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 Open  String/D-Brane  System
and  Noncommutative  Soliton')

                        Hiroshi ITOyAMA")

   Department  of Physics, Graduate School of Science, Osaka  University,

                      [Ibyonaka 560-O04S, Jcrpan

  This  is a  review  of  the work  en  a  p-p', (p <  p') open  string  with  Bij field, which  leads
to  the  explicit  identification of  the  Dp-brane with  the noncommutative  projector  soliton  via

the  gaussian damping  factor.i)-3)

gl. Introduction

   The  p-p', (p <  p') open  string  is interesting as  the  smaller  brane appears  as

topological defects on  the  worldvolume  of  the  bigger brane. The  presence  of  B  field

makes  this situation  more  interesting and,  in some  sense,  more  tractable. (See,
fbr example,  Refs. 4) and  5).) In this review,  I will  look at  this system  in string

perturbation  theory. I will  summarize  several  interesting results  coming  out  from

our  computation  and  understanding  of  the  phenomena.

   In what  fo11ows, the  Dp-brane  extends  in the (xO,xi,･-･,xP)-directions and  the

Dp'-brane extends  in the (xO,=i,･･･,xP')-directions with  the Dp-brane inside. The

Dp-brane  worldvo!ume  contains  the  beundary  a  =  O while  the  Dp'-brane worldvol-

ume  contains  the  boundary  a  ==  T,

g2. Description  ofthe  system  and  worldsheet  properties

2.1. 7}be action  of the NSR  supersinng  in the constant  B  background

S =  i. f d2Cf  dedb (g.. +  2Ta'B..) bX-(z, 7)DX"(z,  7) , (2･1)

where  z  ==  (z,e) and  7  ==  (7,e), D  ==  z9t +ezSl,T andb=  2ilt +ezill, z=  ei +iC2  and

2=  tgi -  ie2 and  i=  e'+ic'  and  7=  eT-ia.
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o-
 blblo

 O b2
-b2  O

, giJ- =  etiiJ-,

(i,o' 
--

 1,･･･,p,),

(i,o' =  1,･･-,p')

(2･2)

otherwise  Bpav =
 O .

(2･3)
2.2. The boundary conditions  for the string  coordinates  in the IVS sector:

 DxO-bxO  -=o,  Dxp'+1,-･,9+bxp'+1,･-,9 -=o,
                e=e                                             a=O,T                                                 e=e           a=O,T

 ghl(DXI  
-
 DXI) +  2TdBkl  (DXI +  DXI) 

.=o,.
 e=b  

=

 O , (ic'l 
=

 1' 
''
 
'
 'P)

 DXt  +  DXt  
...o

 e=o  
==

 9ij(DXO  
-
 DXO)  +2ra'Bij(DXj  +  DXj)  

.!.
 e=b  

=

 O '

                                   (i, o' =p+  1,･--, p') (2･4)
One  may  sacy  that  the scale  of  noncommutativity  is contained  in these boundary
conditions.

2.3. Quantization and  the mode  ellpansion

   We  concentrate  only  on  the xi-directions  (i ==  p  +  1, ･ ･ - ,p').  We  complexify  the

string  coordinates  Xt(z,  7) in these directions as

   zi(z, 7) =  x2i-i(z,2)  +  ix2i(z, 2) =  VIIIIzi(z, zr) + iepti(z) + iP!i7i(2) ,

   2T(z,2) =  x2i-i(z,7)  -  ix2i(z,7)  =  VIIII2T(z,7) +  ieoii'(z) +  iali(2) ,

                                                          (2-5)

where  I,7=  2SL2,...,g.

             zi(x,7) =  zVllii  
,;E2z

 na"i--"uii (z-(n-ui) -  7-(n-vi))  ,

           2T(z,7) =iff  
mZEz

 ltli
7M++"y'i

 (z-(M+"')-7-(m+"i)) , (2･6)
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where  ui

Now  we

the  xP+i

are  defined by

e27iul  =  .

can  introduce the open
      r

,･･･,xP
 directions,

1+ibl

=  clJ =o

1-ibl,
 O<  vl  <1.

strlng  metrlc

GIJ

GIJ, G7Tt, GI7 and  G7J

GIJ =  GJI =

2e(1

 +  b2,)6IJ
 .

