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Open String/D-Brane System
and Noncommutative Soliton*

Hiroshi ITOYAMA**)

Department of Physics, Graduate School of Science, Osaka University,
Toyonaka 560-0043, Japan

This is a review of the work on a p-p’, (p < p’) open string with B;; field, which leads
to the explicit identification of the Dp-brane with the noncommutative projector soliton via
the gaussian damping factor. )~ %

§1. Introduction

The p-p’, (p < p’) open string is interesting as the smaller brane appears as
topological defects on the worldvolume of the bigger brane. The presence of B field
makes this situation more interesting and, in some sense, more tractable. (See,
for example, Refs. 4) and 5).) In this review, I will look at this system in string
perturbation theory. I will summarize several interesting results coming out from
our computation and understanding of the phenomena.

In what follows, the Dp-brane extends in the (z°,z!,-- -, 2P)-directions and the
Dp'-brane extends in the (z0,z!,--- ,x”/)-directions with the Dp-brane inside. The
Dp-brane worldvolume contains the boundary o = 0 while the Dp’-brane worldvol-

ume contains the boundary o = .
§2. Description of the system and worldsheet properties

2.1. The action of the NSR superstring in the constant B background

S = 51; / d%¢ / d0do (g, + 2ma’B,,) DX*(2,2)DX"(2,%) , (2-1)

where z = (2,6) and z = (2,0), D = 5% +9% and D =
zZ=¢'—i2and z=€"1 and z = 7.
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Gij
Guv = - 3 9ij = €65, (5,5=1,---,p)
\ 1)
(2-2)
0 b1
-b O
€ . .
B;; = ey _%2 b02 (4,j=1,---,p'), otherwise By, =0.
(2-3)
2.2. The boundary conditions for the string coordinates in the NS sector:
DX°-Dx°| =0, DXF+.9 DxrHL9| =0,
o=0,7 6=0 o=0,7 6=0
g (DX! — DX + 2na/ B(DX' + EX’)\ =05 (BI=1,--p)
DX'+DX* = g;(DX? - DX’) + 2ra/ B;(DX + DXI)| =0,
One may say that the scale of noncommutativity is contained in these boundary

conditions.

2.3. Quantization and the mode expansion

We concentrate only on the zt-directions (1 = p+ 1,---,p’). We complexify the
string coordinates X*(z,Z) in these directions as

Z1(z,2) = X Yz,2)+iXH(2,2) = \/zZl(z z) +z'9J/I(z) + 3091 (%) ,

Z (2,2) = X2 Y(2,7) - iX?(2,%) = fz (2,%) + i6F (z)+z_@ (),

(2-5)
—_ 2 /
where I,] =282 ... &, |
ZI(z Z)=1 o Z o il ( —(n—vy) _ z—(n— VI))
neZ n=ur
=l =y mivr (_—(mtvi) _ w—(m+vr) 9.6
Z (2,2) =1 ,,;zmﬂfl(z z ), (2-6)
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where vy are defined by

ezmiv — _ LA 01 , O<yr<l. (2:7)
l—Zb]

Now we can introduce the open string metric GV, GV, G!Y and G!V concerning
/ - .
the zPt!, ... zP directions,

JR— —_ —_ 2 —_
1J _ 1T _ Y ) - 9.
G G 0, G G e(1+b§)6 (2-8)

The commutation relations are

[a'l{l—l/_[ ) am+uJ] = _61J(n - VI)5n+m )
5 - 9
{br —vy ) S+VJ} = g 61J57‘+s ) {dn vy m+y1} = g (51J5n+m . (29)

2.4. The oscillator vacuum

The oscillator vacuum |o,s) = |o) @ |s):

=0 > _
~Q®los)  with Snui lon =0 n>u (2:10)
s;y=0 r>1
=) Isr) with { I v 181) _ (2-11)
I s+u1|31)=0 s$2 3

A twist field o (¢!) and an anti-twist field o7 (¢!), both of which are mutually non-

local with respect to Z! and 71, are located at the origin and at infinity on the
plane respectively. 6:7) They create a branch cut between themselves. The incoming
“vacuum |oy) defined in Eq. (2:10) should be interpreted as being excited from the
SL(2, R)-invariant vacuum |0) by the twist field o :

lor) = hm 0] FEH o) . (2-12)

A similar comment applies to the spin field.

