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Chaos  in the  Thermodynamic  Limit

     Vito LAToRA,i'") Andrea RAplsARDAi,")  and  Stefano RuFFo2i'"*)

       
i
 Dipartimento di Fisica, Uhiversita' di Catania, Corso ltalia 57

           and  llVFN  sezione  di Catania, P95129  Catania, ltaly
2
 Dapartimento di Eneryetica "S.

 Stecco", Uhiversitd di Firenze, via  S. Marta 3

         ]llVFM  and  INFIV  sezione  di Firenze L50t39  Firenze, Ealy

   We  study  chaos  in the  Hamiltonian Mea[n Field model  (HMF), a  system  with  many

degrees of  freedom in which  IV classical  rotators  are  fully coupled.  We  review  the  most

important results  on  the dynamics and  the thermodynamics  of  the HMF,  and  in particular
we  focus on  the chaotic  properties. We  study  the Lyapunov  exponents  and  the  Kolmegorov-
Sinai entropy,  namely  their dependence on  the number  ef  degrees of  freedom and  on  energy

density, both  for the ferromagnetic and  the antiferromagnetic  case,

gl. Introduction

   In systems  with  a  few degrees of  freedom  the  Largest Lyapunov  Exponent  (LLE),
which  quantifies chaotic  motion,  is often  studied  as  a  function of  the control  param-
eter.  In many-degrees-offreedom  systems,  this can  also  be done and,  moreover,  the

control  parameter  may  acquire  a  more  transparent physical  meaning,  making  refer-

ence  to a  thermodynamic  quantity, There have been indeed several  studiesi),2)  of

the dependence of  the LLE  on  energy  density in Hamiltonian systems  with  short-

range  interactions (e.g. FPU  lattices), which,  up  to now  confirm  the conjecture3),4)
that  the  LLE  reaches  a  finite, energy  dependent, value  in the thermodynamic  (large-
volume)  limit. Moreover, a  scaling  limit exists  fbr the  full Lyapunov  spectrum,  which

implies that the Kolmogorov-Sinai  entropy  SKs scales  with  the volume.

   Both the question  of  the  existence  of a  well  dofined ther'modynamic limit of
LLE  and  SKs, and  their dependence on  eneryy  (or other  control  parameters)  are

open  for systems  with  long-range interactions. In this paper  we  review  the most  re-

cent  results  on  this subject  for a  Hamiltonian model  with  many  degrees of  freedom,
named  Hamiltonian  Mean  Field (HMF), which  describes a  fully-compled system  of

N  classical  spins  (rotators) in the attractive  (ferromagnetic) and  repulsive  (antifer-
romagnetic)  cases.5)J6)  HMF  has been  recently  thoroughly investigated both from
a  theoretical and  a  numerical  point of view,7)-iO)  revealing  a  deep link between
dynamics and  thermodynamics.  Here, we  discuss this relation  by  studying  the  Lya-

punov  exponents  and  the  Kolmogorov-Sinai  entropy,  namely  their dependence on  N
and  on  energy,  both for the ferromagnetic and  the antiferromagnetic  case.
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S2. Themodel

   The  model  describes a  system  of  N  classical  spins  (rotators) mi  =  (cosei, sinei).

Each spin  i is charaeterized  by the angle  O S ei <  2T and  the conjugate  momentum

pi, and  is fulty coupled  to all the  others.  The Hamiltonian is:

H(e,p)  =  K+v  , (2･1)

where

                   N2  N

              K-2tt',  V== 2X  Z[1-cos(ei-oD] (2･2)
                                   i,o'=1                  i=1

are  the kinetic and  potential energy.  The potential energy  V  corresponds  to the

interaction of  the X-Y  model  in the injinite-range mean  field case,  and  this is the

reason  why  the model  has been  named  Hamiltonian Mean  Field (HMF). The  case

E  =  1 describes a  ferromagnetic behavior, whi}e  c =  
-1

 corresponds  to an  antiferro-

magnetic  interaction. The  model  has a  possible alternative  interpretation. It can  in

fact be seen  as  a  system  of  particles moving  on  a  circle, the position of  each  particle

being given by the angle  ei and  its momentum  by pi.
   The success  of  the Hamiltonian mean  field model  is based on  the fact that both

its statistical  mechanics  and  its dynamics can  be treated  in relatively  simple  way.