(2･7)

concernlng

'

The  commutation  relations  are

        [aL-., , a-.t +.,]  =  36iJ(n -  ui)6.+.  ,

        {bl-ui, 6;t+vJ} =  2 6'76r+s i {dA-ui ;

2.4. [Ilhe oscillator  vacuum

   The  oscillator  vacuum  la, s> !  la> X  ls>:

la> =  X  lai>
      i

         ls> -  X  lsi>
              I

A  twist field ai+(Ci)  an

local with  respect  to Zi

with

with

{

d-Ttn+uJ} =  2 6i76.+. .

cbeA-., lai> ==  O n>  vJ

dh+.,lai>=O  m>-vi  
'

                   d an  anti-twist  fi

                     and  2i
                            '

plane  respectively.  
6),7)

 They  create  a  branch cut  between themselves.

vacuum  lai> defined in Eq. (2･10)
SL(2, R)-invariant vacuum  10> by  the  twist  field a

                         1ai>

(2･8)

(2-9)

(2-10)

     r-uiISi>=O
 r)S

  ( gl+v, lsi> -o
 

s)s
 ' (2･11)

    eld  a7(Ci),  both of  which  are  mutually  non-

are  located at  the origin  and  at  infinity on  the

                             The  incoming
should  be interpreted as  being excited  from  the

             l+:

=

 ci}.m, 
ai'  (Ci) 10> ･

 (2･i2)

A  similar  comment  applies  to the  spin  field.

2.5. Spectrum

   Reflecting the vacuum  sea  filling, the  spectrum  of  the  p-p' system  cannot  be  given

generically. The  spectrum  of  each  individual case  of  p-p' has been fu11y analyzed  in
Ref. 1). ( See also  Ref. 5) fbr the  O-4 case.)  If we  finetune the sign  of  bl, a  large
number  of  light states  appear  in the limit. 

rlb

 be more  precise, these light states  are

obtained  by acting  the  several  low-lying fermionic modes  on  the  oscillator  vacuum

and  multiplying  by an  arbitrary  polynomial  consisting  of  the  lowest bosonic mode.
This latter bosonic mode  is the one  which  has failed to become  a  momentum  due
to the boundary  condition  of  the  p-p' open  string  and  is responsible  for an  infinite
number  of  nearly  degenerate low-lying states.
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2.6. Two-point junction on  smperspace

   Let

        gij (zi,iilz2,22) !  <a,sl RZJ(zi,2i)2J(z2,72)  Ia, s> . (2･13)
When  restricted  onto  the  worldsheet  boundary  on  the  Dp'-brane worldvolume,  this

becomes

   gi7 (-e'i,ei1 
-
 e'?,e2)  =  4cil7 7t (ui, e., :'ieie2) 

+c(Ti  
-
 7?)f16+

iJ

b2i 
7rbi  ,

                                                               (2･14)
where  Grt(u; z)  is defined by using  the  hypergeometric series  as

7t(v; z)  =

f(1  
-
 ul;;)  

-
 gbl

                oo

F(u,;z) +  gb, =  2

  oo-2

  n=Ozn+uJ

z-n-1+vl

n=o
 n  +  YI

n+1-  ul

   T

 +  ibt

  T-

 ib,for lzl >  1,

fbr lzl <1.

        (2-15)
The  function jE (y;z) is defined as

               jF(u; z) =  
j:

"-

 F(1, Y;1+  U, Z) =  
.20=

O

o
 nluZn+",  (2 16)

and  F(a,  b; c; z)  is the hypergeometric  function. By  using  the  hypergeometric series,
we  find that

     -(1 
-
 VJ' 1) 

-
 -(VI; 1) =  

-.=ZO

-

O

 
..

 nt  vl  
=  

-7t
 COt  (7FUI) =  Tbl  (2 17)

This  means  that, as  is pointed  out  in'Ref, 1), the  noncommutativity  on  the D-brane
worldvolume  in the  p-p' system  is the  same  as  that in the  p-p  system.

2.7. Renormal  ordering  and  subtracted  two-point function

   The  contents  of  this subsection  are  crucial  ingredients of  the  derivation of  the

string  amplitudes  presented  in next  section  and  are  responsible  for the major  space-

time  properties ofthe  system.  We  have  two  types  of  vacuum:  the  one  is the SL(2, R)-
invariant vacuum  and  the other  is the oscillator  vacuum.  We  will  use  the symbols

::  and  gg  to denote the normal  orderings  with  respect  to the  SL(2, R)-invariant
vacuum  and  the oscillator  vacuum  respectively.  The  : g-normal ordered  product  for
the free fields in the xi-directions  (i =  p +  1, ･ ･ - 

,p')
 is

                            '

 g zl(zi,2i)Z7(z2,72)  g=  7itZI(zi,2i)Zj(z2,22)-gJ7(zi,2ilz2,22)  
,
 (2･18)

fbr I,7=  21}L2,･･-,g.  Here 9iJ(zi,2ilz2,22) is the two-point  function defined in
Eq.  (2-13). The  fbrmula  of  the  renormal  ordering  takes  the  form  of

   o  =  e.p  (f d2zid2z2 g,.bJJ(zi,7ilz2,72)6zi(z6i,7i)  6zj(l2,72))  
g O  :

