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  We  introduce twe  different deformations inte quantum  mechanics  by which  we  obtain

the effect  of  a  bounded  set of  eigenvalues  in the case  of  the  harmonic  oscillator,  The meth-

ods  we  use  are  based on  quantumsymmetries  that are  provided by a  q-Heisenberg algebra,
The  spectra  of  the respective  discretized quantum  oscillators  are  derived, An  unexpected

fact occurs:  The  quantum  models  based on  the used  quantumsymmetries  show  the same

bounded  spectrum  that several  dilatative and  selfsimilar  continuum  supermodels  do. Thus

there is some  evidence  for a  partial equivalence  principle between quantumsymmetries  and

supersymmetrles,

gl. Heim-Lorek  operators  and  introduction to the  topic

   In several  investigations concerning  the spectrum  of  quantum  harmonic  or  an-

harmonic  oscillators,  it is a  well-known  fact that the unboundedness  of  these spectra

causes  various  perturbation theoretical dificulties. However when  it comes  to dis-

cretizing  the related  Hamilton operators,  one  can  often  overcome  these diMculties

to a  certain  extent.  In this article  we  will  focus on  a  quantum  mechanical  toy  model

by which  the conventional  phase space  is discretized. The  used  ideas concerning

phase space  discretizations essentially  go back to original  approaches  in the  sense

of  quantumsymmetries  (q-deformations) by Lorek and  Wess9)TiO)                                                      and  by Connes4)

in the sense  of  noncommutative  geometry. Rrom the mathematical  viewpoint,  their

involved representations  are  related  to l2(Z)-Jacobi operators.  In Lorek;s thesis from

1995 there were  given for the  first time  
-

 continuous  representations  fbr these

discrete operators.8)  Unconventional ideas by Heim6)  could  thus be mathematically

realized  in an  effective  way  within  a  concrete  functional analytic  model.  We  refer  to

the  mentioned  large class  of  bilateral Jacobi operators  by the  name  Heim-Lorek

operators.  Erom  the physical viewpoint  they are  phonon  operators  A,A+  in a

lattice quantum  mechanical  theory that  allow  representations  by the conventional

continuous  Heisenberg variables  zl./,X. The discretization itself is provided by the

quantumsymmetries  that are  related  to q-Heisenberg algebras.  We  will  deal with

a sort  of  operators  in which  two different deformations occur.  What  is finally re-

markable  is that we  end  up  with  an  oscillator  spectrum  being equal  to the one  of

a q-diiatative and  selfsimi}ar  supermodel,  see  Ref. 7). In S2 we  briefly prepare the

concept  of  Schr6dinger equations  based on  quantum  symmetries  and  introduce the
Heim-Lorek  operators  in g3. Section 4 is finally devoted  to linking the  operators  of

Heim-Lorek  type  to selfsimilar  and  dilatative quantum  mechanical  supermodels.

'}
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   g2. Discrete Schr6dinger  equations  based on  quantumsymmetries

   We  discretize the  Schr6dinger equation  by means  of  an  exponential  lattice which
is given by the following geometric progression  

'

                  R, :=  {+g",-q"InEZ}, O<q<  1. (2･1)
From  now  on  and  in the sequel,  N  will  refer  to the natural  numbers,  Z  will  refer  to

integers, C  to complex  numbers.

   Note that the lattice Rq has one  more  symmetry  operation  when  comparing  it
to the  equidistant  lattice. Its symmetry  relations  are  given by

       Vx E  Rq: Rx  :=: qm, Sx  :=  
-x,

 Jx :=  x-1,  Cx  :=  hi, (2･2)
the  overline  symbol  denoting complex  coajugation.  We  clearly  find invariance of  the

lattice under  these  symmetry  operations:

       R(Rq)=Rq,  S(Rg)=Rq,  J(Rq)=Rq,  C(Rg)=Rq･  (2'3)
In the sequel  we  will  make  use  of  the  Hilbert space

   L2(Rq) :=  (f : R, -  Cl(1 -  q) .=
+ZmOO

..

 q" (f(q")f(qn) +  f(-q")f(-qn)) <  oo)

                                                              (2･4)
being established  with  a Euclidean scalar  product as  fbllows:

                          +oo

            (f,g) :=  (1-q) E  q"(f(g")g(q")+f(-qn)g(-qn)).  (2-s)
                         n=-oo

Clearly, a  basis of  L2(Rq) is provided by

                    eg(TqM)  :=  g-:(1-q)-i6rnn6aT,  (2'6)
where  m,n  E Z, a,T  E {+1, -1},  6.., 6.. denoting the Kronecker 6-symbol.

