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Instabilities of  Coupled  Quasi-Homoclinic Limit  Cycles

        Pierre COuLLET') and  Nicolas VANDENBERGHE")

      institut ATbn-Line'aire de Nice 1361, Route  des Lucioles

                   06560 Vdlbonne, lib7anee

   It has been  recently  shown  that the continuous  coupling  of  non-linear  oscillators  clese

to an  Andronov  homoclinic bifurcation generically leads to two  types  of  instabilities: a

selffocusing  Kuramoto  like instability or  a  finite wavelength  period doubling instability,
The  purpose of this paper  is to study  simple  examples  where  these instabilities have been

observed,  It includes  the  coupling  of  twe  pendula, the sine-Gordon  chain  and  the  coupling

of  dissipative non-linear  oscillators.

51. Introduction

   Recent works  have shown  the  generic instability of  the homogeneous  quasi-

homoclinic Iimit cycles  in spatially  extended  dynamical systems.6),2),3)  The  purpose

of  this paper is to provide an  explicit  study  of simple  models  where  these  phenom-
ena  have been observed.  In particular we  generalize the previous analysis  to the

case  of  the coupling  between two  non-linear  oscillators  and  to the  classical  problem
of  a  sine-Gordon  chain.  In the first part we  consider  the problem  of  two  identical

pendula  coupled  through  a  linear torque. The second  part is devoted to the analysis

of  the sine-Gordon  chain.  In the last part we  il}ustrate the geometrical analysis  of

Ris}er7) in the  case  of  the  coupling  between two  identical non-linear  dissipative os-

cillators.  This problem  is cleairly associated  with  the  synchronization  of  non-linear

oscillators.5)

E2. Coupledpendula

2.1. Classicalpendulum

   The  equation  of  motion  of  a  conservative  pendulum  is given by

                             d2e
                                 +sine  ==O  (2･1)
                             dt2

or  equivalently

                           (Z/li)2=H2-sin2u, (2-2)

where  u  =  S and  ll is the total energy  of  the  pendulum.  Its solutions  are  given in

terms  of  the  Jacobian elliptic functions. 
i)

  1. Fbr H  <  1, the solutions  are  periodic (oscillations) with  a period given by

   
')

 Professeur a 1'institut universitaire  de Flirance, E-mail address:  coullet@inln.cnrs.fr

  ")
 E-mail  address; vandenbe@inln.cnrs.fr



Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOffice,Progress  of  TheoreticalPhysics

536 P. Coullet and  N.VZindenberphe

            
e,o

 
             .l

             
-2

             1
                                        g12S4

                   Fig, 1. Pendulum  and  its phase  plane.

    T  =  4K(H2)  (K is the complete  elliptic integral of  the  first kind. i))

                        sinu(t,H)  =  I2}sn(t,H2).

  2. R)r H  
=

 1, the  solution  is aperiodic  and  corresponds  to the separatrix  (hetero-
    clinic  loop)

                            u(t)  =:  arctan(t).

  3. For H  >  1, the  solutions  are  periodic (rotations) with  a  period given by

    T  =  ftK(H2)

                                    ( i2                        sin u(t,  ll) =  sn  Ht, -)  .

2.2. Coupledpendula

2.2.1. Equations

   The equations  of  two  identical pendula  coupled  by a  linear torsion  are  given by

                   d2ui

                    dt2 +SinUl  COsul  
==

 7(u2-ul),  (2･3a)

                   d2u2

                    dt2 +Sin  U2  COS  U2  
==
 7(Ul-U2).  (2･3b)

Using the  new  variables  s =  ui  +  u2  and  d =  ui  -  u2,  they read

                       d2s

                       aitlT2 +SinSCOSd=  O, (2･4a)

                       d2d

                       dt2 +sindcoss  
:=

 
-27d.

 (2.4b)

2.2.2. Linearstability

   The  linear stability  of  a  homogeneous solution  ui(t)  =  u2(t)  =  uh(t)  is studied
by introducing small  deviations to the homogeneous solution  a  ==  s -  2uh and  6 =  d
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and  linearizing the equations

                        d2a
                           +(1  -2sin2  uh  (t))o =0,  (2･5a)
                        dt2

                    d26
                       +(2ty +1-2sin2  uh(t))6  =O.  (2･5b)
                    dt2

These two equations  are  particular fbrms ofthe  Hill's equation4)  glg +(a+di(t))y =  o

where  ip(t +  7') ==  ip(t). The stability  of y =  0 is then given by the value  of  the trace

of  the monodromy  operator  T  =  tr(M)  (see Appendix A).

