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Return  Map  for the  Chaotic Dripping Faucet
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  We  prepose  a  simple  model  for the chaDtic  dripping of  a  faucet in terms  of  a  return

map  constructed  by analyzing  the stability  of  a pendant  drop. The  return  map  couples  an

Andronov  saddle-node  bifurcatien corresponding  to the instability of  the drop whose  volume

exceed  a  critical  value,  and  a  Shilnikov homoclinic bifurcation induced by the presence of
a  weakly  damped  oscillatory  mode.  We  show  that the predictions ef  the return  map  are

qualitatively consistent  with  the experimental  results,  We  compare  these  results  with  those

of  a  delay map  constructed  from  the solution  of  an  asymptotic  lubrication model  fbr the
evolution  ef  the dripping faucet.

51. Introduction

   Drop  fbrmation is an  everyday  phenomena.  The  first scientific  study  of  drops is

possibly due to Mariotte 
i) who  noticed  that a  steam  of  water  flowing from a  faucet

breaks into drops. Like many  authors  after  him, he thought  that gravity and  external

fbrces are  responsible  fbr this process. It was  only  much  later that Laplace2) and

Ydung3)  discovered that surface  tension  is the  source  of  the instability. The subject
has remained  active  since  the middle  of  the last century,  starting  with  the studies  of

Plateau and  Rayleigh through  recent  times where  there have been a  large number  of

works  on  related  problems in the context  ofthe  analysis  of  singularities  in free-surface
flows. 4) Here we  fbcus on  an  aspect  of  this problem  that provided a  stimulus  to early

studies  on  chaos,  5) the transition to chaotic  dripping in a  faucet, This last problem
has been the subject  of  rnany  experimental  and  theoretical papers (see Innocenzo6)
fbr a  recent  example  along  with  a  review  of  earlier  work).  However  most  of  these

papers have modeled  the system  as a  relaxation  oscillator  using  phenomenologically
motivated  models.  Our aim  is to provide a  minimal  model  based on  fluid mechanics
to describe the dynamics of  a  dripping faucet.

g2. Stability and  bifurcation  of  a  pending  drop

   In order  to do so,  we  first consider  the case  when  the fiow rate  is very  small,  the

drop is considered  to be static  and  remains  attached  to the faucet until  its volume

exceeds  a  threshold L'}. Fbr a  narrow  faucet of  radius  R, drops with  a volume

less than I/Z are  stable  and  axisymmetric;7),8)  for wider  faucets, one  can  have non
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axisymmetric  stable  drops,9) leading to more  complex  dripping patterns. The  shape

of  an  axisymmetric  pendant  drop is determined by the minimizing  its energy  which

consist  of  a gravitational part and  a surface  tension  part subject  to the  constraint

of  a  constant  volume.  It is described by the well-known  Laplace-Ybung equation.8)
Equivalently, one  rnay  write  down  an  equation  for the  balance of  the  vertical  fbrces,

along  with  some  kinematic equations  for the shape  of the interface, leading to a  set

of a  first order  ordinary  differential equations  (ODE) which  read  
iO)

dOdsdzdsdrdscos  er-!

  lg'

-  cos  e
     ,

=  sine.

   Here  the  variables  r, s, e and  z

are  defined in Fig, 1, and  the capillary

length is lo =  VIiVi5 fbr a  fiuid drop
with  surface  tension  T, and  a density p
in a  gravitational field g. The  bound-
ary  condition  at  the top of  the drop
near  the faucet are  unknown,  but at  the

bottom of  the drop they are  r(O)  =  O,

e(O) =  T/2  and  z(O)  :=  Pb/pg, i.e., Il

is the unknown  hydrostatic pressure  at

the  bottom  of  the  drop; it is our  control

parameter  fbr the set  of  ODE.  Choos-
ing a  value  for Ib, we  integrate (2･1) as

an  initial value  problem  until  we  satisfy

the boundary condition  r =  R, where

capillary  length. We  use  a  shooting

V=  fTr2dz.
with  dz(O)ldV >  O, which  correspond

ble8)(see Fig. 2), so  there  is

as  its weight  is
to the  

CCcollision"
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to consider  the hydrodynamical
Instead of  using  the