   The discrete analogue  of  the multiplication  operator  is given by

   X  : D(X)  ! L2(Rq) -  L2(Rq), g -  XP,  VX E  Rq : X9(X)  :=  XP(X)i

                                                              (2･7)
where  X  shall  be densely defined by D(X).

   Our aim  is roughly  spoken:  construct  symmetric  operators

              II =  H(X,  R7 S, JC) : D(H)  g L2(Rq) .  L2(Rq) (2'8)

that  become  the oscillator  Hamiltonian -ti:l2t +  x2  +  c  (c is a  real  number)  when  the
lattice Rq reduces  to the set  of  real  numbers  while  performing the Iimit q -  1.

   We  shall  basically be  concerned  with  the stationary  Schr6dinger equation

               H(X,  R7 Si J7 C)ipE =  EthE, thE E £
2(Rg),

 (2'9)
where  E  is canonically  denoting the energy  eigenvalue.
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             g3. Constructing  the  Heim-Lorek  operators

   Let throughout  the  fbllowing be O <  q <  1. Fbr x  E Rg and  a  given function

p:  Rg -C  we  define

                 Rg(x) :=  q(qx), Lg(x) :=  g(q'ix), (3･1)

  Dg(x) :=  V(qX) 
T
 V(X)  

,
 Xg(x) :=  xq(x),  P  :=  -iL}D,  u :=  Li (3･2)

             qx 
-x

and  formally obtain  a  q-Heisenberg algebra,  being similar  to the one  in Ref. 5):

            px-qSxp=-iu,  pu=qmiup,  xu=q3ux.  (3･3)
We  easily  calculate  the fbllowing adjointness  relations  (m,n E Z,a, 7  E {+1, -1})  :

                     (DeX, eh)  ==

              (Xeg,eh) =  (e:,Xein
Moreover we  introduce

  (Mbg)(x) .- 
q(qMlx) 

-
 p(-qmlx) 

,
                     x

(e

)i

:, -gmiLDeh),

 (PeZ, eh)  -  (eZ, Peh).

(ag'p)(x) :-q(qx)
 +  ep(-qx)

which  yield altogether

        (Reg,eh) -  (eg,q-ILe;,)7

x

(Mbeg, eh)  -  (eZ, Mb' eh)-

'

(3･4)

(3･5)

(3･6)

                                                              (3･7)

These  definitions were  basically given in a recent  article  by Berg and  Ruffing2) where

the analysis  behind  these objects  is investigated in detail. In the current  article

we  focus more  on  a  physical application  in the sense  of  mathematically  modelling

quantum  structures  and  especially  on  an  unexpected  connection  with  selfsimilar

supermode!s.

   We  address  the fo11owing problem: Find a  Hamiltonian H  =  H(X,  R, S) ==  A+A

that reduces  to the Schr6dinger oscillator  -  IZ2S +x2+c  in the continuum  limit q -> 1.
Here A+  is expected  to satisfy  the fo11owing adjointness  relations

             (Aef･,e;･) =  (ef-,A'e,'･ ), i, o' E Z, a,TE  {+1, -1}.  (3-8)
A  tedious investigation by trial and  error  has shown  that the  following ansatz  for the
required  Heim-Lorek  operators  is successfu1  in fu1fi11ing the required  properties
and  also  appealing  in many  other  respects:

                   A,  :=  q-i(LD+7LMb'  +Lf(X)),  (3･9)

                     A,+ :-  
-D+orMbR+f(X)R.

 (3.lo)
Here, 7 denotes a  real  number  and  f a real  valued  function that maps  the lattice Rg
to R. The  operators  A7  and  Ary+ are  actually  adjoint  with  respect  to their action  on

the basis vectors  eg･:

                        (A,eg,eh)-(eZ,A,'eh). (3･11)
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We  assume  that the definition ranges  of  these  two  operators  are  chosen  as  maximal

in L2(Rg). The  fo11owing point shall  be of particular interest:

   Does  there exist  a  ipcr E  £
2(Rq)

 such  that the  following two equations  have a
common  solution  for all  x  E Rq and  a fixed A >  O (A,A+ being defined below)?