In fact the thermodynamics  of  the HMF  can  be derived exactly  fbr N  -  oo  in the

canonical  ensemble,  both for the ferromagnetic and  for the  antiferromagnetic  case.  
6)

A  total magnetization  vector  can  be defined as M  =  k 2)Z･=i mi.  The ferromagnetic
system  has a  second-order  phase transition from a  clustered  phase with  M  =  1Ml f O

to a  disordered phase with  M  =  O as a  function of energy  or  temperature. In the

antiferromagnetic  case  spins  tend to be opposite  to each  other  (interaction among

the particles is repulsive)  and  therefore  M  =  O (disordered state)  for any  value  of

the  temperature.

   On  the other  side  the dynamics of  the system  can  be investigated for a  relatively

large value  of  N  (we have considered  N  up  to a value  of  20000) by solving  the 2N

coupled  equations  of  motion:

ei =  pi, pi =  
-EMsin(ei

 
-

 ip), i =  1, ･･･, lv', (2i3)

where  (M, ip) are  respectively  the modulus  and  the phase  of  the total magnetiza-

tion vector  M.  Each spin  moves  in a  mean  field which  is in turn generated self

consistently  by the  all the other  spins.  In the N  -> oo  limit the dynamics  of  the

HMF  can  be seen  as  the interaction of  a  single  spin  with  a  mean  field, and  the equa-

tions are  formally equivalent  to those of  a  perturbed pendulum.  Solving Eqs. (2･3)
corresponds  to treating the  system  in the microcanonical  ensemble,  because the  to-

tal energy  is conserved  along  each  dynamical trajectory  (also total momentum  is a

conserved  quantity  and  is typically fixed at zero).

   Hence, HMF  has a  yery  remarkable  property; it is possible to cornpare  the  re-

sults  of  the canonical  and  microcanonical  ensemble.  Moreover  the  HMF  is a  high

dimensional system  with  long-range forces where  one  can  explore  deviations from
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standard  thermodynamics.  
ii)-

 
i5)

 HMF  exhibits  a  very  rich  non-equilibrium  dynam-
ics, and  by  using  the dynamical approach  we  have studied  in detail the problem  of

the relaxation  to the  canonical  equilibrium.  The  fo11owing is a  brief review  of  the
main  results.

   Ensemble inequivalence: because of  the long-range nature  of  the interaction, the
microcanonical  ensemble  gives different predictions  from  the canonical  ensemble.  

i6)

This is true both in the ferromagnetic case,  where  we  find the  presence of  quasis-
tationary  states  different from the canonical  equilibrium,8)'iO)  and  in the antiferro-
magnetic  case,  where  a  very  particular collective  phenomenon  (bi-cluster formation)
appears  at  low energies  in disagreement with  the  canonical  predictions.5),6)

   Metastability: in the  ferromagnetic case  microcanonical  simulations  show  the

presence of  quasi-stationary metastable  states  with  negative  specific  heat.8)-iO) In
fact, if the system  is started  in far-off-equilibrium initial conditions  (for example  in
a  

"water
 bag", i.e., putting all the rotators  at  ei =  O and  giving them  a  uniform

distribution of  velocities  with  a  finite width  centered  around  zero),  it does not  re-

la[x directly to the canonical  equilibrium.  Instead we  observe  a  stabilization  into

metastable  states.  The  temperature  of  these states  are  different from the  canonical

one  and  the  velocity  distributions are  not  Gaussian,i5) The  metastable  states  are

called  quasistationary states  because they have a  lifetime which  increases linearly
with  the number  of  particles N. They  are  expected  to become real  equilibrium

solutions  in the thermodynamic  limit. i8)