dimensional lu

tion model  embodied  in

tions are  the fo11owing: the

component  of  the flui
depends only  on  z, and  there is no
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Fig, 1. Definition
  of  ODE's.of

 the

(2･1)

variables  for the  set

                      R  is the radius  of  the faucet in term  of

                   rnethod  to determine ,Pb  for a  given volume

We  may  obtain  several  values  of  Rs for a  given volume,  only  the  first

                    to the branch starting  at  the origin,  is sta-

            a  critical  volume  I!Z above  which  the  drop  is unstable

 larger the fbrce due to surface  tension. This instability corresponds

  of  a  static  stable  and  unstable  solution  for V  -]  liZ. This is, in fact,
     ddle-node bifurcation.

                  of  this linear instability dynamically, we  have

               equations  linearized about  a  stationary  solution.

     complete  Navier-Stokes equations  in the case  of  Eulerian one-
brication theories, ii) we  simplify  the  analysis  by using  a  new  lubrica-

        a  Lagrangian  approach  fbr the  fluid. iO) The  main  assump-

           drop remains  axisymmetric  during its motion,  the radial

     d velocity  is negligible  compared  to the axial  component  which

                  overturning  of  the  interface which  is assumed
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to be a graph in the axial  variable  z.

These  assumptions  correspond  to lubri-
cation  theory and  are  asymptotically

valid  for slender  drops of  large viscos-
ity. Recent simulations  of  the  result-

ing low-order equationsiO)  have shewn

good  agreements  with  experiments  even

fbr fairly squat  drops of  low viscosity.

The above  assumptions  lead to the con-
clusion  that there is no  exchange  of  fluid

between neighboring  horizontal slices  of

the  drop, so  that the volume  of  a  slice

is constant  during motion  and  can  be

treated  as  a  Lagrangian variable.  This

leads to a Lagrangian hydrodynamical
description that is essentially  equivalent

to earlier  Eulerian description. Explic-

itly, the volume  between the bottom of

the drop zb(t) and  z  is

c(x, t) =  
.1[I

Zb(t)

 Tr(g,t)2dc,(2･2)

where  r  is the  radius  of  the  drop. In
terms of  the Lagrangian variable  C(x, t),
we  can  write  the  kinetic, potential and

surface  tension energy  of  the system  as

Eki. =:  gJSO(t)(

q

by

?

6

5

4

3

2
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o

U

Fig. 2. The  initial condition  x(e)  versus  the

   volurne  of  the drop. The  dashed line cor-

   responds  to unstable  stationary  drops, the

   solid  line to the stable  drops. I(, is the  max-

   imum  volume  of  a  stable  stationary  drop,

   above  this volume,  there is no  stable  stcr

   tionary  pendant  drop. The  saddle-node  bi-

   furcationoccurs for V  ==  va. 1) is an  exam-

   ple with  two  drops that  have the same  vol-

   urne  not  the same  shape  and  consequently

   the  same  pressure  at  their bottom  Pb.

a!glt,a ) 
2
 d6 ,

=  .pg.fSo(t)z(c,t)dc,

=  rtso(t) dC.

(2･3)

   Here  Eki. is the  kinetic energy,  I]lb the  potential energy,  UF the surface  tension

energy,  Co(t) is the total volume  of  the drop at the time t, and  a  prime corresponds

to partial derivative against  the Lagrangian variable  C. Then  we  can  write  the

Lagrangian of  the system  as

                       £ ==  Ekin-UbmUr･  (2'4)
The  effect  of  viscosity  is then expressed  by a  Rayleigh dissipation function,

Ekm  ==  -3n  L
CO(`)

 (v'(C,t)z'(C,t))

2dc

(2･5)
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   Here v  is the  velocity  and  n  is the dimensionless viscosity  in units  of  no =

(pT3/g)i14 (for water  at  200C, no =  1,627g･cm-is-i  and  ny =  O.O02), and  this

expression  corresponds  to the dissipation rate  in purely  extensional  flow. Then,
Lagrange's equation  for the system  is

                                        .