                            (A7cb7)(X)=O, (3･12)

                         (A,'zb,)(x)=Axip,(x), (3･13)
                    A, :=  q-'(LD+ryLM,'+Lf(X)),  (3'14)

                      A7' :== -D+tyMqR+f(X)R･  (3'15)
Equations (3･12) and  (3･13) together  with  the  ansatz  (3･14) and  (3a15) clearly  imitate
the situation  of  the continuum  quantum  mechanical  oscillator,

                   Ap(x) =oo  (Sl.T +x)  e-Sx2  =o,  (3･16)

         A+q(x) =  Axq(x) <> (-Ei4. + x)  e-ix2  =  V2xe'Sx2. (3･17)

The  question is how  to construct  the functions f(X) and  ab7 in the case  of  the stated
discretization. Solving the  difference equations  (3･12) and  (3･13) one  ends  up  with

Theorem  1

A  solution,  up  to a  constant  factor, to the problem  (3･12) and  (3･13) for the  operators

in (3･14) and  (3･15) is fixed by the difference equation  for ipry

       vx E R,･ 
Zb3(qqX.)

 I ll3(X) =  -Axzb3(x)  -  2crx'izb?(qx) (3'18)

as well  as  by the  expression  for the function f:

         v.ER,,  f(.)=1+(27m2tyq-1) 
'i'-'iqqiXrr2

. (3lg)
                                    qx 

-
                                        x

We  have to restrict  to 7 <  i,A >  O and  O <  q <  1 to guarantee that zbcr E L2(Rq).

   The question now  arises  how  to  interpret this result  from  a  physical viewpoint.
Especially three limits are  of  main  interest:

1. Let A =  2 and  7 =  0. Send q -  1. We  then end  up  with  the  conventional

quantum  harmonic oscillator:

                    A=Eil.J+x, A"=-iii.I+x,  (3･2o)

                      f(x)=x, ip(x)=e=SX2. (3･21)
2. Let A =  2 and  7  =  O but q fix and  difrerent from  1. This means  that we  are

confronted  with  the  q-harmonic  oscillator.
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3. Let A =:  2 and  7 7! O but fix as  well  as  q 
-"F

 1. This yields a  harmonic  oscillator  in

which  the energy  levels belonging to odd  parity are  shifted by  a  constant  amount.

Going straightforward,  one  derives by direct calculations  the fo11owing:

Theorem  2

R}r any  nE  IVb there exist  real  numbers  an  such  that

       (A+)"+ith,(x) -  Aq"x(A+)"ip,(x) +  a.(A')"-i ¢ , (x) =  O, (3･22)

namely

                a2.  =  A(1+27(q  -  1)) 
qi

"mMll,

 (n E lvb) (3 .23)

                                   q2n .  1
                                         , (nEIVb) (3･24)               a2n+1  =  A(1 -  2'y) +  Aq
                                   q-1

with  the initial conditions

                       ao=O,  ai  ==A-2Ner.  (3･25)
Using techniques that are  similar  to the continuum  case  of  conventional  quantum

mechanics,  ene  derives:2)

Lemma  1

The  functions ip. :=  (A+)"iptr are  in L2(Rq) for every  n  E IVb.

Lemma  2

TheTe exists  a  real  number  6 such  that the functions

                               n l
                        q.:=  q7 thn (3'26)
                                6 H,"･=iaj

are  orthonormal  with  respect  to the  scalar  product in L2(Rq). Moreover  we  have

                        A+9n=q-iVofIIIIepn+i, (3'27)

                         Aepn=q-lVZEEqn-i,  (3'28)
                          A+Agn  ==  q`lanepn･ (3'29)
Constructing the  important  continuous  representation  of  the Heim-Lorek  operators

                 A, :A,  (X,z:.T), A;=A,+  (X,Sl.I) (3･30)

in the sense  of Lorek8) is a  fascinating tbpic that shall  be considered  in a  further

article.

    In our  context,  we  see  in detail that the undeformed  limit A =:  2,7 -  O as weil

as  q -)p 1 yields up  to a  normalization  the well-known  conventional  eigenvalues:

                       VnEAIb:  lim lim a.  ==  2n. (3t31)
                               cr-Oq-1
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Let us  summarize  all observations  in the fbllowing list:

.gl  l,7fO

.

