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"Topological"
 Charge  of  U(1)  Instantons  on  Noncommutative  R4

Kazuyuki  FuRUUCHI

     Laboratorst for Particle and  IVuclear Physics,
High EneTlgy Accelerator Research Organization (KEK],),
             71sukuba 305-0801, Japan

   Non-singular instantons are  shown  to exist  on  noncommutative  R4  even  in U(1) gauge
theory.  Their existence  is primarily due  to  the  noncommutativity  of  the  coordinates.  The
integer instanton number  on  the noncommutative  R4  can  be understood  as  winding  number

of  the  U(1)  gauge  field as  well  as  dimension  of  a  certain  projection operator  acting  on  the
representation  space  of  the noncommutative  coordinates,

gl. Introduction

    Noncommutativity  of  space  coordinates  is expected  to prevent singular  configu-

ration  in field theory. R)r example,  in their pioneering  work,  
i)

 Nekrasov and  Schwarz
constructed  an  explicit  U(1) one-instanton  solution  on  noncemmutative  R4. It is a
typical appearance  of  the effect  of  noncommutativity  because in ordinary  U(1) gauge
theory  on  commutative  R4, it can  be shown  that  non-singular  instanton  cannot  ex-

ist. For the ordinary  U(1) gauge  field A  on  commutative  R4, non-trivial  instanton
number  is incompatible  with  the vanishing  of  field strength  F  at  infinity:

          
-s;2

 .4i4  FF  
=

 
-s;2

 Yk4 d(AF)  =

 
-sl2

 .Zgg.,.,,.(AF)  =O  (1 1)

Therefbre  if U(1) gauge field has non-trivial  instanton  number,  there must  be a  point
where  the field configuration  becomes  singular  and  gives new  surface  contribution,

other  than  S3 at  infinity. Then, why  U(1) gauge  field on  noncommutative  space

managed  to ha:ve non-trivial  instanton charge  in the case  of  Ref. 1) ? Of  course  it
must  be due to the noncommutativity  of  the  coordinates,  but the  situation  is not  so

simple.  The  difference between ordinary  and  noncommutative  gauge  theory  is the
multiplication  of  gauge  fields (pointwise multiplication  vs  star  product)  and  gauge
field itself is written  as  function on  R4. 0ne  can  explicitly  check  that the  solution

is not  singular.  On  the  other  hand, naively  thinking, the effect  of  noncommutativ-

ity should  be suppressed  at  distance much  larger than  the scale  introduced  by the
noncommutativity.  Therefore the  noncommutativity  seems  irrelevant to the  surface

term, which  is infinitely fai away.  So even  in the noncommutative  case  it seems  im-
possible to construct  non-singular  U(1) instantons, However, explicit U(1) instanton
solutions  do exist.  What's  wrong  with  the above  arguments  ?

   The  answer  is that above  naive'expectation  is wrong.  The  effect  of  noncommu-

tativity does not  vanish  even  at  the long distance, in the case  of  U(1) gauge group.
The  purpose  of  this article  is to give precise explanation  of  this fact. Along the way

we  will  find a  beautifu1 relation  between topological quantity  and  algebraic  quantity
on  noncommutative  space.
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                                                               .

   Organization of  this article  is as  fo11ows, In g2, as  preliminaries, I give reviews  on

gauge fields on  noncommutative  R4  and  on  the ADHM  construction  of  instantons. In

g3, I first construct  an  explicit  U(2) one-instanton  solution  by  the  ADHM  method

and  consider  its small  instanton limit. In this article,  to make  things concrete,

I consider  the  case  where  the noncommutative  parameter  is anti-selfdual.  Some

remarks  on  other  cases  are  given in the last summary  section.  Next,I  construct  a

U(1) one-instanton  solution.  It turns out  that U(1) one-instanton  solution  can  be

constructed  in a  similar  way  to the small  instanton limit of  the U(2) one-instantgn

solution.  ThenIgive  a  topological explanation  to the integer instanton number  in

U(1) gauge theory.  Section 4 is devoted te the summary.