                        i!l,/il/l-il/i+S03g'n. (2.6)

   R>r the  purposes of  computation,  we  discretize the  Lagrangian  spatially  in term
of  variables  that characterize  each  slice  of  fluid, the position zi, the velocity  vi  =  2jl/t
and  the mass  mi,  so  that for a drop sliced  into N  disks, we  get an  N  dimensional
dynamical system.  The  discretized version  of  each  term  in the Lagrangian reads

Ekin rv

UIJ

th

Ekin

rv

  N5Zmiv,2･,

i=:k-g2mizi,

  k-i
    T
r2
    i(ri +  r,+1)

 i=1

-3nytN.,(Z',E:Iil

where  ri =

radius

(xi+i -  zi-i)2  +  (ri -  ri+i)2,

(2-7)
or

or

IFa.fm,I?x,-,)is
     of  the disk number  i.

to the  IV equations  of  motion  for each  of

the disks.

the  average

 This leads

  dOL  OL  10Eki.  .

  EiTt Ovi 
=

 ozi 
+E

 ovi ' 
t=

 
1,
 
N･

                          (2･8)
   We  can  linearize (2･8) numerically

in the neighborhood  of  stationary  solu-

tions of  (2･1) and  studying  the spectrum
wi,i  =  1,N  of  the resulting  system.  We

find that  when  V  <  lxk and  for station-
ary  drops of  the branch starting  at  the

origin  Fig. 2, all eigenvalues  are  complex

coajugate  with  negative  real  part. So
these  drops are  stable  and  possess sev-

eral  damped  oscillations  modes.  These

modes  correspond  to standing  wave  that

may  exist  along  the surface  of  the drop

)
2mt7

..----

/
.

.

/.gC./..(i)
..

U

Fig, 3. Enlargement  of  spectrum  near  the ori-

   gin for some  representative  points  close  to

   lrZ; the  critical  damping  for the first oscil-

   lation mode  the drop is shown  in (1), and

  the onset  of  the  saddle-node  bifurcation is

  shown  in (2), and  the leading eigenvaJues

  fbr (2) are  Ai =  O and  )L2 =  -O.O17 ± i3.468
  fbr water,
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due to some  disturbances. When  V  fv  iiZ two  complex  coajugate  eigenva}ues  become
real  and  after  one  of  them  crosses  the  imaginary axis  when  V  =  I!Z. The  collision

of  the  first couple  of  complex  eigenvalues  with  the real  axis  corresponds  to critical

damping of the first oscillation  mode,  i.e. the  global oscillation  of  the drop, When

V  >  L,Z, the  stationary  drop }oses its stability  by a  saddle-node  bifurcation, as  can

be seen  in Fig, 3.

g3. Dynamic  ofthe  dripping faucet  with  flow  rate

   Now  we  consider  the  faucet with  a  fiow rate,  and  we  consider  the dripping

faucet characteristic  quantities. The fluid velocity  inside the faucet of radius  R  is
noted  vo, and  we  use  it in the  fbllowing to characterize  flow rate.  The time  scale

for the formation of  a  pendant  drop is 7:f fiJ  #,, Once the volume  of  the pendant
drop reaches  iiZ, the drop becomes unstable  via  a  saddle-node  bifurcation as  we  saw

first, and  forms a  neck  which  quickly narrows  down  until  a droplet pinches off in
finite time. This process occurs  in a  time 7h N  Vi5[liiV[iF,4) independent of  the flow

rate,  and  much  more  rapidly  than  the  time  for a drop to fbrm. After a  droplet

pinches off, the remaining  liquid retracts  under  the influence of  surface  tension,

and  depending on  the fluid and  the  flow rate,  one  can  have the formation of  very

small  droplets called  satellite  during this process. At the end  of  this process, the

remaining  drop osci}late  with  a  characteristic  frequency f =  8I'/3TpV,i2) where