                                                               (2-19)
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      × 
.HN=4
 [x.-elsc+a'mi (i -  xc)2blk3  (p)hc] 4<.{.I,<N(xc  

-
 xc,)2a'hc'  

(p)
 
kc

      × 3s.III.,sNexp  [-2a' ?I,iiJ CIj {rcclk.,J7t (ul, ::' ) + K.jrc.,J7t (ul, {tt ) }]
      x exp  (NC) exp  ([O, 2] +  [2, O] +  [1, 1] +  [2, 2]) . (3･3)
                                            xl=O,x2=oo,x3=1

This expression  is regarded  as  an  SL(2, R)  invariant integral (Koba-Nielsen) repre-

sentation  for the  amplitude  of  our  concern.  Let us  list several  features which  are

distinct from the corresponding  formula in the case  of  a  p-p open  string.  (See Ref.
8)),

  1. The  term  denoted by exp  (NC) which  originated  from the noncommutativity  of

    the worldvolume  extends  into both the  xi,--･,xP  directions and  the remaining

    =p+1,...,xP'  directionS･

  2. [[b each  external  vector  leg, we  have a  momentum  dependent  multiplicative

    factoT 
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In addition,  the fo11owing limit is taken  without  loss of  generality:

                                               p+2

                 uE  v2tz  -1,  u7-O,  fbr I'V 7E 2 , (4･4)

so  that

                       b,tz-+oo,  b7--oo.  , (4.s)

   The  exponential  multiplicative  factor exp  e({ul}) becomes  in the zero  slope  lirnit

    expe({uJ})  -  exp  (-T  lil, ij 1fiil Kik7Gij ) =  exp  (-g; lfii1 (k(,P,,)k)J)
                                       ED(icm)  ･ (4'6)
This factor is originally  associated  with  each  vector  propagating  into the xP+i  eg  xP'

directions. We  will  refer  to this as  gaussian  damping  factor (g.d.f.). Replacing cvlil
by the initial and  final wave  functions of  the tachyon  and  the  noncommutative  U(1)
photon,  which  we  should  insert together with  the vertex  operators,  we  obtain

  
lim J43  

=

 (2r)p+i 
.HP=o6

 (t9.i kap) (2Ti)pi2 7S: t (2Ti)pf2 S  (26p'/2 2k-31

          × {(le2 
-
 ki)(p) <3 -  ik3 (.;.,)Jts}D(h3m)egetjkitk2o . (4.7)

Let us  consider  the fo11owing factor seen  as  an  exponent  of  Eq. (3･3):

        
Flrc

 
='

 
-2a'

 IE,7 
Cij

 (rccik.,J7t (ui; iZI/t) + 
K.7rc.,i7t

 (ui; :d)) 
.
 (4･s)

We  see  that, in any  region  contributing  to the zero  slope  limit, this factor a,.
contains

 
precisely

 
the

 
identical

 
constant

 piece 
-T;

 1&1(kc(pPp,)icc,)i 
in
 
the

 
limit.

Multiplying 
3..IIt.Nexp

 [-T; 1 fii I (kc (pPp,)kc,)i] by 
.ilN=3D(kam),

 (see Eq･ (4･6)),

we  find that t-he athplitude  AN  contains  an  overall  multiplicative  factor

       D  (.2N.,3

 icam) =eXP  [-:;1fill ((.EN=3

 ka) (.P.,)(bEN
=3

 kb)) 
I]
 ' (4 9)

which  depends upon  the  total photen  momentum  alone. We  have thus  seen  that  the
string  amplitude  in fact has resummed  and  lifted the approximate  infinite degeneracy
of  the spectrum  (actually, it is an  equally  spacing  spectrum)  by evaluating  its efiect
as  an  exponential  factor and  that this lifting has rendered  the net  g.d.f. of  the
amplitude  t'o depend  only  upon  the total momentum  of  the incoming photons.
   We  turn to the four point amplitude  in the zero  slope  limit. After lifting the
infinite degeneracy due to  the lowest bosonic mode,  we  still haNe the  contributions
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from several  nearly  degenerate states  due to the lowest fermionic modes.  See Eq.

