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“Topological” Charge of U(1) Instantons on Noncommutative R4
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Non-singular instantons are shown to exist on noncommutative R* even in U (1) gauge
theory. Their existence is primarily due to the noncommutativity of the coordinates. The
integer instanton number on the noncommutative R* can be understood as winding number
of the U(1) gauge field as well as dimension of a certain projection operator acting on the
representation space of the noncommutative coordinates.

§1. Introduction

Noncommutativity of space coordinates is expected to prevent singular configu-
ration in field theory. For example, in their pioneering work, }) Nekrasov and Schwarz
constructed an explicit U(1) one-instanton solution on noncommutative R?. It is a
typical appearance of the effect of noncommutativity because in ordinary U(1) gauge
theory on commutative R?, it can be shown that non-singular instanton cannot ex-
ist. For the ordinary U(1) gauge field A on commutative R*, non-trivial instanton
number is incompatible with the vanishing of field strength F at infinity:

1 1 1

507 | FF =53 [ d(aF) _.—mfsegnmymp) 0. (11)
Therefore if U(1) gauge field has non-trivial instanton number, there must be a point
where the field configuration becomes singular and gives new surface contribution,
other than S3 at infinity. Then, why U(1) gauge field on noncommutative space
managed to have non-trivial instanton charge in the case of Ref. 1) ? Of course it
must be due to the noncommutativity of the coordinates, but the situation is not so
simple. The difference between ordinary and noncommutative gauge theory is the
multiplication of gauge fields (pointwise multiplication vs star product) and gauge
field itself is written as function on R*. One can explicitly check that the solution
is not singular. On the other hand, naively thinking, the effect of noncommutativ-
ity should be suppressed at distance much larger than the scale introduced by the
noncommutativity. Therefore the noncommutativity seems irrelevant to the surface
term, which is infinitely far away. So even in the noncommutative case it seems im-
possible to construct non-singular U(1) instantons. However, explicit U(1) instanton
solutions do exist. What’s wrong with the above arguments ?

The answer is that above naive expectation is wrong. The effect of noncommu-
tativity does not vanish even at the long distance, in the case of U (1) gauge group.
The purpose of this article is to give precise explanation of this fact. Along the way
we will find a beautiful relation between topological quantity and algebraic quantity
on noncommutative space.
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Organization of this article is as follows. In §2, as preliminaries, I give reviews on
gauge fields on noncommutative R* and on the ADHM construction of instantons. In
§3, I first construct an explicit U(2) one-instanton solution by the ADHM method
and consider its small instanton limit. In this article, to make things concrete,
I consider the case where the noncommutative parameter is anti-self-dual. Some
remarks on other cases are given in the last summary section. Next, I construct a
U(1) one-instanton solution. It turns out that U(1) one-instanton solution can be
constructed in a similar way to the small instanton limit of the U(2) one-instanton
solution. Then I give a topological explanation to the integer instanton number in
U(1) gauge theory. Section 4 is devoted to the summary.

This article is based on my earlier works Refs. 2)-5).

§2. Preliminaries

2.1. Gauge fields on noncommutative R*

The coordinates z# (u =1, --,4) of the noncommutative R* obey the following
commutation relations: '

(39, 3Y] = 0, (2-1)

where the noncommutative parameter §*V is a real constant matrix. By SO(4)
rotation in R* one can set the components of the matrix 8#” to zero except 612 =
—621 and 63* = —0*3. 1 introduce the complex coordinates by

21 =82 +iz!, 2 =244z, (2-2)
Their commutation relations become

[z1,21] = (1, [22,22] = (o,
[21, 22] = [21, 22] =0, (23)

where ¢; = —260'2 and ¢(; = —26%%. In this article I study the case where 6*¥ is
anti-self-dual, i.e. 812 4+ 3% = 0. This means (; = —(2. Further, I set (; > 0. Then,

I define
/1 1
= T =
a1 = z1, G = zZ1, 2-4
! Cll ! (:11 (24)