   This article  is based on  my  earlier  works  Refs. 2)-5). 
'

S2. Preliminaries

2.1. Gauge fields on  noncommutative  R4

   The  coordinates  xps (pa =  1, ･ ･ - ,
 4) of  the noncommutative  R4  obey  the fo11owing

commutation  relations:  

'

[di", xv] =  iepav, (2-1)

where  the  noncornmutative  parameter  eptU is a  real  constant  matrix.  By  SO(4)

rotation  in R4  one  can  set  the  components  of  the matrix  ePV to zero  except  ei2 =

-e2i  and  e34 =  -e43.  I introduce the  complex  coordinates  by

zl =  di2 +iali, z2  =  di4+ith3. (2･2)

Their commutation  relations  become

[Zl,Z'1] =  gl, [Z27Z'2] =  <2,

[Zl, Z2] =  [Zl, 22] ==  O) (2･3)

where  Ci =  -2ei2  and  <2 =  -2034.  In this article  I study  the case  where  e"" is

anti-selfdual,  i.e. ei2 +  e34 =  O. This  means  Ci =  
-<2.

 Further, I set  Ci >  O. Then,

I define

al  !  V:lzl,
a2  i  V?lz2,

ai  
--
 V?lizi ,

as  !  v
(

iliz,
(2･4)

(2･5)

I realize  at  and  a  as  creation  and  annihilation  operators  acting  in a  Ibck  space  7t

spanned  by  the  basis lnii n2>:

al  Ini,n2> =  Vili-iFir lni +  i,n2>, ai  lni,n2> =  ViTil lni -  1,n2>,

a5  lni, n2>  =  Vii17;ii lni, n2  +  1> , a2  lni, n2>  =  v7ii lni, n2  
-
 1> . (2･6)
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   The  commutation  relation  (2-1) has  automorphismes  of  the  form nv  F>  nv +  y"

   (translation), where  yP is a  commuting  real  number.  I denote the Lie algebra  of  this

   group by g. These  automorphismes  are  generated by the unitary  operator  7Y

                                7Y =- exp[y"b.],  (2･7)

   where  Ihave  introduced  a  derivative operator  b" by

                                 El,!iB..th". (2･8)

   Here, Bp.  is an  inverse matrix  of  eP". The  derivative operator  bpa satisfies  the

   fo11owing commutation  relations:

                          - AA

                         [oj,alV] ==  6K, [Op,0y]=iBpu･ (2'9)

   From  (2･9) we  obtain

                              [Ziv te" IV ==  dipa+yP, (2･10)
                  A A

   Iior any  operator  O  I define derivative of  operator  O  by the action  of  g:

                   aptOi  ,,1.im., 6t,, (zs."Or3I,. -  o) -  [s.,o]. (2.11)

   The  action  of  the exterior  derivative d on  the operator  O is defined by

                               dOi(O.O)  dx". (2-12)

   Here, the dxP  are  defined in the usual  way,  i.e. they  commute  with  aP and  anti-

   commute  among  themselves:  dxptdx" =  
-dx"dxpt.

 The  covariant  derivative D  is
   written  as

                   . D=d+  A. (2-13)
   Here, A  =  Aptdx" is a  U(n) gauge field. A"  is an  n  ×  n  anti-Hermite  operator-valued

   matrix.  The  field strength  of  A  is given by

                       F=-  D2=dA+A2!;17),.dx"dxV.  (2･14)

   I consider  the fo11owing Yang-Mills action

                        s-1
                         

-
 4g2 

(7<i)2 
r]]r7ttru(.)

 I},.Fpa". (2･ls)

   The  action  (2･15) is invariant under  the foIlowing U(n) gauge  transformation:

                             A.UdUt+UAUt.  (2･16)

   Here, U  is a  unitary  operator:

                           UUt=UtU=Id7tXIdn,  (2'17)

                                                            NII-Electronic  
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where  Idu  is the identity operator  acting  in 7t and  Idn is the n  × n  identity matrix.

I will  also  simply  write  this kind of  identity operators  as  
`Cl",

 if this is not  confusing.

The  gauge field A  is called  anti-selfidual  if its field strength  obeys  the fbllowing

equation:

                          F+Ei(F+*F)  =O,  (2･18)

where  *  is the Hodge  star.')  Anti-selfidual gauge  fields minimize  the  Yiing-Mills

action  (2･15). An  instanton  is an  anti-se}fdual  gauge  field with  finite Yang-Mills

action  (2･15).
    One  can  consider  a  one-to-one  map  from operators  to ordinary  c-number  func-

tions on  R4. Under  this map,  noncommutative  operator  multiplication  is mapped  to

the  so-called  star  product.  The  map  from  operators  to ordinary  functions depends

on  an  operator  erdering  prescription. Here, I choose  the Weyl  ordering.