   Collective phenomena:  in the antiferromagnetic  case,  a  bi-cluster of  rotators  at

a  distance T  in angle  is present at  very  low energy  in the microcanonical  numerical

simulations.6)  In fact, below a  threshold energy,  particles groups spontaneously  into

two  big clusters  and  oscillate  maintaning  the total magnetization  equal  to zero.  This
is a  pure  microcanonical  result,  stable  also  for very  large N  and  not  in agreement

with  the canonical  ensemble,  
i7)

 where  a  disordered state  with  all the spins  randomly

oriented  is predicted. This collective  phenomenon  modifies  the  energy-temperature

relation  at very  small  energies  and  is an  effect  of  the long-range interaction. 
i7)

   AnoTnalous daffusion: diffusion and  transport of  a  particle in a  medium  or  in a
fiuid flow are  characterized  by the average  square  displacement a2(t).  In general one
has

                              a2(t)  rv  ta (2･4)
with  a  

=
 1 for normal  diffusion. All the processes  with  or l 1 are  termed  anoma-

Ious diffusion. 
i9)-24)

 In our  model  the  variance  of  the spin  angle  e can  be defined
according  to the  expression:

a3  (t) -  <(e -  <e>)2>, (2･5)
where  < . > stands  for an  average  over  the  N  spins.  Superdiffusion with  dv =  1.38± O.05
is observed  in the  ferromagnetic case  in the energy  range  O.5 <  U  <  O.75 (with
U  =  EIN), i.e, slightly  below the critical  energy  Ub ==  O.75. iO) Superdiffusion is due
to the presence of  L6vy flights, 

i9)
 and  after  a  transient regime  a  change  to the slope

a  =  1 (normal diffusion) is observed.27)  Normal  diffusion occurs  at a  crossover  time

which  we  have found to coincide  with  the relaxation  time  to canonical  equilibrium.  
iO)
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However  in the continuum  limit diffusion is always  anomalous  since  the crossover

time and  the  relaxation  one  diverge with  N. These investigation confirm  pioneering

studies  by Kaneko and  Konishi for coupled  maps,25)'26)  and  are  on  the same  line of

investigation of Refs. 27) and  28) where  the effect  of  noise  or  fluctuations on  the

diffusion i$ studied.

   Generalization of UMF:  generalizations of  the  model  have already  appeared  in

the literature. In the model  introduced by Anteneodo and  Tsallis the rotators  have

been  attached  to the sites  of  a  ID  lattice and  the  interaction of  the  HMF  has been

modulated  by a  term  depending on  the lattice distance between two  spins,  going
like a  decaying power-law r-a.  

ii),
 
i2)

 The  2D  case  of  the HMF  has been considered

by Antoni and  
rlbrcini.

 
28)

 Further generalizations, like ID models  with  spatial  mod-

ulations  or  ID models  with  mixed  (attractive-repulsive) interactions, are  currently

under  investigation.

   In this paper  we  focus mainly  on  the study  of  the chaotic  dynamics in the

HMF,  Our investigations are  relevant  for the fbundation of  statistical  mechanics

and  also  for the study  of  phase transitions in finite size  systems  like for example:
nuclear  multifragmentation,  

29)'30)
 atomic  clusters3i);32)  and  astrophysics.  

33)
 HMF,

with  the possibility of  considering  both  the  ferromagnetic and  the antiferromagnetic

cases,  offers  two  different scenarios,  In the fo11owing seetions  we  will  show  that  the

chaotic  properties of  the system  are  different in these two  cases.

S3. Thermodynamics:  the  canonical  solution

   The HMF  presents the  noticeable  advantage  of  possessing an  exact  solution

in the canonical  ensemble.  Therefore microscopic  dynamics, and  in particular the

chaotic  properties, can  be studied  in connection  with  the thermodynamic  macro-

scopic  behavior.