2.5. Spectrum

Reflecting the vacuum sea filling, the spectrum of the p-p’ system cannot be given
generically. The spectrum of each individual case of p-p’ has been fully analyzed in
Ref. 1). ( See also Ref. 5) for the 0-4 case.) If we finetune the sign of b;, a large
number of light states appear in the limit. To be more precise, these light states are
obtained by acting the several low-lying fermionic modes on the oscillator vacuum
and multiplying by an arbitrary polynomial consisting of the lowest bosonic mode.
This latter bosonic mode is the one which has failed to become a momentum due
to the boundary condition of the p-p’ open string and is responsible for an infinite
number of nearly degenerate low-lying states.
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2.6. Two-point function on superspace
Let

G (z1,Z1|22,%2) = (0,5| RZ (21,21)Z” (22, %2) |0, ) . (2:13)

When restricted onto the worldsheet boundary on the Dp’-brane worldvolume, this
becomes

GI7 (—e™ 64| — e™,0y) = 4G 1 (1/ e” >+e( 48
—_ J— fr  — T1 — T —
e, U2) 11672—9102 1 281+b% I_,

(2-14)

where H(v; z) is defined by using the hypergeometric series as

( e —n—1+4vy
f(l—l/];é) ~gbl=2:+1—_w—gb1 for |z| > 1,
H(v;z) = 4 . nn;,,l
; Ebzzz +Zp for |2] <1 .
\ F(vr;2) + 5b1 2, T
(2-15)
The function F(v; z) is defined as
. — al . . — - 1 n+v
]:(V,z)—7F(1,I/,1+1/,z)—nz=:on+yz , (2-16)

and F(a,b;c; z) is the hypergeometric function. By using the hypergeometric series,
we find that

oo 0 . 1
F(l—vpl)—F(vr; 1) = — Z ———

n=-—oo

= —mcot (mvy) = by . (217)

This means that, as is pointed out in Ref. 1), the noncommutativity on the D-brane
worldvolume in the p-p’ system is the same as that in the p-p system.

2.7. Renormal ordering and subtracted two-point function

The contents of this subsection are crucial ingredients of the derivation of the
string amplitudes presented in next section and are responsible for the major space-
time properties of the system. We have two types of vacuum: the one is the SL(2, R)-
invariant vacuum and the other is the oscillator vacuum. We will use the symbols
: : and ¢ ¢ to denote the normal orderings with respect to the SL(2, R)-invariant
vacuum and the oscillator vacuum respectively. The ¢ $-normal ordered product for
the free fields in the z*-directions (i = p+1,---,p') is

2 Z1(21,21)Z” (22, %2) 2 = RZ(21,21)Z" (22, %2) — G (21, 71|22, Z2) , (218)

for I,J = 4”—;—2, cee ‘;—' Here gf7(z1,zl|z2,22) is the two-point function defined in
Eq. (2-13). The formula of the renormal ordering takes the form of

: O = exp /d2z1d222 gsubﬁ(zl,fllzg,ig) 7 d — = d $ 0O
0Z°(21,21) 677 (24, %))
(2-19)
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Here Goup! 7(21,2'1|zz,22) is the subtracted two-point function defined as

i _ _ — -
Gsub'? (21, Z1]|22,22) = (0,5 : Z1(21,21)Z" (22,%2) : |o, s)

= g17(21,71|22,22) - GIJ(ZI)E”‘Z?)EZ) ’ (220)

G (z1,Z1|22,22) is the two-point function defined with respect to the SL(2, R)-
invariant vacuum and take the well-known form. 4):5)

§3. Scattering amplitudes

~ Let us specify the process of our interest. At an initial state, we prepare a Dp-
brane which is at rest and which lies in the worldvolume of a Dp’-brane. We place
the tachyon (the lowest mode) of a p-p’ open string which carries a momentum &, o
@ = 0---p along the Dp-brane worldvolume. In addition, N — 2 noncommutative
U(1) photons carrying momenta kqps a =3---N, M =0---p’ in p’ + 1 dimensions
are present. They get absorbed into the Dp-brane. At a final state, the Dp-brane
is found to be present and the momentum of the tachyon is measured to be —koy,
along the Dp-brane worldvolume. We will examine the tree scattering amplitude
of this process both from string perturbation theory of the D-brane/open string
system in the zero slope limit and from perturbation theory of the field theory
action proposed in Ref. 2). We will find that computations from both sides in fact
agree by identifying the Dp-brane with an initial/final configuration representing a
noncommutative soliton. Let