    Let  us  consider  Weyl  ordered  operator  of  the fbrm

                        fA(±) =f  (g;ig, fny.(k) etkdi, (2 19)

where  kte ii kpal". For the operator-valued  function (2･19), the corresponding  Weyl

symbol  is defined by

                       fw (x) -f  (g;;, 
fu (k) etkX,  (2･20)

where  the xP  are  commuting  coordinates  of  R4. I define Ow  as  a  map  from operators

to corresponding  Weyl  symbols:

                           9w(fA(th))-fw(x).  (2'21)

One  can  show  the relation  
'I\"{exp

 (ik2)} =  (TCi)26(4)(k). Then,  one  obtains

            (27)2VEiEIb 
rllrr7t

 f(di) -  (T<i)2 
rrr7t

 j¢ ) =  f d`x fu(x).
The  star  product  of  functions is defined by

                  f(x) *  g(x) i  9w(9w'  (f(,x)) nwi  (g(x))) .

Since

                      eiki  erk't  =  e-ieP"h"le"'eikdi+ik'di,

the  explicit  form of  the sta:r product  is given by

                 f(.) .g(.)  ..  ege""bgt. 
rp
 se9T'f(x)g(x')  

.,=.
 .

   
"}

 In this article  I only  consider  the  case  where  the  metric  on  R4  is flat: g.. =  6p..

(2･22)

(2･23)

(2･24)

(2･25)

NII-Electronic  
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From  the  definition (2･23), the  star  product is associative

                 (f(x) *g(x)  )t h(x) =  f(x) ± (g(x) th(x)  ). (2･26)
We  can  rewrite  (2･15) using  the  Weyl  symbols  as

                         S=  4}2 ftru(n) F*E  (2･27)

In (2･27), multiplications  of  the fields are  understood  to be the star  product.  The

instanton  number  is defined by

                           -s;2  ftru(n) FF,  (2･2s)

and  takes an  integral value.

2.2. Review  of the ADHM  construction

   The  ADHM  construction  is a  wacy  to obtain  instanton  solutions  on  R4  from
solutions  of  some  quadratic  matrix  equations.  It was  generalized to the case  of  non-

commutative  R4  in Ref. 1).*) The  steps  in the ADHM  construction  of  instantons on
noncommutative  R4  with  noncommutative  parameter eP", gauge group U(n) and

instanton  number  k is as fbllows:

1. Matrices  (entries are  c-numbers):

                     Bii B2  : k ×  k complex  matrices,

                      I,Jt:k × n  complex  matrices.  (2･29)
2. Solve the  ADHM  equations:

                  paR=C,  (real ADHM  equation)  (2･30)
                  pac=O.  (complex ADHM  equation)  (2･31)

  Here  < i  2(ei2 +  e34) and  paR and  pac are  defined by

                   pR  i  [Bi, Bl] +  [B2, B4]+IJt  -  Jt J, (2･32)
                   pacE[Bi,B2]+IJ-  (2･33)
3. Define 2k × (2le +  n)  matrix  D.  :

                     Dz  i(  a7Zt.t ),
                     7le i(B2  -  z2,  Bl  -  zl,  I),

                     a;i(-(Bi-z-i),  Bl-22,  Jt ). (2･34)
  Here, z  and  z- are  noncommutative  operators.

 
')

 Fbr more  detailed explanations  on  the  ADHM  construction  on  noncommutative  R4, see

Refs. 5) and  6).
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  4. Look  for all so}utions  to the equation

                         D.ut(")='O,  (a=1,･･･,n) (2･35)

    where  V(a) is a  2ic +  n  dimensional vector  and  its entries  are  operators.  Here,

    we  must  impose  the fo11owing normalization  condition  on  9(a):

                             pt(a)tq(b) ..  6abldn. (2･36)

    In the fo11owing I will  call  these zero-eigenvalue  vectors  di(a) zero-modes.

