shown  by Harada et al.,76) if a
black hole of  mass  M  collapses,  the rqtio  of  the  amplitudes  of  the scalar  and  tensor

gravitatiollal waves  is

    1};t ,.  Io-3  (5?O) (10fM)
`i

 7i 
7.Es,

 f e-J  (MMo)
i!2

 (lsrfi.) , (4 1)

where  a  is the  initial size  of  the  region,  e is its eccentricity  and  f is the frequency.
There  might  also  be a  stochastic  background of  scalar  gravitational waves  generated
by the formation of  PBHs  in the early  Universe, although  its density would  have

been diluted by now  because of  redshift  effects.

   It should  be  pointed  out  that  the  simulations  of  scalar  collapse  also  show  a  rather

unusual  feature:74)775) the  area  of  the  event  horizon decreases for a  time, violating

the  area  theorem,  and  it may  also  lie inside the  app.arent  horizon during this period.
[I]his occurs  fbr all values  of  w  and  is due to the fact that the scalar  field violates

the weak  energy  condition.  This condition  holds in the Einstein frame as  long as

w  >  
-3/2

 but it need  not  be  true in the  physical  Jordan  frame. Examples  have

been found 77) 
H
 
79)

 of  black holes in BD  theory  which  have scalar  hair but these arise
only  fbr certain  ranges  of  ca: bl <  -4/3  in Ref. 77), w  <  -3/2  in Ref. 78) and

-5!2  f{ w  <  -3/2  in Ref. 79). It is unclear  that these can  represent  the end  state

of  realistic  grayitational collapse.

   In addressing  the  question  of  which  of  Barrow's Scenarios A  or  B  is most  plau-
sible, it shoUld  be stressed  that the scalar  no  hair theorem  has only  been  proved  for

asymptotically  fiat spacetimes,  so  it is not  clear  that  it also  applies  in the  asymp-

totically I]liriedmann case.  While  the  no  hair theorem  suggests  that  ip should  tend  to

a locally constant  value  (close to the black hole), it is not  obvious  that this needs  to
be the asymptotic  cosmological  value.  Indeed, since  the  homogeneizing  of  ip is only
ensured  by  scalar  wave  emission,  one  might  infer that  this can  only  be achieved  on

scales  less than  Lhe  particle horizon.

   The  only  way  to determine what  happens  is to seek  a  precise rnathematical  model

for a  black hole in a  cosmological  background. One  approach  is to try matching  the

black hole and  cosmological  solutions  over  some  boundary X.  An  example  of  such  a

matching  in general relativity  is the  Einstein-Straus or  
"Swiss

 cheese"  model.  80) Here
'a

 Friedmann  exterior  is matched  with  a  general spherically  symmetric  interior, If

there is no  scalar  field, it turns  out  that  the  latter has to be the  static  Schwarzschild
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solution  but the situation  rnay  be  more  complicated  in the  present context  due  to the

presence of  scalar  gravitational radiation.  In general one  can  show  that the fo11owing

continuity  conditiolls  must  apply  at  X:

     lgpa.] =  O, [Gps.nUn"] =  [Gpa.upan"] =  O, [ip] =  O, [ip.n"] =  O, (4･2)

where'  nge and  upt are  4-vectors normal  and  tangent to 2], respectively.  8i)
 '
   UnfortuBately, it turns  out  that  an  Einstein-Straus type  solution  does not  exist

in BD  theory. This is because the only  way  to satisfy  the junction conditions  (4･2)
is if ip is spatially  and  temporally constant,  which  is just the general relat･ivistic

case.  However, Oppenheimer-Snyder  collapse  has been investigated 76),82) in which
a  ball of  dust described by a  k =  +1  Friedmann  interior and  a  Schwarzschild exterior

collapses'to  a  black hole. In these calculations  the  scalar  field is taken  to be constant

before the collapse  and  its back-reaction on  the  metric  is assumed  to be always

negligible.  It is found that, as  the collapse  proceeds, a  scalar  gravitational wave

propagates outwards  before the scalar  field settles  down to being constant  again.  In

principle, it should  be  possible  to extend  this apprboach  to the present problem  by
attaching  a  k =  +1  Ilrriedman interior to a  k =  O FIriedman exterior.