1 t 1
ag = 4| —22, a5 =4/—22. 2-5
2 SRR (2:5)

I realize a' and a as creation and annihilation operators acting in a Fock space ‘H
spanned by the basis |n;,n2):

al{ Inl,ng) =vn +1 |n1 + 1,72,2) , a1 |n1,n2) = /1 |n1 — 1,'n,2) R
CL% |ni, ne) = VvVno +1 |ny, ne + 1), a2 In1, n2) = /na |n1,ng — 1). (2:6)
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The commutation relation (2-1) has automorphismes of the form ##* — Z* + y*
(translation), where y* is a commuting real number. I denote the Lie algebra of this
group by g. These automorphismes are generated by the unitary operator T,

T, = exp[y*d,], ‘ (2:7)
where I have introduced a derivative operator (’5“ by

8, = iB,,z". (2:8)

Here, B,, is an inverse matrix of #*“. The derivative operator 5” satisfies the
following commutation relations:

[éua "i'u] = 5:1,) [é”’ él/] = in,u- (29)
From (2-9) we obtain
T, &# T} = &* + y*. (2-10)

For any operator O I define derivative of operator O by the action of g:

A 1 A A\ A A
0,0= lim <o (Tsyn OT}, — O) = 8, 0. (2-11)

The action of the exterior derivative d on the operator O is defined by

dO = (8,0) dz*. (2-12)
Here, the dz# are defined in the usual way, i.e. they commute with ## and anti-
commute among themselves: dz#dx¥ = —dz¥dz*. The covariant derivative D is
written as _
D=d+ A. (2-13)

Here, A = A,dz* is a U(n) gauge field. A, is an n x n anti-Hermite operator-valued
matrix. The field strength of A is given by

1
F=D?=dA+ A% = 5 Fuvdatdz". (2-14)
I consider the following Yang-Mills action
1 174
S = 4—92 (7T(:1)2 TI”HtI‘U(n) F, FH. (2-15)
The action (2-15) is invariant under the following U(n) gauge transformation:
A—UdUT + UAUT. (2-16)

Here, U is a unitary operator:

UU' =UWU =1dy ® Id,,, (2-17)
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where Idy is the identity operator acting in H and Id, is the n x n identity matrix.
I will also simply write this kind of identity operators as “1”, if this is not confusing.
The gauge field A is called anti-self-dual if its field strength obeys the following
equation:

Ft=Z(F+*F) =0, (2-18)

N

where * is the Hodge star.*) Anti-self-dual gauge fields minimize the Yang-Mills
action (2-15). An instanton is an anti-self-dual gauge field with finite Yang-Mills
action (2-15).

One can consider a one-to-one map from operators to ordinary c-number func-
tions on R*. Under this map, noncommutative operator multiplication is mapped to
the so-called star product. The map from operators to ordinary functions depends
on an operator ordering prescription. Here, I choose the Weyl ordering.

Let us consider Weyl ordered operator of the form

-~ 4 -~ oy A
@)= [ (—;i;r];sz(k) e (2:19)

where kZ = k,2". For the operatbr—valued function (2-19), the corresponding Weyl
symbol is defined by

4 ~ .
fw(z) = (—% fw (k) etk (2-20)

where the z# are commuting coordinates of R%. 1 define 2w as a map from operators
to corresponding Weyl symbols:

2w (f(@)) = fw(@). (2-21)
One can show the relation Try{exp (zk:&)} = (7¢1)? 6@ (k). Then, one obtains
()6t ey () = (nG)? Trw f(3) = [ o fw(@).  (222)

The star product of functions is defined by

f(@) * g(z) = 2w (2 (£ (2)) 25 (9(2))) - (2-23)
Since
otk oik'E _ o—30* kuk,' jiki+ik'E (2-24)
the explicit form of the star product is given by
f(@) * g(z) = 2 Tm 5 f(z)g(z)| ,_ - (2:25)
T =T

*) In this article I only consider the case where the metric on R* is flat: gu, = 6.0
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From the definition (2-23), the star product is associative

(f(2) * g(z)) x h(z) = f(z) * (9(z) * h(z)). (2-26)
We can rewrite (2-15) using the Weyl symbols as

1

In (2:27), multiplications of the fields are understood to be the star product. The
instanton number is defined by

1
—g—ﬂ_—i/tr(](n) FF, (228)

and takes an integral value.