   Zero  coupling

   We  note  that a  =  2gdlZIit (t) is a  so}ution  of  Eq. (2･5a) (phase mode).  Its char-

acteristic  multipliers  are  both equal  to one.  The same  property is also  true fbr

Eq. (2･5b) since  7 =  O.

   Small coupling

   Let 2ry =  E, where  E is a small  parameter. A  solution  of Eq. (2･5b) can  be

expanded  as  a  power  of  the coupling  constant  z(t) =  !O(t) +Ezi(t)+･ ･ ･ of  Eq. (2･5b).
   At  leading order  !O(t) =  S(t)Q with  g  =  z(t  =  O). Moreover

                          ,(T)-(8  g)･
The  sign  of  a  depends on  the value  of  H.  If H  <  1 (resp. H  >  1), a  is negative

(resp. pesitive) and  the  period of oscillations  increases (resp. decreases) when  H

lncreases.

   At order  c, Qi(t) is a solution  of equation  EIt;;i ==  A(t)zi +  rxO  with

                           . .,  ( "o, g),
                          z'(t) =:  S(t)B(t)Q ,

where  B(t) =  JIS S-irSdt. The  stability  condition  is

                      tr(ES(T)B(T))=  -ecrm2<O,  (2･6)

where  m2  =  JIT skdt  is a  real  positive coeMcient.

    The  homogeneous periodic solutions  are  unstable  fbr H  <  1 (oscillations), even

for small  coupling.  A  simple  calculation  based on  the amplitude  equations  valid

for small  oscmations  (ei,2 =:  AoemiiE2L2t) shows  that the instability occurs  when

IAol2 >  'r12.  We  also  notice  that this instability becomes stronger  when  we  approach

the energy  of  the separatrix  (H ==  1).

    Case  H>  1

    The  case  of  the rotating  so!ution  (H >  1) is less simple  to analyze.  Let p =  k
and  t =  e!{£el2)s. Equation  (2･sb) then  becomes

                      d2u

                      d,2 
+[ap(7)+bpPp(s)]u  

==

 O, (2･7)
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where  ap(ty) =  2 (e!SY!!)2 ty, bp =  (EIS£ei'))2, pp(s) =  1 -  2sn2(!SSebs, p2) and  pp(s)
is 2T-periodic.

   R[)r small  p, i.e., far from the  separatrix,  the elliptic function can  be approxi-
mated  by:

                            K(p2) ..  g+gp2,

                    sn2(K £P)s,p2) rv  l-Scoss.
   Equation  (2･5b) then becomes the Mathieu  equation

                        d2u .

                        d,2 
+(a  +bcos  s)u  

=O
 (2･s)

with  a =  2;Z  and  a =  Elil. In Fig. 2 the stability  diagrams fbr Eq. (2･8) (left) and

Eq. (2･7) (right) are  shown.  (Note that the parameters area  and  p.) When  the
coupling  increases, the first bifurcation to occur  is a  period doubling bifurcation

(dotted lines). This instability is stronger  close  to the heteroclinic orbit.

2.3. Sine-Gordon equation

   The sine-Gordon  equation  models  the continuous  limit of  an  infinite chain  of

identical pendula  linearly coupled

                          &te+sine =a,.e.  (2･g)

Small perturbations with  a  wavenumber  q are  introduced in order  to study  the
stability  of  the  homogeneous  solution

                      u(t,  x)  =  uh(t)  +  it(t) sin qx,

                      v(t,  x)  =  vh(t)  +  di(t) sin  qx,

NII-Electronic  
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Fig. 3. Direct numerical  simulation  of  sine-Gordon  equation.  x  is abscissa,  t is the ordinate,  and

  the grey intensity is for v, On  the left side  H  =  1.25, and  on  the right  side  H  =  1.6.

where  u  =  g, v  =  {I/t and  uh(t)  is the  solution  of  the homogeneous problem  and

vh  =  !dvaILt . The  linearized equations  read

                    d2a
                       +(q2  +1-2sin2  uh(t))it  =O,  (2'10)
                    dt2

which  turns  out  to be the equation  in (2･5b).
  1. Fbr H  <  1 (oscillations), the  homogeneous solution  is unstable  for infinitely

    small  wavenumber  q. It is the selffocusing  Benjamin-Feir instability.