1 —

KT =5 (k2r-1—ikar) , Ryp= 2 (kzl 1+ ikor) ;

er(k) = %(Czl—l(k) - z(21(’9)) , (k) = 3 (C21—1(/C) + iCzl(k)) . (31)

Let (NC) denote

(NC) = z %e(aca — Iltaf) Z H”Ica,;k-a/j

1<a<a’<N 7,7=1

, 267 Irb
- > eze—z0) Z ! (KeIRy3 — Rogker)

(1 4 B2\
3<e< <N Wi 8(1 +b )
)
= Z 56(3;0. — Ty) Z gul\kauka')\ ) (3-2)
1<a<a’<N ©,A=0

with k1; = ko =0 for (j =p+1,---,p). Space permits us only the final form of
the N point amplitude:

N
= c(2m)Pt! H 5 (Z ke”) / H dz, H dBy dng exp Cyr (vr)

pu=0 e=1 a=4 a'=3
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2a’ kg

—a'sc+a’'m?2 2a’'ks ;-\ ke
XH[ ct T(l_w) 3(?) jl H (xc._xc,) ()

4<c<c/<N

X H exp [ 2a’ ZG” {I’\}cjlic,JH (1/1, ) + R keI H (VI, a;d)}}

3<e< <N 1,J ¢

« exp (NC) exp ([o, 2+ [2,0] + [1,1] + [2, 2]) | (3-3)
z1=0,z9=00,zx3=1

This expression is regarded as an SL(2, R) invariant integral (Koba-Nielsen) repre-
sentation for the amplitude of our concern. Let us list several features which are
distinct from the corresponding formula in the case of a p-p open string. (See Ref.
8))-

1. The term denoted by exp (NC) which orlgmated from the noncommutativity of
the worldvolume extends into both the z!,- - -, 2P directions and the remaining
P+l ... 2P directions.

2. To each external vector leg, we have a momentum dependent multiplicative
factor exp C(vr). '

A new tensor J has appeared.

4. There are parts in the expression which are expressible in terms of the momenta
of the tachyons, the momenta and the polarization tensors of the vectors and
J alone, using the inner product with respect to the open string metric. These
parts come, however, with a host of other parts which do not permit such
generic description in terms of the inner product.

The terms containing 6, and 7, are classified by the number of 7, and by the number
of 6,, which we designate respectively by the first and by the second entry inside the
bracket. These are given as [0, 2], [2,0],[1,1] and [2,2]. For N = 3 case, we pick up
03 and 73 from [1,1] to saturate the Grassmann integrations. For N = 4 case, we
pick up terms from [2, 2] + [0,2][2,0] + 2[1,1]2. ‘

e

§4. The zero slope limit and noncommutative soliton

We focus on the nontrivial zero slope limit of the amplitude.®) The zero slope

limit is defined as

o ~ €250,

g e—0, (4-1)
lbr] ~ e1/2 5 00 .

l

This limit keeps o’by finite:
o'by = Br . (4-2)

In terms of the open string metric and the noncommutativity parameter, this implies

—(JGW’ b= (JGe)2 =pr . (4-3)

*) In this and the next sections, the spacetime index M, N --- run from 0 to p’, u,v--- from 0
top and m,n--- from p+ 1 to p'.
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In addition, the following limit is taken without loss of generality:

2
v=vprz > 1, vy—0, for I;ép+ (4-4)
2
so that
be-gz — +oo , by— —o0 . ‘ (4-5)

The exponential multiplicative factor exp C({vr}) becomes in the zero slope limit

expC({v1}) - exp (—vr > 1611 mjcﬁ) = exp (—-’23 >l (k (p%)k>1>

1,J
= D (km) . (4-6)

This factor is originally associated with each vector propagating into the zP*+! ~ z?’

directions. We will refer to this as gaussian damping factor (g.d.f.). Replacing c,/ %’
by the initial and final wave functions of the tachyon and the noncommutative U (1)
photon, which we should insert together with the vertex operators, we obtain

: +1
lim Az = (2m)? H é (Z k““) (2m)P/2 \/ﬂ‘ (27r)"’/2 \/2w_~ (27r)p /2 \/M
X {(k2 - kl) (p) C3 — tks (p,‘p') ']C3} D(k3m)6§‘9 1skag . (47)

Let us consider the following factor seen as an exponent of Eq. (3-3):

) + B ke 1 H (V], zc )) . (4-8)

