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Motivated by recent chemical explorations into organic-radical-based higher-spin ladder
systems, we study the ground-state properties of a wide class of antiferromagnetic spin-1
ladders. Numerical analysis featuring the level-spectroscopy technique reveals the rich phase
diagram, correcting a preceding nonlinear-sigma-model prediction. A variational analysis well
interprets the phase competition with particular emphasis on the re-entrant phase boundary
on the way from single to coupled chains.

Since Haldane’s prediction? on a striking contrast between integer- and half-
odd-integer-spin Heisenberg antiferromagnets was given both experimental 2 and
theoretical 3) supports, the energy gaps in magnetic excitation spectra, that is, spin
gaps, have been a central issue in materials science. In the last decade more and
more researchers made a wide variety of explorations into the spin-gap problem, such
as the spin-Peierls transition in inorganic compounds,? quantized plateaux in mag-
netization curves,® and antiferromagnetic gaps in the ferromagnetic background. 6)
Among others Dagotto et al.”) pointed out that another mechanism of the gap for-
mation should lie in a ladder, that is, two coupled chains. A spin gap was indeed
observed in a typical two-leg ladder material SrCuz03.® Moreover superconductiv-
ity was brought about in its hole-doped version (SrCa)i14Cuz4O41.% Then we were
led to regard the two-leg CuO ladder compounds as one-dimensional analogs of high-
temperature superconductors. Ladder systems caused us further surprise exhibiting
varying excitation spectrum with the number of their legs. 19

So far metal oxides have been representative of ladder materials. Though mole-
cule-based ones)>12) have been synthesized in an attempt to reduce the spin gaps
and obtain experimental access to them, the situation of copper ions supplying the
relevant spins remains unchanged. Therefore they are all spin—% antiferromagnets.
In such circumstances there has occurred a brand-new idea of constructing purely
organic ladder systems. Katoh et al. 13) synthesized novel organic biradicals and
tetraradicals which crystallize to form an antiferromagnetic ladder of spin—% and
that of effectively spin-1, respectively. Their polyradical strategy has yielded further
harvest such as an effective spin-1 antiferromagnet on a honeycomb lattice 1) and a
ladder ferrimagnet of mixed spins 1 and %, 15) displaying the wide tunability of the
crystalline structures in higher-spin systems as well.

Distinct spin-gap mechanisms may lie in higher-spin ladders and quantum com-
petition between them must lead us to further enthusiasm for ladder systems. There
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exist pioneering works in this context. Sierra %) generalized the well-known nonlinear-
sigma-model analysis1):17) on quantum spin chains to multi-leg ladder systems. His
findings suggest that only an odd number of half-odd-integer-spin chains are mass-
less, supporting experimental observations on a series of spin-% ladder antiferromag-
nets. ®):18) The technique was further developed for spatially inhomogeneous lad-
ders. 19 Mixed-spin ladders2%:2)) were also investigated with particular emphasis
on the competition between massive and massless phases.

Thus, there also lie fascinating predictive theories on higher-spin ladders, to-
gether with a materials background now established. However, in comparison with
extensive calculations?):22)=24) op spin-% ladders, there exist few quantitative and
conclusive investigations into higher-spin ladders 2% and most of the predictions on
their ground-state phase competition remain to be verified. Hence, in this article,
we solve the ground-state properties of spin-1 two-leg ladders. Employing various
numerical tools and complementing them by a variational argument, we elucidate
the valence-bond-solid-like nature of their ground states, which is in contrast with the
spin-liquid or resonating-valence-bond ground states22):23),26),27) of spin-% two-leg
ladders. The obtained phase diagram is reminiscent of the preceding sigma-model
prediction 19 but contains a re-entrant phase boundary, which was never found in
any previous investigation.

An advantage of assembling organic open-shell molecules into a magnetic mate-
rial is the isotropic intermolecular exchange couplings, while the polyradical strategy
is accompanied by spatial variations in magnetic interaction.®) In this context we
consider a wide class of spin-1 antiferromagnetic ladders

L 2
H= Z (Z S5 S55 - Sij+1 + LS5 Sg,j) , (1)
7=1 \z=1

where the bond-alternation parameter v; ; is defined in two ways as

)1+ (—l)i_“ dop  (out-of-phase legs), (2)
Wl 14 (=1)41p (in-phase legs) .

We consider the region of 0 < dop(dip) < 1 and hereafter set J, /Jj equal to
r(> 0). Martin-Delgado, Shankar and Sierra '?) studied the cases of out-of-phase legs
deriving a low-energy-relevant sigma model. For the spin-S ladders with two out-of-
phase legs, the topological angle in the effective sigma model turns out 87 Sdop/(r+2)
and reads as the critical lines 850op = (2n + 1)(r + 2) (n = 0,+£1,---). However,
these findings do not smoothly merge with the well-established critical behavior in
one dimension, 2S(1 —§) = 2n + 1,7 as is shown in Fig. 1(a). Thus, it is necessary
to verify the true scenario all the more in higher dimensions.