   In this section  we  discuss the canonical  solution  for both E ==  +1 (ferromagnet)
and  E =  -1  (antiferromagnet),
   In the  ferromagnetic model  the potential is attractive  and  the ground  state  ofthe

system  is reached  at  U  : O where  all spins  are  parallel (all the  rotators  have the  same

position on  the  circle).  In the  antiferTomagnetic  model  the potential is repulsive  and

the ground  state,  reached  at  U  ==  -112,  consists  in a  randomly  uniform  distribution

of  the spins  orientations,

   In the high temperature  region,  both in the  ferromagnetic and  in the antiferro-

magnetic  model,  the  rotators  are  randomly  distributed on  the circle; each  rotator

moves  uniformly  around  the circle  and  the modulus  of  IMI is equal  to zero,  Ther-

modynamically,  when  the  potential is attractive  the HMF  has a  second-order  phase
transition with  order  parameter  M,  while  in the  repulsive  case  the free energy  is

smooth  and  M  ==  0 fbr any  value  of  T. The  exact  solution  of  the model  in the

canonical  ensemble  predicts  a  caloric  curve  given by

                             TE

                         U==  i+2(1-M2).  (3･1)

The  ferromagnetic case  has a critical temperature [I-l, =  0.5 (Uh =  O.75), while  in the
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no  dependence on  the  system  size  is observed  in this regime.  8),9)

- fbr U  >  Uh, Ai -  O as  IV-g and  this behavior can  be explained  by means  of  a

random  matrix  approximation.8),38)

The main  difference between the ferromagnetic and  the antiferromagnetic  hamilto-
nian  appears  at  intermediate energy.  In fact, although  both cases  are  chaotic  and

we  have Ai and  SKsllV different from  zero,  in the ferromagnetic system  one  observes

a  well-defined  peak  just below the critical  energy  Uh. In some  sense,  the dynamics
feels the presence of  the phase transition. In fact in Ref. 8) the increase of  the
LLE  fbr the ferromagnetic case  has been related  to the  increase of  kinetic energy
fluctuations and  the specific  heat. It has also  been shown  that the peak  persists as
N  -> oo.9)  This result  is also  confirmed  by a  recent  more  sophisticated  theoretical
calculation,39)  using  the fbrmalism introduced in Ref. 1) .

   On  the contrary,  in the antiferromagnetic  case  a  smoothed  shoulder  is found

(instead of  a  peak) both fbr Ai and  fbr SKslN. The  difference between the two  cases

is better visible  for SKs/IV. In a  pioneering paper  a  similar  pronounced  peak in LLE
was  found for second-order  phase transitions  in nuclear-like  systems.  

29)
 A  smooth

behavior similar  to the one  in Fig. 2(b) was  fbund in other  rnodels,  when  there is no
phase transition in the canonical  ensemble.  i),40)

   This different behavior can  be better shown  by studying  the  LLE  as  a  function

fOo

K-10-'

10-2ta?ICr3Nld
t05VoerfNId 1tf

Fig, 3, We  show  the  behaMior of  Ai vs  IV' fbr different energies  in the ferromagnetic (a) and  in the

  antiferromagnetic  case  (b). See text for more  details.
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of  the size N  of  the system.  This is displacyed in Fig. 3, where  we  report  Ai as  a

function of  N  for severa}  energies  below  and  above  the peak. In the ferromagnetic

case  Ai is constant  or  even  increases for U  <  Ul,, while  a  decay to zero  as NJi13

is evident  for U  >  Ub. In fact, for U  >  Ub the rotators  move  independently and

the power  law Ai ct N-113  can  be well  explained  by a  suitable  tandom matrix

approximation.8),38)  On  the contrary  for the antiferromagnetic  case  Fig. 3(b), the

LLE  appears  to vanish  as N  -  oo  fbr all va!ues  of  U  (apart from the very  low

energy  region,  where  the  bi-cluster forms). In particular, we  find the  same  power
law Ai ct Nmi13  as for the ferromagnetic case  in the  overcritical  region.  In fact,

the random  matrix  approximation  applies  also  when  the potential is repulsive.  The

chaotic  behavior is only  an  artifact  of  the finite-size fiuctuations which  disappear

for N  -)F oo. No  chaos  exist  in the  thermodynamic  limit. This behavior strongly

contrasts  with  what  happens fbr FPU  lattices (short-range interactions), where  the

LLE  reaches  a  finite value,  and  therefbre chaos  persists in the thermodynamic  limit.