.

.

                                        
        VxER,:  f(x)= .

                                  qx-x

  q-1,  7-O

  A=  S4. +x, A+  ==  "I  
.T
 +x,  f(x) =  x, En =  nA･  (n E Nb)

  gf  1, or ->  O

            A=q-i(LD+Lf(X)),  A'=-D+f(X)R.

  q-1,  7fO

        A7 i[  SltT + 7M+  -  llltL, A7+ =  -zill "M  L  
2xor
 ,

    (Mp)(.) ,=  
P(X) 

'
 9(-X)  

,
 (M+g)(.) ,.,. 9(X)+9(-T),

                   x x

      2ty
f(X) =

 
.i

 
E2n

 
=

 2nA, E2n+i  
=
 A(1-27)  +2nA. (n E IVb)

A, :=  qrmi(LD +  tyLMb' +  Lf(X)),

  A,+ :=  
-D

 +  orMdR+  f(X)R,

      1 + (2'v -  2t7q -  1) 

(3･32)

(3･33)

(3･34)

(3･35)

(3･36)

(3･37)

(3･38)

(3･39)

Looking at  the  case  q 7L 1 and  ty =  O but fix, one  does not  only  find the q-harmonic
oscillator  but makes  a further observation:  Its spectrum  is exactly  the same  as  that

being related  to several  selfsimilar  supermodels.  What  however  this analogy  means

is not  clear  and  shall  be discussed in some  more  detail in a  forthcoming paper. We
state  here the results  concerning  the selfsimilar  supermodels.  This is going to happen
in the  very  next  paragraph.

 g4. Selfsimilar superpotentials  coming  up  with  Heim-Lorek  operators

   For the  convenience  of  the reader  we  now  briefly revise  the super  quantum  me-

chanical  fbrmalism by  looking at  two  Hamilton operators

                   h2 d2                                          h2 d2

            
Hi

 
==

 
-7.

 d.2 
+  

i'IL(X),
 ifi] =-i}ii

 d.2 
+  ih(x), (4'i)

and  their partner  potentials

                     vL (x) -S  (w2- l2;iw'(x)), (4 2)

NII-Electronic  
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                     v>(.) .,  -l (vv2+ l]IIiivvt(x)) .

Determination of  the superpotential  W  yields

                           (Hig)(T) ==  Oo

              -  2h.
2

 q"(x) + 3 (w2(x) 
-
 Xiw'(x)) p(x) =o

and  thus  W(x)  =  
-I2il

 f. In(p(x))･
   We  obtain  generalized phonon  operators

                      Hl  =  B+B,  H2 :BB+,

    B:-  ii7`i (w(x)+ "l;i Ei.7)･ B'  :-  iJZ} (vv(x)- i2ii Eii.7)
and  in the case  of  the  harmonic  oscillator  we  see

             vi (x) =  
m2w2x2

 - llst, l,E}(.) =  
m2w2x2

 +  tlt.,

                           W(x)  =  Jiiwx.
Generalizing the  results  from above  (compare with  those in Ref. 7)) we

potentials form  invariant if

                      It5 (x, ai)  =  Vi (x, a2)  +  R(ai)･

Fbr a  long time one  has believed that all form invariant potentia}s are

parameter  translation,  i.e., by a  transformation  of  the  foIIowing type

parameter):

                             a2=al+c.

However  there is and  this has been  the surprise  
-

potentials which  is generated by a  parameter  dilatation. In this
acting  as a  defbrmation parameter, see  Ref. 7):

                        a2=qal,  O<q<1.

We  illustrate what  happens in this case  now.

as  fo11ows
                                  oo

                        W(x, ai)  =  2  gi (x)a'i L

                                  1'=o

This time we  also  give an  analytic

                                  oo

                           R(ai) -  2  Ria{･
                                  j=o

   523

(4･3)

(4･4)

(4･5)

(4･6)

(4･7)

(4･8)

(4･9)
call  two

                 (4-10)

               fixed by a

               (c is a  real

                 (4･11)
a new  class  of  form invariant

             context,  q is

                                (4･12)

       IIb do so, we  expand  the superpotential

                                (4･13)

ansatz  for the expression  R(al), namely

                                (4･14)
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   In the case  of  dilatative supersymmetry,  we  are  still concerned  with  the formula

                        R(ai)= Ih (x, ai)-  VL (x, a2),  (4･15)
   which  yields now

          R(ai) =  li> (x, ai)  -  Iil (x, qai)

               =  W2(x,ai) 
-
 W2(x, qai) +  l2ii(W'(x,ai) +  W'(x, qai))･ (4･16)

   Inserting the expansions  for the  superpotential  from above,  we  find

      co

     2  2Rna?
     n=O

          =  (.2C.