   Jacobson83) has addressed  the  problem  analytically  by looking for a  spherically

symmetric  solution  which  represents  a  black hole in an  asyrnptotically  Fr'iedmann

model  in which  ip satisfies  the  wave  equation

                 (-g"of + S&[V=b g'"O.]) di(t,r) =O  (4 3)

As r  
->

 oo,  he assumes  that  ip asymptotes  to

                               ipc(t) FS  ¢ ct  (4'4)

in the Einstein frame. This presupposes that  the black hole event  horizon is much

smaller  than  the particle ho'rizon, so  that the cosmological  timescale is much  longer

than the black hole timescale, in which  case  ip. in Eq. (4-4) can  be regarded  as

constant.  He  then  seeks  a  solution  which  is a  combination  of  a  homogeneous part
ipi(t) and  a  time-independent part ip2(r), where

                       ipi=ip.t, ip2 :=  ln(1-rll/r). (4ny5)
Both  these terms diverge at the event  horizon (rff) but one  can  find a  combination

of  thern which  is regular  there:

                 ip3 =  ipi +  rH  ip2 dic =  dic[v -r-  rHln(rlrH)],  (4･6)

where  v  is advanced  
"tortoise';

 time,  together  with  a  superposition  of  waves  falling

into the  black hole or  dispersing to infinity. The  equipotential  ip =  ip3 intersects the
event  horizon at  v  =  vff  and  infinity at  t ==  t... Since v  ==  vH  and  and  t =  too

themselves  intersect at  r  Ftf 1.5GM,  he infers that  there  is little lag between  the

value  of  ip at  the  event  horizon and  particle horizon, which  means  that  the  memory

can  ollly  be weak.
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   Although Jacobson's analysis  demonstrates that a  solution  with  little memory

does exist,  it must  be emphasized  that he has really  put this feature into the  solution

at  the  outset  by  assuming  the  black hole is much  smaller  than  the  particle horizon.

This assumption  is inappropriate if the  black hole has a  size  comparable  to the particle
horizon at  formation (as applies  for a  PBH),  so the field around  a collapsing  region

need  not  necessarily  evolve  to the form (4･6). Another  rather  crucial  feature of  his

analysis  is that he claims  that, while  the PBH  mass  is nearly  constant  in the  Einstein

frame, it increases as

                          M-A(di)-iM  o( ipi12 (4･7)
in the Jordan frame. If this were  correct,  it would  invalidate the  analysis  of  Barrow

&  Carr and  hence  Figs. 3. However,  we  would  a[rgue  that it is not  clear  in which
frame the  maSs  should  be  taken  to be constant.

S5. VariationsofgrEwitationalmemory

   We  now  consider  the question of  What  happens  to black holes in BD  or  more

general scalar-tensor  theories during the evolution  of  the Universe. In general the

present value  of  the  scalar  field, ip(to), will  be  different firom its value  when  the black

hole was  fbrmed, ip(tf). In the fbllowing discussion, we  will characterize  the degree
of  gravitational memory  by comparing  the value  of  the scalar  field at  the black hole
event  horizon (ipEH) and  the cosmological  particle horizon (ippH). We  first consider

the two extreme  situations  described by Barrow:5)

                 ScenanrioA: ipEH(t)=ippH(t) for all t. (5･1)
A  Schwarzschild black hole forms at  time tf with  its event  horizon radius  being
Rf  ==  2G(tf)M.  If G(t) evolves  with  time, then  the  black hole adjusts  quasi-statically
through  a  sequence  of  Schwarzschild states  approximated  by R  =  2G(t)M, see  Fig.
4(a). In this scenario  there ame  Bo  stationary  black holes when  G(t) is changing  and

no  gravitational memory.

                 Scenario B:  ipEH(t) =  ipEH(tf) for all t. (5-2)
A  Schwarzschild black hole of  size  Rf forms at  time tf and,  while  G(t) equals  the

evolving  backgroupd value  beyond some  scale-length  R.  ) Rf, it rernains  constant

within  R.,  see  Fig. 4(b), In this case  the black hole size is determined by G(tf)
even  at  the present  epoch  and  this means  that the region  R  <  R.  has a  memory  of

the gra;vitational 
`iconstant"

 at  the  time  of  its formation.