2.2. Review of the ADHM construction

The ADHM construction is a way to obtain instanton solutions on R* from
solutions of some quadratic matrix equations. It was generalized to the case of non-
commutative R* in Ref. 1).*) The steps in the ADHM construction of instantons on
noncommutative R* with noncommutative parameter *¥, gauge group U (n) and
instanton number k is as follows:

1. Matrices (entries are c-numbers):

B1,By: k x k complex matrices,
I,JV: k xn complex matrices. (2-29)

2. Solve the ADHM equations:

ur = ¢, (real ADHM equation) (2-30)
pe = 0. (complex ADHM equation) (2:31)

Here ¢ = 2(6'? + 63%) and ug and pc are defined by

ur = [By, BY) + [Bs, BY) + 11" — J1, (2:32)
HC = [Bl, Bz] + 1J. (233)

3. Define 2k x (2k + n) matrix D, :

pr Tz
z = 0_1 )

T, = (B2 — 22, B1 — 21, I),
ol = (—(Bl - z), B} — 7, Jt). (2-34)

Here, z and Z are noncommutative operators.

*) For more detailed explanations on the ADHM construction on noncommutative R?, see
Refs. 5) and 6).
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4. Look for all solutions to the equation
Dw® =0, (a=1,---,n) (2-35)

where ¥(® is a 2k + n dimensional vector and its entries are operators. Here,
we must impose the following normalization condition on ¥{®):

w(tg®) = geb1q,, . (2-36)

In the following I will call these zero-eigenvalue vectors ¥(®) zero-modes.
5. Construct a gauge field by the formula

A% = g1, 00 (2-37)

where a and b become indices of the U(n) gauge group. Then, this gauge field
is anti-self-dual and has instanton number k.
From the gauge field (2:37), one obtains the following expression for the field strength

F=(u] ¢ &)

dz15-dz1 + dZa2-dz  —dz 2-dz +dz55-dz1 0 U
—dZ2E+zd51 + dzl'Ddezg dz Ddeiz + dz; Dizdzl 0 ()
0 0 0 3

= Fapum > (2:38)

where I have written

(7 1 k X n matrix,
U=\ 1o = g ... gl | Y2 1 k X n matrix, (2-39)
& ¢ :n X n matrix.

In the above I have suppressed U(n) gauge indices. F,,,, is anti-self-dual: F}j +
Fy3 =0, F12 =0.

There is an action of U(k) that does not change the gauge field constructed by
the ADHM method:

(B1, B2, I1,J) = (uBju™ Y, uBou™1, ul, Ju™1), ueU(k). (2-40)

The moduli space M (k,n) of instantons on noncommutative R* with noncommu-
tative parameter 6*¥, gauge group U(n) and instanton number k is given by

Mc(k,m) = pg}(Q) N g (0)/U (k). (2-41)

Here, the action of U (k) is the one given in (2-40). As stated in the previous section,
in this article I consider the case where { = 0. In this case the moduli space M(k, n)
has so-called small instanton singularities which appear when the size of the instanton
becomes zero. When ¢ # 0, the moduli space M¢(k,n) does not have small instanton
singularities. 9
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§3. “Topological” charge of U(1) instanton on noncommutative R?