'O

,(1
 +  q")gna?) (.20=

O

,(1
 
-
 q")gna?) + IJII:i ii

O

I
O

II=,(1 + q")gAaT･ (4'17)

   Comparing the coethcients  yields

                                    h,
                                                             (4･18)                              

Ro
 

=

 viiigo,

       Rn  =  i l.illl=,(1 + q"-i)(1 
-
 qi)gign-i + 2Xi  (1 + qn)ga, n  E N. (4･lg)

   Defining the abbreviations

                      rn :=  i{}!lq.i 
dn :=  li g# (4･2o)

   finally leads to a  nonlinear  integral equation,  namely

                  gn =  Ylll!dn f [2rn -  i.ili.i gi(x)gn-i(x)] dx･ (4･21)

   The last equation  allowsalot  of  freedom. We  restrict  ourselves  to

                 Ro=O,  9o(x)=O,  rn=x6n,1,  z>O.  (4'22)

   In this case,  we  arrive  at

                           R(ai)=Riai  =:  R. (4･23)
   The nonlinear  integral equation  now  leads to the  fbllowing results

                           fi                                               2Rl

                   9i(X) 
==

 fii h 
x,
 Bi =2diri

 
==

 1+q                                                             (4･24)

   and  we  find for all other  functions gn

                         g.(x) r:  6,, (yllZlx) 
2"-i,

 (4'2s)

                                                    NII-Electronic  
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where  the coeMcients  Bn are  fixed by

Pn =  m2ndZ  
1
 
"2
'irs,6..,.

            i=1

(4･26)

The  superpotential  now  reads

W(x,ai)  == ]
O

!
O

..l,

 q.{ (yllZi.) 
2j-'

(4･27)

The groundstate  belonging to VL is given by the formula

ipo(x, al)  =  Ce£ ,OO=i ?) al(Yllilx)2jx, (4･28)

which  is obviously  a symmetric  function in x,

   By  direct calculation,  one  finds for the superpotential:

W(x, a2)  =  v'liW(v'lix, ai). (4-29)

It is clearly  selfsimilar  -  a  remarkable  fact in the centext  of  supersymmetric  quan-
tum  mechanics.  The energies  of  the  operator  Hi are  finally given by

        n-1

En  -R2{r"  -R

        j--1

1-qn

1-q.
(n E  IVb) (4-30)

This is in accordance  with  the  eigenvalues  we  had  found in case  of  the  Heim-Lorek
operators  of  type  (3･14) and  (3-15), when  setting  R  ==  1 and  sending  7 

-->
 O.

   Apparently we  ha:ve established  a  close  analogy  between the spectrum  of  the

discretized harrnonic oscillator  by means  of  quantumsymmetries  and  the spectrum

of  the q-continuum  oscillator  being constructed  by means  of  supersymmetries.  A

lot of  work  still  has to be done fbr a  better understanding  of  the  stated  facts, also

with  respect  to moment  problems  of  the associated  eigenfunctions  of  A+A  and  B+B.
Note  that  the  principal role  of  moment  studies  in physics is in general becoming a

more  and  more  essential  tool. (See, for instance, Ref. 15).)

g5. Conclusions

   In this article  we  hewe  created  a link between  generalized discretizations of

Schr6dinger operators,  referred  to by the name  Heim-Lorek  operators,  and  several  di-
latative and  selfsimilar  supermodels  that were  found some  years ago.  From  a  physical
viewpoint  this gives some  indication that  both, quantumsymmetries  which  provide
the stated  discretizations, and  supersymmetries,  can  to a  certain  extent  be consid-

ered  as  two  different aspects  of  the same  physical situation.  Of course  this article

can  only  contribute  a  further modest  step  towards  investigating these analogies.
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