V  is the volume  of  the last remaining  droplet. Since the volume  of  the pendant
drop grows  steadily  due  to the  constant  fiow rate,  the  frequency decreases and  the

oscillations  are  damped  out  by viscous  fluid motion  at  a rate  1/7zi AJ  pmIVi13.
The global oscillation  frequency and  its decay rate  are  find again  in the linear analysis
of  stationary  pendant  drop, and  are  correspond  to the eigenvalues  complex  coojugate

close  to the  origin.  For very  small  fiow rates,  these oscillations  can  be considered
as  completely  damped  out  by the time the pendant  drop attains  the  critical  volume

l,Z. In this case,  droplets are  emitted  frorn the faucet with  a  constant  period,  the

time for the drop to become unstable  is constant,  As the flow rate  is increased,

these partially damped  oscillations  modify  the onset  of  the instability characterized

by a  saddle-node  bifurcation, the drop can  overcome  the nucleation  variety,  which

characterizes  the presence of  the  saddle-node  bifurcation, before or  after  the  drop

reaches  its critical  volume.  Equivalently, the dimensionless ration  of  the fi11ing time to

the damping time 7h/7d  advances  or  delays the onset  ofthe  necking  and  is responsible

fbr the variation  of  the periodicity (or lack thereof) of drop emission.  The  stability

properties of  the drop near  its critical  volume  seems  to be the unique  responsible

for the special  dynamic of  chaotic  dripping faucet. Fbr instance, as  the  flow rate  is

gradually increased from nul  flow rate,  the  constant  periodicity 
CCdrop-drop"

 gives
way  to a  

"drop-drip"
 scenario  via  a  period-doubling bifurcation as  fo11ows. Once the

first pendant  drop reaches  the critical  volume  lxZ, a  large droplet "drops"
 leading to

a  highly elongated  residual  filament and  small  remaining  volume.  If the flow rate

is large enough  so  that the oscillations  are  not  completely  damped  out,  the  next

droplet may  become  unstab}e  when  V  <  VC,, so  that it "drips",
 leading to smaller

residual  filament and  larger remaining  volume  whose  oscillations  will  be damped  out
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much  sooner,  thereby (possibly) allowing  the pendant  drop reach  its maximum  size

I,Z before it "drops';,
 and  so.

   In order  to built a  low-dimensional dynamical system  mimicking  (2･8), we  can

solve  it numerically  over  a  time  much  longer than  the time for the pinch off  of  a

single  droplet, fbr instance three or four in the case  of  periodic dripping, to have a
clear  phase space,  to achieve  this, we  need  an  order  parameter  that  is continuous

through  the  pinch off  process. We  cannot  use  the volume  or  the length of  the drop
which  do not  satisfy  this criterion.  However,  the radius  of  the drop  at  an  appropriate

location, i.e., above  the region  where  drops are  usually  cut,  suMces  and  allows  us

to rebuilt  phase  space  by the delay method.i3)  This allows  us  to see  the different
time  scale  of  the dripping dynamic and  the role  of  the sadd]e-node  region  and  the

damped  oscillations  near  this region.

   We  show  such  a  reconstruction  in Fig. 4, and  observed  that there are  two  quali-
tatively diflerent regions:  a  large excursion  corresponding  to the  dynamic  that leads
to the droplet pinch-off, and  a  much  more  compact  region  corresponding  to the

damped  oscillations  fo11owing a  pinch-off event,  that eventually  leads the orbit  to

the neighborhood  of  the saddle-node  area  whence  it escapes  again.

   The large excursion  in the  phase-space is quick compared  to the time  to form
drop. The time ofthis  excursion  does not  depend on  the flow rate  and  is done in a  self

similar  manners.  It does not  influence the  time  fbr a  drop to fall, and  consequently

this excuTsion  is unimportant  compared  to the fiow near  the saddle-node  area.  In
this region  the dynamic time  scale  is given by  the  interval between  the  critical  value

and  the bifurcation parameter, in our  case  v`E. At last the role  ofdamped  oscillations

is to modify  the  approach  of  the  saddle-node  region  and  consequently  the  time  for

e,en

O.9

    O.S5

r(t +  2T)
    o.e

e,75
egion

                OJ

                  
                

ebop,

                                                      1
                                                os e9s

                     r(t+T)  
09

 1 ees o.7 
075

 
OSr(tO)S5

Fig. 4, Reconstruction of  the  fiow by the time  delay method,  obtained  by solving  (2･8) numerically,

  The  radius  of  the  drop is taken  at  the  position  z  =  O.5, it is always  continue  during the process.

