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   In this paper,  a  numerical  method  for obtaining  theoretical predictions  of  mean  resi-

dence time  spatial  distributions in fiews through  porous  media  is presented. The  simulation

sequence  consists  in solving  first continuity  and  momenturn  conservation  equations,  possi-
bly coupled  with  turbulence quantities transport equations,  using  the finite volume  method,

Once  the flow configuration  is calculated,  the simulation  consists  in solving  the additional

transport  equation  ofapassive  scalar,  the  local mean  age  ef  the fluid, which  is the average
time that takes a  fluid particle te  reach  any  peint of  a  domain  from  a  supply  inlet, The

result  obtained  is a  spatial  distribution of  the  local mean  age  of  the  fluid, which  may  be

displayed as  isocontours in the space  domain  considered,

Sl. Introduction

   The  determination of  residence  time  distributions is of  major  interest in the

design and  characterization  of  most  physicochemical and  biochemical processes in

chemical  engineering,  where  a  proper and  homogeneous fluid distribution is often

essential.i)  This residence  time distribution is for instance required  in order  to de-

sign  the optimal  geometry  of  a  reactor  or  to calculate  the yield of  reactions  with

kinetic parameters. With regard  to flows through porous media,  most  chemical  and

environmental  engineering  applications,  such  as  for instance petroleum  engineering

(secondary oil recovery),  mineral  processing, and  water  treatment are  concerned,  but

also  food, biological or  pharmaceutical engineering  applications  are  to be noticed.

The analysis  of  dispersion processes in porous  media  is also  of  great practical interest

in miscible  disp!acement, chromatography  columns,  fixed-bed chemical  reactors  and

pollutant transport. The  objective  of  this paper is to present a  modeling  approach

which  provides information about  the spatial  distribution of  the mean  residence  time

of a  fiuid in a  porous medium.  Solving conservation  (mass and  momentum)  and  cou-

pled transport equations  linked to the  turbulent nature  of  the fiow provides, using

classical  Computational Fluid Dynamics (CFD) techniques  such  as  the finite volume

method,  the spatial  distribution of  relevant  variables  which  describe the  basic flow.

Once  these  variables  have been determined, a  decoupled approach  may  be used  in

order  to determine the spatial  distribution of  the  mean  residence  time. This ap-

proach  consists  of  solving  the steady  transport equation  of  a  passive scalar,  the local

mean  age  of  the  fluid or local mean  residence  time,2) which  is the average  time that

a  fiuid particle takes to reach  any  point of  the domain from a  supply  inlet, even  ifthe

path  of  the  particle includes porous media.  Different simulations  of  mean  residence
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time  spatial  distributions have been already  performed3),4) and  validated5)  in com-

plex geometries using  the finite volume  method,  but only  in the case  of  non-porous

fiows. In this paper,  the transport of  this scalar  incorporates the time linked to
the movement  due to laminar and  possibly turbulent diffusion, and  also  the  source

of  residence  time attributable  to the porous medium,  characterized  by its porosity
and  tortuosity. The  result  obtained  is a  spatial  distribution of  the local mean  age

of the fluid, which  may  be displayed as  isocontours in the space  domain considered.

The determination of zones  wherein  the  mean  residence  time is greater than in the
vicinity  enables  modifications  in the design of  the geometry  in consideration  to be
made  in order  to reduce  the dispersion of  the  residence  time.