   In the ferromagnetic case,  close  and  below the  critical  point, kinetic energy

fiuctuations are  physical a[nd  are  due to the second-order  phase  transition. The  LLE

is related  to these fluctuations and  does not  go to zero  in the thermodynamic  limit.

   In Fig. 4 we  analyze  the  behavior of  the LLE  in the limit of  small  energies  for

  --110

  -210

  -3to

lo-5 lo-4 lo-S lo-.2 lo-i loO lo'

              U

Fig. 4. We  show  Ai and  SKs!N  as  a  function of  U'  ==  U  +  O.5 for the  antiferromagnetic  case  in

  log-log scale,  Points are  microcanonical  numerical  simulations  for IV =  100, Dashed  lines are

  fits of  the behavior for very  small  energies,  See text for more  details,
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the antiferromagnetic  case.  As we  have  said  previously the equations  of  the  HMF
are  formally equivalent  to these  of  a  perturbed pendulum  and  in general we  expect

the HMF  to be integrable when  U  tends to the ground state  energy  (i.e, when  the

perturbation goes to zero).  This has already  been checked  for the  ferromagnetic
case8),9)  and  the law Ai o( Ui/2 , U  -> O was  foundJ here we  present  the antiferro-
magnetic  case.  We  show  in Fig. 4 Ai and  SKs/N  vs  U'  =  U+  1/2 in log-log scale

(the ground  state  energy  in the repulsive  case  is -1!2).  The dashed line indicates
the presence  of  a  power  law with  the same  exponent  1/2 

,
 i.e. Ai .v  (U")i/2 

,
 U  -  O.

The  same  exponent  was  found also  for nuclear-like  systems.29)  Thus, also  in this
case  there seems  to be  a  universal  law. However, though  some  heuristic arguments
have been presented,8)'9) the  deep theoretical  reason  of this law is not  clear.

g5. Conclusions

   We  have discussed the most  important  results  recently  obtained  fbr the  HMF
model.  This model  has revealed  very  useful  for studying  chaos  in a  Hamiltonian
system  with  many  degrees of  freedom and  in particular for undestanding  the con-

nection  between microscopic  chaos  and  macroscopic  laws, i.e. thermodynamics.  We
have  also  discussed in particular  the behavior of  the Lyapunov exponents  and  the
Kolmogorov-Sinai entropy  for the  ferromagnetic and  antiferromagnetic  case.  While
in the former case,  where  a  second-order  phase transition is present, one  observes  a

well-defined  peak in the  chaoticity  indicators (Ai and  SKsllV) at  the  critical  point,
in the latter case  one  has a  smoother  increase between the two  integrable limits of

very  small  and  very  large energy.  In the high energy  phase  of  both the  ferromagnetic
and  the  antiferromagnetic  model  Ai vanishes  as  IV'i13. In the ferromagnetic case

the peak  in Ai persists for N  -  oo  and  the LLE  remains  finite in the  whole  low
temperature  phase. Chaos persist in the thermodynamic  limit.

   Though  the border from low-dimensional to more  realistic  dynamical  systems

has been crossed  and  a lot of  work  has been done in this direction with  the help
of more  powerfu1 computers,  we  still have a long way  to go  in order  to understand

some  important  issues at  the foundations of  Statistical Mechanics. One  has to admit

that chaos  in systems  with  many  degrees of  freedom is still poorly  understood  and

represents  the  real  challenge  for the next  decade,
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