  5. Construct a  gauge  field by  the formula

                             A:b ..,  ut(a)to.v(b), (2･37)

    where  a  andbbecome  indices of  the  U(n) gauge group.  Then,  this gauge  field

    is apti-selfdual  and  has instanton number  ic.
From  the gauge field (2･37), one  obtains  the fo11owing expression  for the field strength

    F-(thl  ipS ct)

-F

 dzl -SIdz-1 +  dz-2 ±dz2

 
-dz2

 ±dz-i +  dzri ±dz2

          o

ADHM  7

where  I'hatre written

VE $,2i )- ( v(i)

-dxl
± dz-2 +  dz-2 S;dzl

dz2± dz'2 +  dz-1±dzl
         o

ut(n)'
thith2g

o

oo $c2i)
(2･38)

: ic × n  matrix,

: k × n  matrix,  (2･39)
: n  ×  n  matrlx.

In the  above  I have suppressed  U(n)  gauge indices. FK...  is anti-self-dual:  4i +

42  ==  O, 11, =  O.

   There  is an  action  of  U(ic) that  does not  change  the gauge  field constructed  by
the  ADHM  method:

          (Bi, B2,I, J) e  (uBiu-i, uB2u-i,  ul,  Ju-i), u  E U(k). (2･40)
The  moduli  space  Mc(k, n)  of  instantons  on  noncommutative  R4  with  noncommu-

tative parameter  epa", gauge greup U(n)  and  instanton number  ic is given by

                    Mc(ic, n)  =  paki (C) n  pau' (O)/U(k). (2･41)

Here,  the  action  of  U(k) is the  one  given in (2･40). As  stated  in the previous  section,

in this article  I consider  the case  where  C =  O. In this case  the moduli  space  Mg(k, n)

has so-called  small  instanton  singularities  which  appear  when  the  size  of  the instanton

becomes  zero.  When  C f O, the moduli  space  Mc(k,  n)  does not  have small  instanton
singularities.9)

NII-Electronic  
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      S3. "Tbpological"  charge  of  U(1)  instanton  on  noncommutative  R4

   3.1. U(2) one-instanton  solution  and  the small  instanton  limit

      In this section  I first construct  a  U(2) one-instanton  solution  by the ADHM

   method,  as  a  preparation for the U(1) gauge  group  case.  In this case,  Bl  and  B2

   are  1 × 1 matrices,  i.e. complex  numbers.  Therefbre, commutators  with  Bi  and  B2

   automatically  give zero,  and  a  solution  to the ADHM  equation  (2･32) is given by

                       Bi  =  B2, I=  (p O), Jt=  (O p) (3･1)
   with  Bi and  B2 being arbitrary.  Bi and  B2  are  parameters  that  represent  the

   position of  an  instanton. Due  to the  translational invariance on  noncommutative

   R4, it is suMcient  if we  consider  the Bi  =  B2  =  O solution.  Then, from (2･34) we

   obtain

                         Dz=(
-.-C2

 ::.; 62) (3'2)

   A  solution  ut to the  equation  P.pt =  O is given  by

ut =

V(i) =

ut(i) pt(2)

poZ2-Zl

1

1

pt(2) =

  p
  ovciaS

-Vlliial

1

opZlZ2

XIZ-1 +  z-2x2  +  p2

1

z-lzl  +  z2  z-2 +  p2

     vtv=  ( Ido7t
by (2･37):

        Ap@)  =

               2

  o

  pVcia,,

Vlia2

oId"

Ci (IV +  2) +  p2

  1

<iN +  p2

]

(3-3)

Here, NE  a:ai+a;a2.  ize :

                                           )･ (3･4)

The  gauge  field is given

                                    utte.ut. (3･5)
The  explicit  fbrm of  the field strength  can  be obtained  from (2-38):

 qfi....=-i}is-.D..=(
(ltl"(IiorFiJMIIIiT(iifT'(N+i)+P')(Ci(N+2)+P2)

 -EI,-eiffimsllllacifisiEis
(N+p,)(c;(N+i)+p2))

 "Flill'}ADHM=-Fl2Tl-t....=  ( g -(it;(IiGIiliJl};ilS

i(N+i)+p2)  ci(2N2+p2) <,(N+2)+p2 ) (3.6)

'
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       Erom  (3･6) one  can  observe  that  the  parameter  p  characterises  the size  of  the  instan-
       ton.*)  .