  2. For H  > 1 (rotations), the homogeneous solution  is unstable  for many  wavenum-

    bers q (see Fig. 2). Of course  there is a selected  wavenumber  qo. In particular

    the  strongest  instability occurs  at  a  finite wavelength  and  a  period double. In

    Fig. 3 we  show  direct numerical  simulation  of  Eq. (2･10).

fi3. Instability of  two  eoupled  dissipative non-linear  oscillators

   We  next  consider  the coupling  of  two  identica} dissipative non-linear  oscilla-

tors, chosen  to exhibit  an  Andronov bifurcation. Some  results  have already  been
established  concerning  the stability  of  coupled  osci}lators  near  the homoclinic bi-
furcation.6),2),3) We  use  here some  geometrical interpretation based on  the idea of

Risler. 
7)
 A  more  detailed study  of  the neighborhood  of  the homoclinic bifurcation

in the  case  of  continuously  coupled  system  can  be found in Ref. 3).

3.1. Geometrical interT)Tetation

   We  study  the  coupling  of  two  oscillators  governed by the fo11owing equations:

                      du

                      it 
=V,

 (3･la)

                      dv

                      it 
=
 (pa-u)v-(u-u2). (3+lb)

Fbr O <  pa <  O.1355, this system  admits  a  stable  limit cycle  which  disappears at

pa t f O.1355 through  a  homoclinic bifurcation. We  consider  two  oscillators  of  this type

((u,v) and  (ut, vt))  and  we  introduce a  linear coupling  between these two  oscillators,

the two  equations  are

            du
            Tt 

=

 v+7((u'-u)-fi(v'-v)),  (3･2a)
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dvETt
 

=

 (pa-u)v-(u-u2)+7(5(u'-u)+(v'-v))(3-2b)

and  the  corresponding  equation  for (ut, vt).

   We  are  interested in the stability  of the (homogeneous) periodic solution  u  =

ut  =  uh(t)  and  v  =  vr =  vh(t).  We  use  the variable  au  =  u+ut,  av  =  v+vt,

6. ==  u-ur  and  i. =v-vt.  Let us  introduce a.  =  2uh+aN.  and  av  : 2vh+arwt. The
linear equations  are  then given by

with

and

dadtddit
=  L(t)g,

==  L(t)i -  2ryCd

g=(k

'

.

vu,),

L(t)=(  -1-.Oh+2.h  pa -1.h  ),

d-(3#)

c== (b 1fi )

(3･3a)

(3･3b)

   Equation  (3･3a) describes the stability  of the  homogeneous limit cycle  with  re-

spect  to homogeneous perturbations. Its Floquet multipliers  are  1 (phase multiplier)

and  A (IAI <  1) (amplitude multiplier).  Fbr Eq. (3･3b) the  Floquet multipliers  are

function of  7 and  C. Of course  the  Floquet multiplier  1 is critical  and  may  Iead
to an  instability for infinitely small  value  of  the coupling.  It is a  possible cause  of

instability but not  the only  one.

   We  fbcus on  the  evolution  of  a  perturbation (x,y) in Eq. (3･3b) in the local
frame glt(t) =  (!!!IStl!1, E!3Xt!)) and  gLt(t) ==  Rot.12(glt(t)). Instead of  computing  the

monodromy  map,  we  will  discuss its geometrical effects. The  menodromy  map  is
separated  into two  parts. The  one  associated  to the homogeneous problem  and  one

associated  to the coupling  matrix  (see Fig. 4).

   We  first consider  the homogeneous  part ( i.e. the part associated  with  Eq. (3･3a)).
The  first return  map  is

                           M-(6  Z)
The  behavior is sketched  in Fig. 4. When  we  approach  the  homoclinic bifurcation

a  diverges3) and  the arrows  of  Figs. 4(A) and  (B) become parallel to the horizontal
axis.  Case (B) in Fig. 4 is cleser  to the homoclinic bifurcation than  Case (A).
   The  coupling  operator  here acts  as  a  rotation  in the local frame (Figs. 4(C) and
(D)). Depending on  the sign  of  fi, the rotation  changes  its sign.  The  two cases  of

rotation  are  shown  in Fig. 4. The  monodromy  map  of  the homogeneous  system  im-
poses a given sign  of  the rotation.  When  one  approaches  the homoclinic bifurcation,
it becomes singular.  The  coupling  matrix  may  act  in an  opposite  direction inducing
an  eigendirection  with  a  positive eigenvalue  in the local frame. This case  corresponds

NII-Electronic  
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{A}
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Fig, 4. Dynamics  of  the perturbation in the

   associated  with  the hemogeneou$  problem,

(B)y

(D)

(E)

(F)

local frame. (A), (B) and  (E) show  the dynarnics

(C) and  (D) show  the dynamics  induced  by coupling.
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Fig. 5. R £ al dynamics  of  the perturbation  in the local frame.

  monodromy  map.  The  initial point is always  (1,1),

-20･10Co 10 20

The  points are  the iterates of  the

to the Kuramoto  phase instability. It depends only  on  the rotation  due to coupling

and  on  rotation  due to the local dynamics. The  balance between these two  effects

does not  depend on  the  intensity of  coupling  ty. This discussion can  be extended  away

from the homoclinic orbit  (it leads fbr example  to the Benjamin-IJbir-Kuramoto cri-

terion for the complex  Ginzburg-Landau equation7)).  Fbr any  coupling  terms, the

instability will  always  manifest  as  one  approaches  the homoclinic bifurcation.