(5･8) of  Ref. 2) fbr the complete  formula in the zero  slope  limit which  contains  the

above  contributions  as  well.  Picking up  only  those parts of  the amplitude  in which

the state  with  the lowest mass  (tachyon) participates, we  find

1im v44  =  
-2z(2T)P+ IHP=o6

 (t4.i kapa) D  (ic3m +  k4m)

        × exp  (;epavhlpaic2. + SeMNk3Mic4N)

        × [t -i.3i  {(k2 
-
 (ki +  k4)) (b) C3 

-
 zk3  lp,.,)JC3}

                    × {((k2 +  k3) 
-
 lei) (.) C4 

-
 zk4  (.;.,)JC4}

          +i(  ((le2 -  ici) (.) C3 
-
 z(ic3  +  k4) (. ,,) JC3) h3 (ri,) C4

                '  ((k2 -  ki) (fo)k 
-  t(ic3 + k4) (,,,,)JC4) 

k4 (p,) ts

                + (i(ic3 -  k4) (fo) (foi 
-  k2) -  Zk3  (.;.,) Jk4) C3 (.t) C4 )]

        +(ic3ek4;  C3e<4) . (4･10)

   Let us  give an  explicit  connection  between the  g.d.f. .

projector soliton,  which  is a  key observation  to  our  work.and

 the  noncommutative

The  g.d.f. is rewritten  as

D(icrn) =  exp

Observe  that

-i  ]g,
   J=!!l+7121

 e2I-1,21 1(k2J-lk2I-1 +  le2Ik2I)

   4-H

  i,- 2iygdi-o(k2I-1,k2I;e2T-1,2I)

 .

2T1e1ipo=  f d2xeileixi+ik2r
i, x2;e)  =  2e-fi,i((

2

xl)2+(x2)2)

ipo(x1, x2;  e) ,

ipo(x

(4･11)

(4･12)

Function  ipo(xi, x2;  e) is the projector sollton  solution  of  the noncommutative  scalar

field theory  discussed in Ref. 9). It satisfies  ipo *  dio =  ipo and  is represented  as  a

ground  state  projector 10><Ol in the Fbck space  representation  of  noncommutative

algebra  [xi,x2] =  ie. In Ref. 9), ipo is discussed as  a  soliton  solution  of  noncommu-

tative  scalar  field theory  in the large e limit. In our  discussion, Ifourier transform  of

ipo is seen  to appear  fbr all  values  of  e.
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   Equation (4･7) tells us  that the g.d.f. D(k3.)  is a  fbrm factor of  the Dp-brane
of  size  VI-Bi-r by noncommutative  U(1) current,  which  can  be written  as

                      (dit S" di, -ia.  (ditJmndi)) , (4･13)

using  the scalar  field ¢ (xP, xM)  discussed in the next  section.  Putting together  this

fact and  the obsevation  of  the last paragraph,  we  identify the  Dp-brane in the  zero

slope  limit with  the noncommutative  soliton.  See Ref. 10) fbr this identification
from string  field theory.

g5. Dp-brane  and  the  projector  soliton  of  noncommutative  scalar  field

                                 theory

   We  now  give a  field theoretic derivation of  the properties of  the string  amplitude

in the zero  slope  limit given  by Eqs. (4･7), (4･9) and  (4･10). We  will  show  that an

adequate  description is given in perturbation  theory  of  low energy  effective  action

(LEEA) proposed  in Ref. 2) by specifying  proper  initial and  final states  associated

with  the  scalar  field di(x", xM).

   In Ref. 2), the  fo11owing action  has been proposed:

     S==  Sb+Si  
,

with  So =  
gy

12M
 f cl"'+ixV=Ii  {- (Dpdi)t * (DPip) -  m2 ¢ t * di 

-
 iFMN * FMN}  ,

      Si 
=

 2g;2M fdP'+ixVCtidit*F..JM"*di , (s 1)

where

  Dpdi =  O"di -  iApt * di , (Dpdi)t =  Opadit +  idit * Au  ,

  FMN  =  aMAN  -  eNAM  -i[AM,AN].  , [AM,AN]. =  AM  *AN  -  AN  *AM  .

                                                                (5･2)
Here AM(x",xM)  is a  (p' +  1)-dimensional  vector  field which  corresponds  to non-

commutative  U(1) photon  and  di(xpa,xM) is a  scalar  field which  corresponds  to the

ground state  tachyon  of the p-p' open  string  with  m2  
=

 
-
 
.1,i.mo(1

 
-
 2  uJ)f2a'･  Re-

                                                         i
flecting the  fact that  the  tachyon  momenta  are  constrained  to lie in p+  1 dimensions,
the  Lorentz index of  the kinetic term  fbr the scalar  field runs  from O to p  and  there
is no  kinetic term  for the remaining  p'-p directions. Flrrom now  on,  we  set gyM  to 1.