           Now,  let us  consider  the  small  instanton limit, i.e. p  -  O. The  moduli  space

       (2･41) becomes  singular  at  p =  O. When  p =  e, the zero-mode  !l7 takes the fo11owing
       fbrm:

ut(1) =

pt =

ooaS-al

ut(1) ut(2)

1

Vpt5'

,

V(2) =

   o10,

 O> <O, Ol
     1aiv&E

     ia2

 vxii IE

1 (3･7)

where
 st 

is
 
defined

 
by

 
･

                rt i  (.,,.;)l (o,o) ImillF= ii l"i,n2> <ni,n21 
.
 (3.s)

Thus  when  p =  O, the  explicit  fbrm  of  the gauge field is given by                                                                   '          '

                     A.(th)=  Ut O.U+(1  -q)  O. (1-q), (3i9)

where

                        U! IIS i=i(-a.Si 
".I)

 (3io)

and

                      q=-(
Ido'`

 Id,,,mEoO,o><o,ol ). (3･11)

Note  that  q is a  projection operator:  q2 =  q, qt =  q. U  satisfies  the fbllowing
equations:  -

                        UUt=Id7tXId2,  UtU=q.  (3･12)
This means  U  is a  partial isometry  and  gives a  one-to-one  map  between q7te2 and

7t02. In the r E  VIEJIIiP -  oo  limit the Weyl  symbol  of  U  becomes

                        nw(U).;(  i.Z, :-I) (3･13)

    
")
 However,  on  noncommutative  R4  the  functional form  of  the  tru{2)FF  depends on  gauge

choice.  Here  I have  chosen  a  gauge  where  the  commutative  limit is smooth.

NII-Electronic  
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 U  is a  generator of  the winding  number  T3  (U(2)). Thus  U  gives a  relation  be-
tween  topological  quantity  (winding number)  and  algebraic  quantity  (dimension of

 projection).

    The  field strength  becomes

               F2tv(di)=z(1-q)B,Lu=(8  lo,o>O<o,ol )zBpu (3 14)

Note that Ow(10,O> <O,Ol) ==  4e-a'2. Thus  the p =  O corresponds  to the "minimal

size"  instanton. The  Weyl  symbol  of  the field strength  in this case  is a  Gaussian
function concentrated  at  the origin,  with  spreading  of  order  AJ  Vcr. It is explicitly
non-singular.  From  (2･22), (2･28) and  (3･14), the  instanton  number  is equal  to the
dimension of  the  projection 1 -  q.

3.2. "[Ibpological"

 chaTpe  ofU(1) instanton on  noncommutative  R4

    Now  let us  consider  the case  where  the  gauge group  is U(1), which  is our  main

subject.  The  fbrm of  the instanton  in this case  can  be anticipated  from the small

instanton solution  in U(2) case  (3･9). We  look fbr U  which  satisfy

                UUt  =  IdH, UtU=  Id" -  10, O> <O, Ol !p,  (3･15)

and  construct  a  gauge  field by

                     A.=UtojU+(1-p)of(1-p).  (3･16)
It can  be shown  that if U  satisfies  Eq. (3･15), the  gauge  field (3･16) is anti-selfi

dual (when the noncommutative  pararneter is anti-selfdual).  
7)i4)

 There are  infinitely
many  operators  which  satisfy  (3･15), but they  are  all gauge equivalent.  Fbllowing is
a  one  choice  for such  U:

                                      cx)

               U=  Ui !  (1 -  10> <O12) +  2  lni,O> <ni +  1,Ol
                                     nl=O

                                              1

                      
=(1-IO>

 <Ol2)+10> <O12 vfii-;rai, (3'17)

where  lm> <nl2 i  Z)ge,=o lni,m> <ni,nl and  fii -  aiai.  Ui gives a  oneto-one  map

between p7t and  7t, as  shown  in Fig. 1.

   Now  let us  calculate  the instanton  number.  It is written  as  a  surface  term  in the
same  way  as  in the  commutative  case:

             
-s;2

 J41` 
FF  =  

-s;2
 

.Zk4

 dK  =  -s;2  Y(l,,fa.. 
.t
 
..
 K' (3'18)

where

                     KiAdA+iA3=AF-gA3.  (3･lg)
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                                                n2

                                       Uny
                                    -

                                     .