3.1. U(2) one-instanton solution and the small instanton limit

In this section I first construct a U(2) one-instanton solution by the ADHM
method, as a preparation for the U(1) gauge group case. In this case, By and B2
are 1 x 1 matrices, i.e. complex numbers. Therefore, commutators with B; and Bs
automatically give zero, and a solution to the ADHM equation (2-32) is given by

Bi=B;, I=(p0), J'=(0p) (3-1)

with B; and By being arbitrary. B; and B; are parameters that represent the
position of an instanton. Due to the translational invariance on noncommutative
R?, it is sufficient if we consider the By = By = 0 solution. Then, from (2-34) we

obtain
_ —Z2 —21 P 0 .
p-( 2 20 0) 52)

A solution ¥ to the equation D,¥ = 0 is given by

= o) g2
([ » p
W(l) = 0 ! = 0 t L )
%2 Vz121 + Zaz2 + p? \/Zl—azt \/C1(N + 2) + p?
\ -2 ~V/Gia}
[ 0 0
g _| P ves 1 = A2 1 (3-3)
2] 2121+ 2229+ p 1401 / N + p2
\ 22 VCiaz o P
Here, N = a{al + agag. The zero-mode ¥ is normalized as in (2:36):
Id 0
ty — H .
oy = ( 0 Idy ) : (3-4)
The gauge field is given by (2-37):
' Au(z) = wlo,w. (3-5)
The explicit form of the field strength can be obtained from (2-38):
i L 0
F- - _F— — (C1(N+1)+p2)(C1(N+2)+p2) )
11 ADHM 22 ADHM 0 o P ’
CL(N+p2)(C1(N+1)+p?)
0o - 207
Fl% ADHM — —FQ_TTADHM - 0 (41(1\74-1)4-,)2)\/0(OI\AHLpz)\/Cl(N—i_2)+p2 ) (3-6)
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From (3-6) one can observe that the parameter p characterises the size of the instan-
ton.™ .

Now, let us consider the small instanton limit, i.e. p — 0. The moduli space
(2-41) becomes singular at p = 0. When p = 0, the zero-mode ¥ takes the following
form:

U= g g@
0 0
0 1 |()a0> <Oa(”
w® = J | T v® =1 g% : (3:7)
% N +2 170
—ay an =

- where ——— is defined by

No
L z 1 In1,n2) (n1, na| (3-8)
— = —— N1, N2) (N1, 2| . .
Nio  (nima)#(00) VM T 72
Thus when p = 0, the explicit form of the gauge field is given by
Au(&)=U'0,U+ (1 -¢)8,(1—q), (3-9)
where .
.'.
U= ——1_( %2 M ) (3-10)
and

_ [ Idy 0
=\ 0 Idy-10,0)(0,0] /"

Note that ¢ is a projection operator: q¢*> = q,q' = q. U satisfies the following
equations: )

(3-11)

UU' =1dy ® I1dy, U'U =¢. (3-12)

This means U is a partial isometry and gives a one-to-one map between ¢H®? and
H®2. In the 7 = /Z,TF — oo limit the Weyl symbol of U becomes

Qw (U) > % ( 22 ) . (3-13)

—21 22

*) However, on noncommutative R* the functional form of the try2) F'F' depends on gauge
choice. Here I have chosen a gauge where the commutative limit is smooth.
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U is a generator of the winding number 73 (U(2)). Thus U gives a relation be-
tween topological quantity (winding number) and algebraic quantity (dimension of
projection).

The field strength becomes

Fﬂu(i) = 7:(1 - Q)BHV = ( 8 IO,0>0(0,0| ) iBlw' (3'14)

Note that £2y,(|0,0) (0,0]|) = 4e7 ", Thus the p = 0 corresponds to the “minimal
size” instanton. The Weyl symbol of the field strength in this case is a Gaussian
function concentrated at the origin, with spreading of order ~ /7. It is explicitly
non-singular. From (2-22), (2-28) and (3-14), the instanton number is equal to the
dimension of the projection 1 — gq.