  The  parameter  used  for the  simulation  corresponds  to a  fluid 10 times  more  viscous  than  water

  flowing out  of  a  faucet of  diameter R  =  1 at  a  flow rate  vo  =  O.Ol (in dimensional terms,  R  =  2,6

  mm  and  the flow rate  is O.O15cm3 ･ s-i).  We  observe  a  long excursion  fo11owed by a  damped

  oscillations  before the orbit  returns  to the neighborhood  of  the saddle-node  point.

NII-Electronic  
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drop to fa11.

fi4. Constructionof  thereturnmap

   Since the dynamical properties of  the dripping faucet are  controlled  by the be-

havior of  the system  close  to the saddlenode  bifurcation, and  not  by the pinch-off

process, we  can  construct  a  simple  mode}  which  describes an  oscillatory  damped

mode  and  a  saddle-node  bifurcation in the  spirit  of  the  Andronov original  paper, 
i4)

which  are  the  main  points  of  this chaotic  dynamic.

(xz(i,v -  A) U,

E+z2,
(4･1)

where  U  =  X  +  iY is the amplitude  of

the  oscillatory  damped  mode  with  eigen-

value  icv -A,  with  cv,A  >  O, and  E >  O is

the saddle-node  bifurcation parameter.
In the context  of  hydrodynamical the-
ory,  U  and  Z  are  similar  to a  Galerkin
approximation  of  the complete  dynamic,
w  is the  scaled  pendant  drop oscillations
frequency and  A the  scaled  rate  of  de-
cay  of  these  oscillations  (in units  of 1!to,
with  to = (T!pg3)i14), while  c is the

scaled  fiow rate  (in units  of  lo31to). w

and  A are  computed  in using  the  pre-
vious  linear analysis.  In order  to com-

plete the construction  of  the  dynamical

model,  we  need  a  global reiajection  pro-
cess  that mimics  the complex  dynam-
ics of  a  selfsimilar  pinch-off of  a  drop-
let.4),i5) In light of  Fig. 4, the  details of

this process are  unimportant  to under-

stand  the chaotic  behavior of  dripping
faucet, the role  of  this process is just to
bring back the flow near  the  saddle-node

region  in the phase space.  We  now  pro-
ceed  to give an  explicit  construction  of  th

map  around  a  parallelopiped of  length

as  shown  in Fig. 5, i.e., we

is responsible  of  the diversity of  this

z

(Xi+1,Y,+1,Zi+1) xl

''t

'
'1l,x

A-

Y

'i-

.,s,Stv

...s'A'
sy"'

B1
(Xi,Yi,Zi)

X '

Fig. 5. A  parallepopiped  around  the saddle-

   node  in phase-space  is used  to  construct

   the mapping  frem the plane  before the bi-

   furcation to the plane  after  the bifurca-

   tion. A  simple  rigid  transport is used  te

   model  the global  reinjection  process asso-

   ciated  with  the  complex  dynamics  of  pinch-

   off, recoil  and  growth. The  details of  this

   process are  unimportant  for the study  of

   dripping faucet chaotic  behavior,

                                   is dynamical system  
i6)

 in terms of  a  return

                                 (A,A,B), centered  at  the saddle-node  point,

                      focus one's  attention  on  the area  of  the  phase space  which

                               dynamic.

   We  first construct  the mapping  from  the plane  Y  :=[  A, before saddle-node  aera,

to the  plane Z  =  B, after  saddle-node  area.  A  point (Xi,A, Zle) is mapped  into

(Xi+1, }･E+,, B),
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Fig. 6. Fbr small  flow rate,  the dripping is periodic. R)r intermediate flow rate,  the dripping may  be

  chaotic,  The transition to  chaes  can  be by period  doubling bifurcation (for instance E =  O,Ol),

  or  the result  of  boundary  crisis  (fbr instance  c =  O.O125).