S2. Modeldevelopment

   The  fluid mechanics  core  model  basically consists  of  mass  (2･1) and  momentum

(2･2) conservation  equations  :

                             e
                                (pu,)=O, (2･1)
                             axi

 oO., (pu,u,) 
-

 
-aO.P,

 + 
Oo7.le,J

 +  pg, + Ft 
-
 £ilu, 

-
 gpct iiullut + oO., (pu:uS) (2･2)

and  turbulence quantities transport equations  ifthe flow is not  laminar. In Eqs. (2･1)
and  (2･2), p is the  fiuid density, ui is the velocity  component  in the xi  direction, p is
the  pressure, nj is the viscous  stress  tensor, gi is the grewitational acceleration  in the
xi direction, ai  is the  permeability of  the  porous medium  in the xi  direction, q  is the
inertial resistance  factor of  the porous medium  in the xi  direction and  FL is a  possible
body force component  in the xi  direction. The  fifth and  sixth  terms on  the right-hand
side  of  Eq. (2･2) only  appear  in the flow occurs  in a  porous medium,  and  represent

respectively  the microscopic  viscous  shear  stress  Darcy  term  and  the microscopic
inertial force term, also  called  Ergun inertial term  or microflow  development term.
There  is no  need  in the present case  to include a  turbulence modeling  for this term  in
the  porous cells since  it is actually  taken into account  in the value  of  the parameter
q. For turbulent  flows, ifthere is no  need  in the present case  to includeaturbulence
modeling  for this term  in the  poreus cells since  it is actually  taken into account  in
the value  of the empirical  parameter  Ci, one  nevertheless  needs  to introduce the term
pu:･uS･, which  represents  the  so-called  Reynolds stresses,  related  to the  mean  flow by
the  so-called  Boussinesq hypothesis :

p.:.3 =  pgk6,, 
-
 pa, (oo.ui + 

oou.l
 ) + :pa,g:I 6,, (2･3)

necessitates  the determination of  additional  turbulence quantities, which,  when  using

a  second  order  closure  model,  fbr instance the  classical  and  basic k -  E model,  are

respectively  the  turbulent kinetic energy  k and  the dissipation rate  E :

oO., (pu2k) =  oO., [(pa+ iilt') oO.k,] + pat (oO."l +  
OeU.l)

 
Oo".:
 -pc, (2･4)
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oO.,(putc) 
==  oO., [(t` +  lli') oei,] 

+  Ci,{ILLt

The turbulent viscosity  pat, related  to k and  c,(oo.u

l + 
aou.l

 ) aou.l -  c),pt
2

is given by

       k2
tL, 

=

 pCp7･

(2-5)

(2･6)

In Eq. (2･3), 6iJ･ js the Kronecker  symbol.  The coeficients  CiE, C2E, q, ak  and  aE  are

empirically  determined constants.6)  Since the  concept  of  the  average  age  of fluid2)
was  introduced, the concept  of  local average  residence  time has been thoroughly
treated, 7)'8) This variable  represents  physically at  a  given point the time that has
elapsed  on  average  since  the particle of  fluid which  is located at  this point entered
the domain at  one  of  its inlets. It can  be measured  experimentally  at  any  point of

the  domain,  for example  by iajecting a  pulse of  tracer gas into the inlet at  time t =  O
and  by recording  continuously  the eoncentration of  the tracer gas at  the  point under
consideration.  Its distribution function fi is defined by

fi =c(x,t)

JbOO C(m, t) dt 
' (2･7)

where  C(m,t) is the concentration  of  the tracer injected into a  domain inlet, at a

point x, at time  t. The local average  residence  time t- is the first moment  of  ft and
can  be defined as  :

                         f(.)--t.fllji'.O.Ci(X.･,1))`,d,`. (2s)

A  steady  state  solution  of this variable  may  be obtained  directly from a  transport
equation,  

7)
 and  may  be rewritten  as  : 

5)

eO., (putf) ==  aO., [(pDAA + lli') eai,] 
+p, (2･9)

where  DAA  +  f;f, is an  estimation  of  the  local actual  diffusivity, wherein  DAA  is the

selfidiffusivity  of  the  fluid,9) which  is the diffusivity of  the  fiuid in itself, and  which

may  be expressed  by the ratio  # where  a  is the  Iaminar Schmidt number,  and  at  is the

turbulent Schmidt number.  This selidiffusivity  equals  3.03 10m6 m2s-i  fbr water,  
iO)

and  the  assumption  at  ==  1 is adopted  since  this value  has been validated  in a  previous
study  in the case  of  non  porous 2D  fiow, 5) In the  particular case  of  the flow through

porous medium,  one  may  take into account  both the fifth and  sixth  terms  (negative
sources  of  momentum)  in the  Navier-Stokes equations  (2･2), and  the  alteration  of

the mean  residence  time  transport equation  (2-9) attributable  to the porous  medium.