                                       Ui

                                  nl  nl

                                       Fig. 1,

       Notice that the Weyl  symbol  of  1 -  p2 =  10> <O12 appearing  in Ui does not  vanish

       around  the  z2  =  O plane  even  if we  take  r to infinity:

                                               2-

                                Ow(Io>  <ol,)=e`qZ2Z2. (3･2o)

       From  (3･20) we  observe  that the gauge field exponentially  damps  as  r2  =-  lz21 -  oo.

       Therefbre in order  to calculate  the surface  term  we  can  choose  ri  i  lzi1 =  Ri  (const.)
       surface  and  take  Ri  to oo..

                      Yl, dK=  ll[,=.,K=-g Y[,..., A3･ (Ri ->  oo)  (3･21)

       Let us  consider  ri  ->  oo  behaviour of  Ui. I introduce the polar coordinates  on  zi

       plane:

                                      zi=rleidi.  (3-22)

       Then  in the ri  -  oo  limit the Weyl  symbol  of  ntiiial becomes

                           9w(thai)-eio.  (ri-oo) (3･23)

       Equation (3･23) essentially  explains  the topological origin  of  the instanton number.

       From  (3･23) we  obtain  ･

                  Ui -  p2 +  (1 -p2)eiip  =  (1 -p2)(eie  
-

 1) -  1. (ri -  oo)  (3･24)

       At large ri,  the  gauge field becomes

                  Ari ->  O, ' (3'25)

                  Aip .  U,t aipUi =i(1-p2)=iIO>  <Ol,, (3･26)

                  Az2 -  ul oz2 ui =  -eio(e'iip  -  i) VIE lo> <it2, (3･27)

                  A:, ->  ulo.-,ui =  e-`gb(eiq6 -  i)V:li  p> <oL, (ri -> oo)  (3･2s)

n2

O,31,32,33,3

O,21,22,23,2

O,11,12,13,1

1,O2,O3,O

O,31,32,33,3

O,21,22,23,2

O,11,12,13,1

o,o1',O2,O3,O
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It is convenient  to use

calculus  for z2 plane:

x      A3 1 ;Rl

Notice that fdz2dz-2 =

the  ordering).  Thus

(]harye

Weyl

of U(1)instantons

symbol  for the

on  Noncommutative  R4 89

calculation  in zi  plane  and  operator

=  yC
2T

 ddi 2i (T<i) tr2AtoAz2Ai2  × 3'

f 2idxidx2  =

f         A3 1=Rl-oo

2i (T<1) tr2,

=  2r va
2vr

 dip (ez

                            =  24T2
                                  '

and  the  instanton  number  becomes

                       -si2  fFF =

Since the gauge field only  has 10> <OI2,
ll><O12 and  10><ll2 components,  the
trace over  n2  essentially  reduces  the  in-

stanton  number  to the winding  number

of  the  gauge  field Aip around  Si on  xi

plane  (Fig. 2). Thus  the instanton num-
ber is characterized  by Ti(U(1)).')  In-

deed in the ip integration, only  the  con-

stant  part contributes,  and  Az, and  A22
only  give appropriate  numerical  factor.
This  explains  the origin  ofthe  integer in-

stanton  number  of  the noncommutative

U(1) instanton.

    The  above  discussion is a  gauge de-

pendent  description. However, notice

that any  operator  that satisfies  (3･15)
are  gauge  equivalent  and  necessarily  in-
troduces  surface  contribution.

 18T

(Ri -  oo) (3-29)

and  tr2AipAi,A.,  =  O (give care  to

ip -  1)(e-iip -  1) × 3

2f!A3
 

=
 1.

3

  /
  tflt

 iNs        Z

   
'

× .

   iA ¢

Fig. 2,

Z2

(3･30)

(3･31)

   At large ri  the  gauge  field concentrates
around  z2  =  O plane. After the  integration
over  z2 the instanton number  reduces  to
the winding  number  of  gauge  field around
Si on  ii  plane.