   It is elementary  to  compute  the three point  tree amplitude  from Lint(di, AM)  :

.43  =  i f d(P'-")K£f) f d("'+i)xM vi=Ci  ,.iK-Khf)1  X  tach< -  ic2p1

     × {Sdit * vec<O  IFmnJM"lic3M>vec ' di

     
-iof

 (*vec<OIAitlk3M>vec* 5" '  5P *vec<OIAplk3M>vec*)  di} 1ic1pt>tach X  lODsel
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=  
-z(

 
1V=Z7.

× II[
 a=1,2

)
2

 (2T)p+16(p+1)

1 1(

 3Z

 icap
a=1

(2T)P2wic-.
      -

(27r)P21k3[

  ) exp  (gepvklpak2.) u*(k3.)u(o)

((ic2 -  ici) (ir) C3 
-  zh3  (.,.,)Jg3) . (5･3)

Here the Fock space  associated  with  the vector  and  those with  the xP  and  xM  depen-

dent part of  the scalar  field di(x",xM) are  designated by vec,tach,sol  respectively.

Equation (4･7) from string  theory  and  Eq. (5･3) computed  from Eq. (5･1) agree  com-

pletely provided

u'(icm)u(O)  =D(km),  or  u(km)=  D(km)  ･ (5･4)

The  momentum  space  wave  function in soliton  sector  is identified with  the g.d.f. and

hence  is equal  to Fburier image of  the  distribution of  the  noncommutative  soliton.

   Let us  next  see  that the  IV-point tree amplitude  obtained  from  this field theory

contains  the  g.d.f. whose  argument  is the total momentum.  Carrying out  the  Wick

contractions  and  using  the propagator  which  contains  the delta function, we  find

that  the  field theory  IV point amplitude  contains  the following factor residing  in the

soliton  sector:

f d(P'-") K £f) 
.HL=3

 (f d("'-")xr) ,.i<<-Khf)  l ipt(xY) * e'q3 (pip')X3 * 6("'-P)(x3 
-
 x4)

        *etq4  (p,b')X` *  .v  *  6(p'-p)(xL-i -  xL)  * eigL  (p;p')"L * ip(xZP)IK£1') =  O>>-soi .

                                                               (5･5)

Thanks  to the delta function propagator,  this equals

=fd(p'-p)Khf)f  d(P"P)xM exp
 'L  p'

g2) E
  a,b=3  m,n=p+1

  a<b

 L

2-3

eM"q.mqhn

  Xsol<<-Kst)1ipt(xM)*exp  (z ( q.) x)  *ip(xM

=  fd("'-P)K£f)6(P'-P) (Khf) +  (.2=,qa)) U*('K £f))U(O)

×  exp

=D(

z2
 L  p'

2 2
a,b=3  rn,n=p+1

a<b

 L N

2  icam) exp

a=3  -

z2

eM"qarnqbn

 L p'

2 2
a,b=3  m,n=p+1

a<b

eM"q.mqbn

)IK£t) =  e>>soi

(5-6)
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   Finally, let us
agrees  with  string

gration, we  find

check  that the tree four
answer.  After the  Wiekpoint

 amplitude  (the pole part) in

contraction  and  the position spacefactinte-

.44  =  (27)P+16p+1

(1
(t/l-l,kap)

)
3

.Ii･2

1

exp  (geptUki.k2.) u'  (le3M +  k4M) u(O)

V=ii7 Hb=3,4
1

(2T)P2c?rd. (27r )P' l k-'b l(aEt
 
'")

 +  aES))  ,(5･7)

where

aSt,u)..-it-m2

     +  (le3 e

aSS)=?Z  2 [((k2 -  ici) (b)

           
-
 ((k2 

-
 ki) (fo) 

i

           +  (g(ic3 -  k4) (b) (ki

     × exp  (geMNk3Mk4N) +  (k3 e  k4; <3

{(k2 
-
 (ki +  k4)) (,) ts 

-
 Zic3 (.,,,)JC3}

  × {((k2 +  k3) 
-
 ki) (fo)k 

-
 ik4 (.;.,) 

J<4} exp  (geMNic3Mk4N)
 k4;<3e<4),  (s･8)

          <3 
-
 i(k3 +  k4) (. ;.,) Jts) k3 (ti,) <4

             <4 
-
 (k3 +  ic4)(p,bt)J<4) k4(ti,)<3

                  
-  ic2) -  ik3 (,;.r) Jk4) C3 (ti,) C4]

e  C4) - (5･9)

This expression  agrees  with  Eq.
   We  have thus  shown  that

agree.
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