3.2. “Topological” charge of U(1) instanton on noncommutative R4

Now let us consider the case where the gauge group is U(1), which is our main
subject. The form of the instanton in this case can be anticipated from the small
instanton solution in U(2) case (3-9). We look for U which satisfy

UU' = 1dy, UU = 1dy — |0,0) (0,0| = p, (3-15)
and construct a gauge field by
Au=U'0,U + (1 - p)du(1 - p). (3-16)

It can be shown that if U satisfies Eq. (3-15), the gauge field (3-16) is anti-self-
dual (when the noncommutative parameter is anti-self-dual). 7):4) There are infinitely
many operators which satisfy (3-15), but they are all gauge equivalent. Following is
a one choice for such U:

U=U =(1-]0)(0],) + i In1,0) (ny +1,0]

n1=0

= (1-10) (0l, (3:17)

1
+ 10) (0] —=—=a,
where |m) (n|y, = 300 _¢ |n1,m) (n1,n| and 7y = a‘;al. U, gives a one-to-one map
between pH and #, as shown in Fig. 1.
Now let us calculate the instanton number. It is written as a surface term in the
same way as in the commutative case:

1 1 1
- FF =—— dK = ——— K -18
8m2 R 82 R4 872 A/surfaceatoo ’ (3 )
where
2 3 1.3
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n, 0,
U‘I’
03 |13 |23 |33 ) 03 | 1,3 |23 |33
o B
0,2 1,2 | 2,2 | 3,2 0,2 1,2 | 2,2 3,2
0,1 1,1 2,1 3,1 — 0,1 1,1 2,1 3,1
% 10 | 20 | 30 Ui 00 | 1.0 | 20 | 3.0
% —t —~— —— ——
n, n,
Fig. 1.

Notice that the Weyl symbol of 1 — p2 = |0) (0|, appearing in U; does not vanish
around the zo = 0 plane even if we take r to infinity:

2w (10) (0],) = "G, (3-20)

From (3-20) we observe that the gauge field exponentially damps as r2 = | 22| — o0.
Therefore in order to calculate the surface term we can choose 7 = |2z1| = R1 (const.)
surface and take Rj to oo.. '

' 1
/ dK = K=—- A3, (Ri — o) (3-21)
R4 1‘1:R1 3 7‘1=R1
Let us consider 71 — oo behaviour of U;. I introduce the polar coordinates on z;
plane:
71 = 1€, (3-22)
Then in the 71 — oo limit the Weyl symbol of \/%ﬁal becomes
1 .
Qw [ ———=a1 ) — €. — 323
w ( NOES 1) e, (r1— o) . (3-23)

Equation (3-23) essentially explains the topological origin of the instanton number.
From (3-23) we obtain

Uy —p2+ (1— pg)ei"b =(1- p2)(ez’¢ —~1)—-1. (r1 — o0) (3-24)

At large 71, the gauge field becomes

Ay, — 0, . (3-25)

Ag — UJogUL = i(1 — p2) = 4]0) (Ol (3-26)
. ) 1

A, = Uj8,U = —e(e™™ — 1), /C— 0 (1], (3-27)
1

. 1
Az, = Ulds, U1 = e7 (e - 1), / < I1Y(0l,.  (r1—o0)  (3:28)
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It is convenient to use Weyl symbol for the calculation in z; plane and operator
calculus for z; plane:

2w
/ A3 = [ dp2i (n(1) traAg A, Az, x 3. (Ri—o00)  (3:29)
7‘1=R1 0

Notice that [ dzedZy = [ 2idzi1dzy = 2i (7(1) trz, and troAg Az, A,, = 0 (give care to
the ordering). Thus

27 . .
/ AB=2r [ dp(e® —1) (e —1) x 3
7‘1=R1—)00 0

= 2472 (3-30)

and the instanton number becomes

1 1 1,
—S?/Fsz/gA ~1 (3-31)

Since the gauge field only has |0) (0], _

|1) (O], and |0) (1|, components, the Z-
trace over ng essentially reduces the in-

stanton number to the winding number

of the gauge field Ay around S! on z; — \
plane (Fig. 2). Thus the instanton num- b ?
ber is characterized by 71 (U(1)).*) In- \ 7

deed in the ¢ integration, only the con- l 2
stant part contributes, and A,, and A3, \ ________ i
only give appropriate numerical factor.

This explains the origin of the integer in- 1 A¢

stanton number of the noncommutative

U (1) instanton. Fig. 2. At large r; the gauge field concentrates
around 22 = 0 plane. After the integration
over 22 the instanton number reduces to
the winding number of gauge field around
S on z; plane.