The  first modification  in this last equation  consists  in rewriting  the  diffusion term.
The molecular  diffusion term  DAA  in Eq. (2･9) has to be divided by the tortuosity
factor, T2,  where  the tortuosity T  is the actual  ratio  of  pore length over  the superficial
diffusion path. 

1i)i
 
i2)

 The definition of  the tortuosity  factor accounts  fbr the  effbct  of

altered  diffusion path lengths in the  porous  medium.  As far as  the fiows considered
in this study  are  concerned,  the Reynolds number  (based on  particle diameters and
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superficial  velocity)  is less than the transitional Reynolds number  limit (about 110 to
150) i3) for which  the contribution  of  the  turbulent motion  to the  diffusion coeMcient

is expected  to be important. Therefore, the diffusion term  for the residence  time in
the  porous media  only  consists  of  the modified  molecular  diffusion term.  In CFD
codes,  use  is made  even  in the porous cells of  a  local macroscopical  velocity,  the

so-called  superficial  or filter velocity,  which  is not  equal  to the actual  fluid velocity,
the pore velocity  or  interstitial velocity,  but which  in average  is related  to the  latter
by the Dupuit-Forchheiner relation,  that expresses  that the ratio  between  these two
velocities  is in average  equal  to the  porosity ip of  the porous medium.  This relation
accounts  for the modification  (constriction) in average  of  the  cross-section  area  in
the pore  system.  Since the superficial  velocity  is kept in Eq. (2･9), the  transport
equation  of  t has to incorporate the effect of  the mean  pore velocity  and  is finally
rewritten  as  :

                 oo., (pu,f) =  oo., [p (D.A e,) oei

-

,]+pdi.
 (2 lo)

The set of  parabolic partial differential equations  is solved  using  the finite volume
discretization method,  which  is appropriate  for solving  sets  of  conservation  equations.

Use is made  of  the  Fluent commercial  software  package,i4) and  of  the SIMPLE
algorithm  

i5)
 with  interpolation on  cell  faces (upwind scheme  for density, momentum

weighted  for pressure and  linear for velocity).  The  classical  power  law scheme15)  is
used  as the differentiating scheme.  A  multigrid  algorithm  accelerates  convergence

for the calculation  of  pressure and  the  resolution  of  the transport equation  of  the
mean  residence  time. A  test on  the nature  of  the cell  (whether it is porous or  live) is

perfbrmed  and  depending upon  the  result,  Eq. (2･9) or Eq. (2･10) is used.  The source

code  of  the Fluent packagei4) was  modified  and  recompiled  in order  to implement
the calculation  of the transport of  the additional  mean  residence  time  variable.

S3･ Exampleofapplication

   An  example  is given  in order  to set out  in concrete  form the potential and

the relevance  of  this approach.  The application  is chosen  in the domain  of  water

treatment,  mainly  because the determination of  residence  time  distributions is in
this case  always  essential,  and  consists  in the  simulation  of  the bidimensional flew
of  water  through a real  geometry containing  a  filter composed  of  activated  carbon

granular packed  bed. The  bidimensional geometry  considered  is rectangular.  Its
length equals  18 m  and  its heigh equals  3.5 m.  The  height of porous medium  in
the fixed bed equals  2.5 m.  The upper  boundary  is a  free surface.  The  water

enters  the  domain through an  inlet situated  at the right-hand  side,  upper  the fixed
bed, and  exits  the filter through 17 outlets  regularly  distributed on  the  bottom
side  (see the streamlines  patterns in Fig. 1). Excepted two vortices,  which  are

detected by the model  at the  vicinity  of  the domain inlet, the fiow configuration

is rather  simple.  The  porosity ip of  the  fixed bed  equals  O.26 and  its tortuosity T
equals  1,5. The  flow is turbulent and  driven by gravitation. Use is made  of  the
k 

-
 c second  order  closure  model,  which  is appropriatei6)  (the use  of a  more  precise

model  is not  necessary  since  the transport of  t- i's essentially  convective  and  since
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Fig. 1. Streamlines.