C

i _ T
P..=-2d Z_ G’ (lﬁcﬂ%c,j'H (VI; .
1,J
We see that, in any region contributing to the zero slope limit, this factor P,

contains precisely the identical constant piece —WZ |81 | (ke (@ ke )r in the limit.
I 7

N
Multiplying [] exp [—WZ | Br | (ke ©, kc,),] by J[ D(kam), (see Eq. (4-6)),

3<c<cd/<N I (pp) a=3
we find that the amplitude Ay contains an overall multiplicative factor

(Z ’Cam) = exp [——Zlﬂzl ((Z ko) O, (Z kb)) } : (4-9)

which depends upon the total photon momentum alone. We have thus seen that the
string amplitude in fact has resummed and lifted the approximate infinite degeneracy
of the spectrum (actually, it is an equally spacing spectrum) by evaluating its effect
as an exponential factor and that this lifting has rendered the net g.d.f. of the
amplitude to depend only upon the total momentum of the incoming photons.

We turn to the four point amplitude in the zero slope limit. After lifting the
infinite degeneracy due to the lowest bosonic mode, we still have the contributions
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from several nearly degenerate states due to the lowest fermionic modes. See Eq.
(5-8) of Ref. 2) for the complete formula in the zero slope limit which contains the
above contributions as well. Picking up only those parts of the amplitude in which
the state with the lowest mass (tachyon) participates, we find

D 4
lim Ay = —2i(2m)P* [ 6 (Z kau) D (k3m + kam)

p=0 a=1

X exp (%Q“Vklﬂkau + %GMNICBM’MN)

11 -
) [t “mi2 {('” ~ (k14 Ea)) ;)G — ks (p,'p')JC?’}

X {((kz + k3) - kl) (P) C4 - Zk4 (p;pl) J<4}

1 )
+;{ ((k2 — k1) ) (3 — (k3 + ka) (p,'p,)JC3> k3 ;G

B ((’“2 ~ k1) o kst ka) gy T C‘*) K4 ) 63
1 .
+ (5(763 — k) ;) (k1 — k2) — ks (p"p,)sz;) 3 (p',)C4}]

+ (k3 <> ka;G3 ¢ Ca) (4-10)

- Let us give an explicit connection between the g.d.f.. and the noncommutative
projector soliton, which is a key observation to our work. The g.d.f. is rewritten as

2
1 2
D(kn) = exp 2 S 021=121 | (kor_1kor—1 + karkar)
[=bt2
2
5
= ]] do(kar—1, kar; 021712) . (4-11)
J=2+2

2

Observe that
27 | 0 | ¢;0 = /d2meik1xl+ik2‘”2¢0(a)1,z2;0) ,
po(zt,z%;0) = 2e_ﬁ((”’1)2+(”"2.)2) . (4-12)

Function ¢g(z!, z2;6) is the projector soliton solution of the noncommutative scalar
field theory discussed in Ref. 9). It satisfies ¢p * ¢po = ¢o and is represented as a
ground state projector |0)(0| in the Fock space representation of noncommutative
algebra [z!,z?] = i0. In Ref. 9), ¢p is discussed as a soliton solution of noncommu-
tative scalar field theory in the large @ limit. In our discussion, Fourier transform of
¢o is seen to appear for all values of 6.
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Equation (4-7) tells us that the g.d.f. D(ks) is a form factor of the Dp-brane
of size /| Br | by noncommutative U (1) current, which can be written as

(qsf 5 &, —id, (@TJ"-"‘QS)) , (4-13)

using the scalar field #(z#,z™) discussed in the next section. Putting together this
fact and the obsevation of the last paragraph, we identify the Dp-brane in the zero
slope limit with the noncommutative soliton. See Ref. 10) for this identification
from string field theory.

§5. Dp-brane and the projector soliton of noncommutative scalar field
theory

We now give a field theoretic derivation of the properties of the string amplitude
in the zero slope limit given by Eqgs. (4:7), (4-9) and (4-10). We will show that an
adequate description is given in perturbation theory of low energy effective action
(LEEA) proposed in Ref. 2) by specifying proper initial and final states associated
with the scalar field &(z#, z™).