The above discussion is a gauge de-
pendent description. However, notice
that any operator that satisfies (3-15)
are gauge equivalent and necessarily in-
troduces surface contribution.

§4. Summary
In this article I showed that the integer instanton number of the U(1) instanton

on noncommutative R* can be understood as topological winding number. I first
constructed a U(2) one-instanton solution by the ADHM method and studied its

*) The star product has rigid structure and it is quite difficult to consider continuous defor-
mations of the noncommutative R*. However, after fixing the gauge, the effect of the star product
in the direction of the 2, plane disappears at large r1. Then, we may regard this m(U(1)) as
“topological” quantity on the z; plane which is invariant under continuous deformations of S! at
infinity.
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small instanton limit. In this limit the solution is essentially described by the partial
isometry. The partial isometry is a map from HO2 to gH®? where ¢ is a projection
operator. On the other hand the partial isometry is a generator of the instanton
winding number classified by 73 (U(2)). The instanton number can be understood
as the dimension of the projection 1 — g, as well as the winding number. From
the explicit U(2) one-instanton solution, one could anticipate the form of the U(1)
solution. U(1) instanton solution is similar to the small instanton limit of the U(2)
solution and it is also essentially described by partial isometry. The partial isometry
in this case is a map from H to pH where p is a projection operator, and the
instanton number is classified by 71 (U(1)). It also coincides with the dimension of
the projection 1 — p. It is straightforward to extend the discussions in this article to
the case of multi-instanton solutions.

In this article I studied the case where the noncommutative parameter 6#” is anti-
self-dual. 74 However, the arguments on the topological origin of U(1) instantons
are essentially the same for general 6#¥, although the form of the instanton solution
is quite different for different 8+". Before ending this article, I make a brief overview
of the original developments of the subject studied in this article.

The explicit U(1) instanton solution on noncommutative R* was first given in
Ref. 1) in the case where the noncommutative parameter is self-dual. However, this
solution was written in a noncommutative analog of the singular gauge. In noncom-
mutative case, this can be defined without singularity although this is an analog of
the singular gauge in commutative case, but appropriate modification of the covari-
ant derivative is necessary. 2) In this noncommutative analog of the singular gauge, a
one-to-one correspondence® between projection operators and U(1) instanton nat-
urally appears 2) and it'is a noncommutative geometric description of the ideal de-
scribed in Refs. 10) and 11). By extending the notion of unitary gauge equivalence to
Murray-von Neumann equivalence of projections, one can consider generalized gauge
transformation from singular-type gauge to usual-type gauge. 8),3):6) The existence
of the usual-type gauge means that in principle one can avoid the singular gauge
which requires the modification of the covariant derivative. However, in the case of
U(1) gauge group, since there is no commutative counterpart of U(1) instanton, it
is almost unavoidable to take two steps, first construct an instanton in singular-type
gauge and then transform it to usual-type gauge. Therefore the results in Refs. 2),3)
are useful also in this respect. The generalized gauge transformation is described
by partial isometry. The important point is that the partial isometry gives a rela-
tion between topological quantity and algebraic quantity. 3) Although the way of the
appearance of the partial isometry is slightly different for different noncommutative
parameter, this essential point is the same. In Ref. 3) I discussed the case of U(2)
gauge group as an example. In the case of U(1) gauge group, the partial isometry
takes a bit unfamiliar form because there is no commutative counterparts to this
case. Hence the peculiar nature of the noncommutativity typically appears in this
case. The explicit form of the partial isometry which is suitable for understanding

*) This correspondence is slightly different from the case discussed in this article where the
noncommutative parameter is anti-self-dual.

NI | -El ectronic Library Service



Publication O fice, Progress of Theoretical Physics

“Topological” Charge of U(1) Instantons on Noncommutative R4 91

the topological origin of the U(1) instantons on noncommutative R* was given in
Ref. 5), and it is essentially the same to the one discussed in this article.
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