Fig. 2.Isovalues of  the mean  residence  time in the space  domain.

turbulent diffusion can  be neglected  in the porous regioni3)).  The  grid contains

45 580 cells and  the results  presented hereafter are  grid-independent. The  mean

residence  time  is set  to zero  at  the domain inlet and  a condition  of  zero-flux  is

imposed  at  the solid  boundaries. Its spatial  distribution is displayed in Fig. 2.

The  mean  residence  time varies  from
zero  at  the inlet (at the right-hand  side

upper  corner)  to 1968 s at the left-hand

side  lower corner,  where  a  significant

gradient is observed.  The  modification

of  the direction of  the gradient of  the

mean  residence  time when  the  flow en-

ters the porous  medium  is attributable

both to the streamlines  curvature  (their
direction becomes vertical,  see  Fig. 1)
and  to the  decrease of  the diffusion co-

effcient  of  this sca}ar  (Eq. (2･10) is
used  instead of  Eq. (2･9) in the porous
medium).  In the  present case,  the dis-

of  the  particles in the  boundary layers
between the flow inlet and  the different

played by quoting the averaged  mean

Fig. 3, where  the  outlet  1 is at the ri

and  the outlet  17 is at  the left-hand side)

domain outlets  is noticeably  wide-rangin

mean  resl
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 Mean  residence  time  (s) at  outlets,

persion of  the residence  time distribution is mainly  attributable  to the slowing  down

                                 and  to the  different possible path  lengths

                                 flow outlets.  This dispersion may  be dis-

                                residence  times at  the different outlets  (see
                              ght-hand  side  of  the  domain,  on  the  inlet side,

                                 , The  averaged  mean  residence  time  at  the

                                g from  283 s  to 1493 s. The transport of  the

        dence time is essentially  convective  in the porous region  and  its diffusion is

not･  suficiently  effective  to account  for a  global significant  spatial  averaging  process.

The  location of  the maximum  of  the mean  residence  time  is not  situated  at  a  domain
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exit  but is located in the left lower corner  of  the domain. This method  can  be used

for the  assessment  of  geometric configurations  and  for engineering  purpose, to set

out  modifications  of  the  flow geometry in order  to meet  requirements  linked to the
reduction  of  the  dispersion of  the residence  time distribution at  the domain outlets.

S4･ Conclusion

    A  model  for the transport equation  of the  mean  residence  time in porous media

was  presented and  was  solved  with  the finite volume  method  using  a  Computational
Fluid Dynamics  commercial  software,  Fluent, that was  modified  and  recompiled.  The
spatial  distribution of  the  mean  residence  time was  predicted in a  complex  turbulent
flow in a  space  domain containing  porous media.  The  feasibility of  predicting the
spatiai  distribution of  such  a  variable,  considering  its importance  in the  field of

chemical,  pharmaceutical, food and  environmental  engineering,  is of  great potential,
and  should  be considered  in the design or  the assessment  of installations and  vessels

where  a  homogeneous fluid distribution is essential.  This method  of  simulation

provides the  instantaneous determination of  the geornetric characteristics  of  a  flow
boundary that contribute  to the dispersion of the mean  residence  time, and  its
appropriate  use  should  enable  undesirable  phenomena  linked to the dispersion of

residence  time, such  as short  circuiting  and  dead spaces,  to be prevented in a  large
range  of  engineering  flows.
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