   The  coupling  matrix  and  the monodromy  map  of  the  synchronized  solution  may

also  act  cooperatively.  Away  from the homoclinic bifurcation the  coupling  has to be

large enough  in order  to induce an  instability though  a 
-1

 Floquet multiplier.  Even

in the  case  of  small  coupling,  the synchronicity  will  always  be lost as  we  approach

the homoclinic bifurcation.

   These types of  behavior harve been  illustrated in Fig. 5 where  we  show  the  nu-
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merical  computation  of  the dynamics of  a  perturbation of  Eq. (3･3b) with  pt =  O.075
in all cases.  In Case (A), there is no  coupling.  In Case (B), 6 =  1, 7 =  O.04 the
Floquet multipliers  are  1.51 and  0.09. In Case (C), 6 =  -1,  7 =  0.08 the Floquet
multipliers  are  

-1.14
 and  -O.04.

   Figures 4(E) and  (F) show  the equivalent  representation  for the problem  of  two
coupled  pendula.  In this case  the coupling  (Fig. 4(F)) is the one  of  the  first part.
Figure 4(E) shows  the dynamics when  H  >  1.

3.2. Continuously coirpled  oscillator

   The  previous  considerations  also  hold for a  continuous  dififtisive coupling.2)

When  we  approach  the homoclinic bifurcation, one  of the twQ instabilities which

fbllow:

  1. The Benjamin-feir-Kuramoto phase instability,

  2. A  finite wavelength  period  doubling instability which  has been interpreted as

    the selfparametric  forcing of  the Iimit cycle  induced by the presence of the

    saddle  fixed point.

3.3. IVbn-linear behavior

   The  non-linear  behavior associated  with  these bifurcations may  be very  compli-

cated.  For example  the system  of  Eq. (3･2) does exhibit  chaotic  behavior. There is
a  complex  bifurcation diagram similar  to the one  of Ref. 6). 

'

   In the case  of  continuous  dissipative system  the equation  which  describes the
non-linear  development  of  the Kuramoto  phase instability is given by

                     a.di ==  6El,.ip-o....ip+(o.ip)2  (3･4)

with  u(t, x)  =  uh(t- ¢) while  it is for the finite wavelength  period doubling instability

             a.A =  paA ± IA12A +  aAOxxip  +  fi(ax di)2 +  bxxA,  (3･s)
             a.di=tiOxxip+(0xip)2+nlA12 (3･6)

with  u(t,x)  =  uh(t-di)+AethOX<(t-di)+c.c,+･  ･ ` and  <(t) is the  Floquet eigenvector
associated  to the multiplier  

-1.

g4. Conclusions

   In this paper we  have illustrated the two main  instabilities that suffer  syn-

chronous  quasi-homoclinic  oscillations.  The desynchronization instability is either
the Kuramoto  phase  instability or  a  period doubling instability. In the case  of  a

continuous  system  il}ustrated by the reversible  sine-Gordon  chain,  the period  dou-
bling instability occurs  at  a  finite wavelength.  Our results  show  in particular that
these  instabilities can  be observed  in reversible  dynamical systems,  as  for example
the coupling  of  two  pendula  and  the  sine-Gordon  chain.  Of course  the non-linear

development of  the  instability depends on  the reversibility  property of  the dynamical
system  considered.
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Appendix  A
Hill's Equation

The Hill equation  is given by

d2ydt2+
 (a +  ip(t))y -  O (A･1)

or  in vector  form:
                             dx

                             Ait 
=A(t)z,

 (A･2)

where  eq(t) =  ( l!,(tt)) ) and  A(t) ==  ( -.-Oip(t) 6 ). Its solution  is given by

m(t) =  S(t)z(t =:  O), where  S(t) is the flow associated  with  Eq. (A･2).
   The spectrum  of  the  monodromy  map  M  =  S(T) characterizes  the stability  of

the solution  x  =  O. Its characteristic  equation  is given by

A2 -  tr(M)A+  1 =:  O. (A･3)

The  stability  criterion  is givenby

tr(M)1 Sl 2.
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