94･ Summary

    In this article  I showed  that the integer instanton number  of  the U(1) instanton
on  noncommutative  R4  can  be understood  as  topological winding  number.  I first
constructed  a  U(2) one-instanton  solution  by the ADHM  method  and  studied  its

   
')
 The  star  product  has rigid  structure  and  it is quite diMcult to consider  continuous  defor-

mations  of  the  noncommutative  R4.  However,  after  fixing the  gauge, the  effect  of  the star  product
in the  direction of  the  zi  plane  disappears at  1arge ri.  Then,  we  may  regard  this Ti(U(1))  as
`ttopological"

 quantity  on  the zi  plane which  is invariant  under  continuous  deformations of  Si at
infinity,
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small  instanton  limit. In this limit the  solution  is essentially  described by the  partial

isometry. The  partial isometry is a  map  from 7te2 to qUe2  where  q is a  projection

operator.  On  the  other  hand  the  partial isometry is a  generator  of  the instanton'

winding  number  classified  by T3  (U(2)). The  instanton number  can  be understood

as  the  dimension of  the projection 1 -  q, as  well  as  the winding  number.  FErom

the explicit  U(2) one-instanton  solution,  one  could  anticipate  the form of  the U(1)

solution.  U(1) instanton solution  is similar  to the small  instanton  limit of  the  U(2)

solution  and  it is'also essentially  described by partial isometry. The  partial isometry

in this case  is a  map  from 7t to p7t where  p is a  projection operator,  and  the

instanton number  is classified  by Ti  (U(1)). It also  coincides  with  the dimension of

the projection 1 -p.  It is straightforward  to extend  the  discussions in this article  to

the  case  of  rnulti-instanton  solutions.

    In this article  I studied  the case  where  the  noncommutative  parameter  epaU is anti-

selfdual.7),4)  However, the arguments  on  the topological origin  of  U(1) instantons

are  essentially  the same  for general ePV, although  the form of  the instanton  solution

is quite difierent for different e"". Befdre ending  this article,  I make  a  brief overview

of  the original  developments of  the  subject  studied  in this article.

    The  explicit  U(1) instanton solution  on  noncommutative  R4  was  first given in

Ref. 1) in the case  where  the noncommutative  parameter  is selidual.  However, this

solution  was  written  in a  noncommutative  analog  of  the singular  gauge. In noncom-

mutative  case,  this can  be defined without  singularity  although  this is an  analog  of

the singular  gauge  in commutative  case,  but appropriate  modification  of  the  covari-

ant  derivative'is necessary.  
2)

 In this noncommutative  analog  of  the singular  gauge, a

one-to-one  correspondence')  between projection operators  and  U(1) instauton  nat-

urally  appears2)  and  it is a  noncommutative  geometric  description of  the  ideal de-

scribed  in Refs. 10) and  11). By  extending  the notion  ofunitary  gauge equivalence  to

Murray-von  Neumann  equivalence  of  projections, one  can  consider  generalized gauge
transformation  from singular-type  gauge  to usual-type  gauge.8),3),6) The  existence

of  the  usual-type  gauge means  that in principle one  can  avoid  the  singular  gauge

whicfi  requires  the modification  of  the covariant  derivative. However, in the case  of

 U(1) gauge group, since  there is no  commutative  counterpart  of  U(1) instanton, it

 is almost  unavoidable  to take  two  steps,  first construct  an  instanton  in singular-type

 gauge  and  then  transfbrm  it to usual-type  gauge. Therefore the results  in Refs. 2),3)

 are  usefu1  also  in this respect:  The  generalized gauge transfbrmation  is described

          isometry. The  important point is that the partial isometry  gives a  rela-   partialby

 tion between topological quantity  and  algebraic  quantity. 
3)
 Although the way  of  the

 appearance  of  the partial isometry  is slightly  different for different noncommutative

 parameter,  this essential  point is the same.  In Ref. 3) I discussed the case  of  U(2)

 gauge group  as  an  exarnple.  In the ease  of  U(1) gauge  group, the partial isometry

 takes a  bit unfamiliar  form because there is no  commutative  counterparts  to this

 case.  Hence  the peculiar nature  of  the noncommutativity  typically appears  in this

 case.  The  explicit  form of  the pamtial isornetry which  is suitable  fbr understanding

   
*)

 This  cerrespondence  is slightly  different from  the  case  discussed in this article  where  the

noncommutative  parameter  is anti-selfdual,
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theRef.topological origin  of  the  U(1) instantons on  noncommutative  R4  was

5), and  it is essentially  the  same  to  the  one  discussed in this  article.glven

 ln
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