                 2,ii:2[::E:Zl;2
S

,l:[:3i[Il:l
 (4･2)               (

where  7li is the  time  for dynamic to go from the plane before the bifurcation to the

plane after  the bifurcation,

   The  simplest

lnstance

71  =

way  to

arctan(Blv'E)  
-

 arctan(Zle/VE)

model  the

K (4･3)

reinjection  fiow is via  a  rigid  transport, as  for

Using (4i2) and  (4･4), the

{Xi+1 
->

 Xi+1,

K+1 ->  ZL+1.

Poincar6 map  whic

(4･4)

h models  the  process is then given
by

G

Xi+1

4+1

arctan(B/v'E)  -  arctan(Zi!v'E)

           K
(Xi cos(Lv7i)  -  Asin(cv7li))e-Aa,

(Xi cos(cv7li) +  A  sin(ct)7li))eLAG  .

'

(4+5)

   Now  we  can  use  numerical  simulations  of  (4･5) and  compare  with  results  of  other

simulations  and  experiments  (fbr instance see  Ref. 18), etc.).  This reveals  that fbr
small  flow rate  all the orbits  converge  towards  a  fixed point which  describes a  periodic
dripping process. The  same  phenomenon  appears  for a  large fiow rate  it represents

NII-Electronic  
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a  transition from dripping to jetting. 
20)

 For intermediate fiow rate,  chaotic  behavior
is observed  with  different type  of  transition. These aspects  are  all shown  in Fig. 6.

   The  structure  ofthe  map  is selfexplanatory.  As E increases, the observed  chaos  is

connected  with  the formation a  classical  Smale horseshoe. Depending on  the value  of

other  parameters such  as Zle and  Xi, for a  larger E the attractor  takes the appearance

of  a  spiral,  corresponding  to a  horseshoe with  more  symbols.  The transition to chaos

occurs  either  by successive  period doubling bifurcations or  by the  collision  between a

chaotic  attractor  and  an  unstable  fixed point via  a  boundary crisis  and  is responsible

for the  sudden  changes  in the attractor,2i)  similar  to that observed  in experiments.

g5. Conclusion

   We  conclude  by a  brief discussion of our  results.  On  the basis of  the study  of

the stability  of  pendant  drop and  numerical  simulations  of  a lubrication-type model

for the  hydrodynamic of  a  dripping faucet, we  constructed  the simplest  rational  re-

turn map  characterizing  the Andronov-Shilnikov bifurcation that accounts  for the
various  experimentally  observed  behaviors of  a  dripping faucet, such  as  the different
transitions to chaos,  the  shape  of  the  attractor  as  shown  in Fig. 7, etc. In contrast
with  other  dripping faucet return  map  based on  experimental  results,  our  model  as-

sumes  that the complex  dynamics  of  the  dripping faucet is induced by the  coupling

between a  saddlenode  bifurcation (responsible of  drop fa11ing) and  a  damped  oscil-

lation mode  which  corresponds  to the  reaction  of  the  drop after  a  pinch-off event.

The  dripping faucet dynamical properties do not  depend on  the pinch-off event  on

the stability  properties near  the  critical  volume.  Improvements  in the model  are

currently  underway  and  can  take two paths. First a  Galerkin projection of  the drop
dynamics will  give us  a better estimate  than  the linear analysis  of  the frequency and

damping rate  of  the oscillatory  damped  motion.  Second, the reiniection  process can

be modelled  more  realistically  in using,  for example,  a  contraction  parameter  with

6.0

5.5

5.0

 4.57h+1

 4.0

3.5

3.0

2.5

2.02
3 4

 7h 5 6

Fig. 7. Return map:  plot of  the  time  interval between two  consecutive  drops [lh+i and  the last

   time  interva1 7h, This is a  characteristic  of the chaDs  in the dripping faucet experiment,
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the  rigid  transport.  This model  sets  up  the framework for a  study  of  the  problem  of

chaotic  nucleation  in other  dynamical systems.
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