   Neither of  these scenarios  can  be  completely  realistic  since  they both  assume

that ip is homogeneous almost  everywhere.  However,  even  if ip were  homogeneous
initially, one  would  expect  it to become inhomogeneous as  collapse  proceeds.  Indeed,
if the background value  is increasing (as usually  applies),  one  would  expect  ip in
the collapsing  region  to become  first taryer than  the background  value,  on  a  local
dynamical timescale  and  then  smaller  than  it on  a  cosrnological  timescale. Such
behaviour would  necessarily  entail  a  variation  of  ip in space  as  well  as  time. Solutions
have been fbund for specific  w  in which  ip is inhornogeneous,84) so  such  models  are
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clearly  possible in principle. We  must  also  allow  for the possibility that ip may  vanry

interior to R.  but on  a  slower  or'faster  timescale  than  the background. We  therefore

propose two  further scenarios:

                Scenario C:  1diEH(t) }ir ldipH(t)l fbr all t, (5･3)
where  the dot represents  a  time derivative. This implies that the scalar  field evolves
faster at  the event  horizon than  at  the  particle horizon until  it eventually  becomes
homogeneous, see  Fig. 4(c). We  describe this as  short-term  gravitational memory
and  it reduces  to Scenario A  as  the timescale to become homogeneous tends to zero.
This would  apply,  fbr exarnple,  if ip were  to change  on  the  dynamical timescales  of

the  black hole since  this is usually  less than  that  of  the  cosmological  background.

                Scenario D:  l¢ EH<t)1<1ippH(t)1  for all t. .(5-4)

This implies that  ip evolves  faster at the particle horizon than the event  horizon,
see  Fig. 4(d). We  describe this is as  weak  gravitational memory  and  it reduces  to
Scena[rio B  when  the  left-hand side  of  Eq. (5-4) is zero.  In this case,  the evolution
of  ip is again  dominated by the black hole inside some  length-scale R.. Note that,
in either  this scenario  or  the last one,  the length-scale Rm  need  not  be fixed, since  it

ip
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Fig. 4. Different possiible forms for the evolution  of  the  scaJar  field prefile ip(r) for (a) no  memory,

   (b) strong  memory,  (c) short-term  memory,  (d) weak  memory.



Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOffice,Progress  of  Theoretical  Physics

'334
B. Carr and  C. aoymer

could  eithe;  grow  or  shrink  as  scalar  gravitational radiation  propaga £ es. A  particu-
lar example  of  this, to which  we  return  shortly,  would  be  seijLsimilar  gravitational
memory,  in which  the ratio  of  ipEH to ippH always  remains  the same.

   If ip, or  equivalently  a, is inhomogeneous,  then one  has to conside;  carefu11y

what  is meant  by the Hawking temperature. In general re!ativity  the temperature  of

a  Schwarzschild black hole is given by Eq. (3･13). However, in a  scalar-tensor  theory

G  !!i G(t,r), so  one  must  decide which  value  of  G  is appropriate.  Since the  particle
creation  responsible  for the effect  takes  place near  the  event  horizon, perhaps  the

local value  GEH  should  be used,  giving

                         [l'IH-(8TGEHM)'i. (s･5)
On  the other  hand, since  the  radiation  is only  measured  asymptotically,  one  might

argue  that the asymptotic  value  G.. is appropriate,  giving

                          [l-2{ =(8TG.M)-i.  (5･6)
It is not  certain  whether  Eq. (5･5) or (5･6) should  be used.  If Eq. (5･5) applies,  then

the temperature  depends crucially  on  whether  or  not  gra:vitational memory  exists.

However,  if Eq. (5･6) applies,  the temperature  is unaffected  by  this andjust  depends

on  the background.

   Gravitational memory  has also  been  investigated in the  context  of  boson  stars.  
85)

A  boson star  is the analogue  of  a  neutron  star, formed when  a  large collection  of

bosonic particles become gravitationally bound.86),87) In this case,  weak  gravita-
tional memory  is already  known  to occur.  An  interesting feature of  this is that two'

boson  stars  of  the same  mass  may  differ in other  physical  properties  (e.g, radius),

depending  on  when  they  formed. However,  the situation  may  be  very  differellt for a
black hole since  this has an  event  horizon.

g6. Gravitational memory  and  the  accretion  of  a  stiff  fiuid

   In general relativity  there is an  equivalence  between a  scalar  field and  a  stiff

fiuid and  we  now  show  how  this can  be exploited  in studying  gravitational memory.