In Ref. 2), the following action has been proposed:

S=2S8+5,
with Sy = ﬁ dP' /=G {— (D,®)! * (D*®) — m?! « & — %FMN * FMN} :
Sy = 12 /d”'“w\/zdﬁ * Fron J™™ % ® (5-1)
29y M
where
D,®=08,6-iA,xd, (D) =08,8"+id"x4,,
Fun = OmAN — OnAm — i [Am, AN), , [AMm,AN], = Ar * An — An * Ay

(5-2)

Here Aps(z*,2™) is a (p’ + 1)-dimensional vector field which corresponds to non-
commutative U(1) photon and &(z*,xz™) is a scalar field which corresponds to the

ground state tachyon of the p-p’ open string with m? = — lim (1 — Z vr)/2a’. Re-
I3

a’'—0
flecting the fact that the tachyon momenta are constrained to lie in p+ 1 dimensions,
the Lorentz index of the kinetic term for the scalar field runs from 0 to p and there
is no kinetic term for the remaining p'-p directions. From now on, we set gy to 1.
It is elementary to compute the three point tree amplitude from Ly (P, Apr) :

As =i / d® P K{f) / dPHVM V=G o (K| ® tach( — kayl
1 .
% {381 vecl 01 Fran I ™ sat)ec + @
- DU
—1iP (*vec( 0 IAp,lk3M)vec* o — 0 *vec( 0 lAu.Ik3M)vec*) Q} |k1p,>tach ® I 0 »sol
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1 \? 2 0
= —i| —) (2n)Ptls+D) k (—0”" ,,) *(k3m)u(0
i(o=5) en S ko ) exp (58 Kuukar ) ' (am)u(0)
1 1
< I1

a=1,2 /(2m)P2wp \/(2m)P2|Ks|

Here the Fock space associated with the vector and those with the z# and =™ depen-
dent part of the scalar field &(z*, ™) are designated by vec, tach, sol respectively.

Equation (4-7) from string theory and Eq. (5-3) computed from Eq. (5-1) agree com-
pletely provided

((kQ - kl) (p:)C:i — ks (p,.p') JC3) . (53)

w*(km)u(0) = D(kn) , or u(km) = D(km) . (5-4)

The momentum space wave function in soliton sector is identified with the g.d.f. and
hence is equal to Fourier image of the distribution of the noncommutative soliton.

Let us next see that the N-point tree amplitude obtained from this field theory
contains the g.d.f. whose argument is the total momentum. Carrying out the Wick
contractions and using the propagator which contains the delta function, we find
that the field theory N point amplitude contains the following factor residing in the
soliton sector:

L . ,
/d(p’—p)Kg) I1 (/ d(p'—p)xgl) wo{(—K) | ¢ @Dy s e @R 5 50/ P) (g5 — z4)
’ a=3

1 * NT4 2 SN
xe 2op)™ 4 ... x 5@ -P) (xp_1 —xL) *e L (pp') *E

* ¢z K = 0))sol
(5-5)

Thanks to the delta function propagator, this equals

. L p’
' ’ m 1 mn
:/d(p p)K,(,{)/d(p P)z™ exp 5 E E 0" qam qom
a,b=3 mn=p+1
a<b

L
X sol{{ — K |¢1 (z™) * exp (z (Eqa) (p’-p,)w) * ¢(z™)|KS) = 0))sol
. a=3

L
= /d(P'—P)KT(,{)J(P'—P) (K,(,{) + (Z qa)> uw*(—K)u(0)

a=3

. L p’
X €Xp % Z Z 0" @amqin

a,b=3 m,n=p+1
a<b

L . L P’
=D (Z kam) €Xp % Z Z 0™" Gamqbn . (56)
a=3

a,b=3 m,n=p+1
a<b
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Finally, let us check that the tree four point amplitude (the pole part) in fact
agrees with string answer. After the Wick contraction and the position space inte-
gration, we find

4 :
Ay = (2m)PHigptl (Z ka“) exp (%G“Vkmkg,,) u*(kap + kanr) u(0)
a=1

1 1

3 1
(v=2) NNy ot Wy ey (

o +af?) | (57

where

t,u —1
N ——
—m

{CRICERNPRELEe Y

< { (ko o) = k) 0 — ik T | xp (56MVhsaskan )
+ (k3 € ka3 3 ¢ Ca) (5-8)
‘11(13)=:£ 2 [((kz — k1) ;) $3 — (k3 + ka) (p;p:)JC3) k3 5y Ga
B (("’2 ~k) e — kst ka) g0 T C‘*) K4 ) 63
* (%(k:" ke ) (b = k) =ik ) T ’“4) s (73')44]
x exp ( 50MN Kankan ) + (ks ¢ kai s Ga) (5:9)

This expression agrees with Eq. (4-10).
We have thus shown that perturbation theories of two different kinds in fact
agree.
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