In the Einstein frame, the energy  momentum  tensor for a perfect fluid is

                       [l)v=(p+p)upuv+9pavp,  (6･1)
where  up  is the velocity  of  the fiuid. If we  define a  velocity  field by

                         ""=(-gpcr  S':di.)i12, (6 2)

this gives

                      [i:L"='(Pb  aPip'),ipipr".ip"+P9"V  (6'3)

By  comparing  this to the  energy-momentum  tensor  for a  scalar  field, we  find that

                                  1 r-

                         p=p=  
-i9POippip.,

 (6･4)
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so  we  harve a  stiff fluid. This equivalence  applies  provided that  the derivative of  the

scalar  field is timelike. Otherwise the  velocity  field defined in Eq. (6･2) would  be
lmagmary.

   This is relevant  to the  gra;vitational mernory  problem  because we  can  now  inter-

pret the various  scenarios  discussed in S5 in terms  of  the accretion  of  a stiff fluid. If
the black hole does not  accrete  at  all or  accretes'  very  little, this will  correspond  to

strong  or  weak  gravitational memory  (Seenarios B  and  D, respectively).  However,  if

enough  accretion  occurs  to homogenize  gb, this will  correspond  to short-term  gravi-
tational memory  (Scenario C). The  faster the  accretion,  the  shorter  the memory,  so

Scenario A  corresponds  to the idealization in which  homogenization is instantaneous.

   A  simple  Newtonian  treatment 
i)
 fbr a  general fiuid suggests  that the accretion

rat･e  in the  Einstein frame should  be

                             Ali' ==  4TpRkv,, (6･5)
where  RA  =  aM/v,2 is the accretion  radius  and  v.  is the sound-speed  in the accreted

fiuid. ft>r a  stiff fluid, v. =,  c  and  RA  ==  aM/c2,  while  p rtv  1/(at2) in a  Friedmann

universe  at  early  times, so  we  ha;ve

                              dM  GM2
                               dt 

'"`
 

c3t2'
 (6'6)

This can  be  integrated to give

                                   .3t/a

                                             ,
 (6-7)                          M  Fts

                               i±t(ff,-i)
where  Mf  is the black hole mass  at  the time tf When  it formed. If we  assume  that

Mf  =  ntf with  ep <  1, then  Eq. (6･7) implies

                      M-A`Cf(1-n)-i  as  t-oo.  C6･8)
If n <  1, the black hole could  not  grow  very  much.  However, if n is close  to 1, which

must  be the  case  if v.  Fts c, then  the black hole could  grow  significantly.  In particular,
in the  limit n =  1, Eq. (6･7) implies M  rv  t, so the black hole grows at  the same  rate

as  the  universe.  This simple  calculation  suggests  that a  black hole surrounded  by a

stiff fluid can  accrete  enough'  to grow  at  the same  rate  as  the Universe.

   Since the above  calculation  neglects  the effects  of  the cosmological  expansion,

one  needs  a  relativistic  calculation  to check  this. The  Newtonian  result  suggests

tha,t one  ishould look for a  spherically  symmetric  seif-similar  solution,  in which  every

dimensionless variable  is a  function of  z  =  r!t,  so  that  it is unchanged  by the
transformation  t -  at,  r  -  ar  for any  constant  a.  This problem  has an  interesting

but rather  convolved  history. By  looking for a  black hole solution  attached  to an

exact  Eriedmann  solution  via  a  sonic  point, Carr &  Hawking  first showed  that there
is no  such  solution  for a  radiation  fiuid8) and  the  argument  can  be extended  to a

general p  =  7p  fluid with  O <  7  <  1. Lin et  al.87)  subsequently  claimed  that  there

is such  a  solution  in the  special  case  or =  1. However, Bicknell gc Henriksen88) then
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showed  that this solution  is unphysical,  in that the density gradient diverges at  the

event  horizon. The  solution  can  be completed  only  by  attaching  a  Vi)idya ingoing
radiation  solution  interior to some  surface  (i.e., the  scalar  field has to turn  into a

null  fluid). If one  regards  this as  unphysical,  this suggests  that  the  black hole must

soon  become much  smaller  than the particle horizon, after  which  Eq. (6･7) implies

there will  be very  little further accretion.  Therefbre the stiff  fiuid analysis  suggests

that  there  should  be  at  least weak  gravitational memory.
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