One of the most reliable solutions may be a numerical analysis?® on the phe-
nomenological renormalization-group equation. 2% However, the scaled gaps are ill-
natured due to the close critical points, so as to make the fixed points hard to extract
from available numerical data. Then we switch our strategy to the level spectros-
copy, 30) the core idea of which is summarized as detecting transition points by cross-
ing of two relevant energy levels. Although the method is generically applicable to
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the Gaussian critical points,3?) no ex-
plicit change of symmetry accompanies
the present phase transitions and there-
fore any levels do not cross naively. In
order to overcome the difficulty of this
kind, Kitazawa3?) proposed the idea of
applying the twisted boundary condi-
tion, that is to say in the present case,
setting the boundary exchange cou-
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Fig. 1. Phase diagrams for the antiferromag-
netic spin-1 ladder with two out-of-phase
legs. (a) A field-theoretical prediction of
Ref. 19). The two critical lines (dashed
lines) derived from the effective sigma
model for ladders are inconsistent with
the sigma-model analysis on isolated chains
(e). They remain far apart from each
other even in the decoupled-chain limit
r = 0. Therefore qualitatively patched-
up phase boundaries (solid lines) were pre-
dicted. (b) Our numerical findings. The
series-expansion estimates are shown by x,
while the level-spectroscopy analyses by O
(L =6) and o (L = 8).
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Fig. 2. Demonstration of the level spec-
troscopy. The lowest-lying two eigenval-
ues in the subspace of zero magnetization
as functions of r cross at transition points
provided the twisted boundary condition is
imposed on the Hamiltonian.

plings equal to — Z?zl J“’yi,L(Si“fLS;'-’fl +
SY1SY1 — S7LS71). Then the energy
structure of the Hamiltonian is changed
and the lowest two levels are led to cross
at transition points, which is demon-
strated in Fig. 2. Due to the limit of
time and memory, we have restricted
our calculations up to L = 8. We
plot in Fig. 1(b) bare findings for the
crossing points at L = 6 and L = 8§
rather than extrapolate them trickily.
We are sure that the data uncertainty
still left is within the size of symbols
(40, 0). Indeed, these results are in good
agreement with series-expansion calcu-
lations. 33):3%) Starting with decoupled
singlet dimers on legs or rungs and ex-
panding the energy gap as a power se-
ries in a relevant perturbation parame-
ter, we can obtain a partial knowledge of
phase transitions. Here we have calcu-
lated the gap up to the ninth order and
further applied the Dlog Padé approx-
imants 3% to them. The thus-obtained
phase boundaries, which are also shown
in Fig. 1(b), elucidate the nature of the
phase competition, that is, the Affleck-
Kennedy-Lieb-Tasaki (AKLT) valence-
bond-solid (VBS)?3) on a snakelike path
versus decoupled dimers.

The most impressive findings are re-
entrant quantum phase transitions with
increasing r. The preceding sigma-

model analysis!? is indeed enlightening but never able to reveal this novel quantum
behavior. In order to characterize each phase, let us consider a variational approach.
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We know that singlet dimers on rungs
[Fig. 3(h)] are stabilized for r — oo,
whereas either dimers on legs [Figs. 3(d)
and 3(e)] or the double AKLT VBS
[Fig. 3(c)] for r — 0. Two more
interchain VBS states [Figs. 3(f) and
3(g)] may be adopted as variational
components for the intermediate-r re-
gion. Thus the linear combination of
Figs. 3(c) to 3(h) can be an approx-
imate ground-state wave function for
spin-1 ladders. Since the present vari-
ational components are all asymptoti-
cally orthogonal to each other, the vari-
ational ground state turns out any of
them itself. 3®) The thus-obtained phase
diagram is presented in Fig. 4. The
significant stabilization of the interme-
diate phase, which is now character-
ized as SH, and the resultant re-entrant
phase boundary are successfully repro-
duced. Considering that a couple of
critical chains immediately turn mas-
sive with their rung interaction switched
on,”) the point C should coincide with
the point A under more refined (and
thus inevitably numerical) variational
investigation.

The present variational calculation
implies possible phase transitions for
in-phase-leg ladders as well, but this
is totally due to the naive wave func-
tion. Numerical observation of the en-
ergy structure ends up with no gap-
less point in this region. The sigma-
model approach also concludes no crit-
ical point, giving the topological angle
47 S independent of both r and d;p. The
key to the ground-state nature of in-
phase-leg ladders is the four-spin cor-
relation. 25 Let us consider interacting
four spins of S = % which are described
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Fig. 3. Plaquette-singlet-solid and valence-
bond-solid states relevant to the two-leg an-
tiferromagnetic spin-1 ladders. e denotes a
spin 1 and their segment linkage means a
singlet formation. () represents an opera-
tion of constructing a spin 1 by symmetriz-

ing the two spin %’s inside.
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Fig. 4. Variational phase diagrams for the
two-leg antiferromagnetic spin-1 ladders.
The thick solid lines describe phase transi-
tions, whereas the thin ones represent the
crossover of the ground-state nature within
the present variational scheme. The dotted
line is only a guide for eyes.

NI | -El ectronic Library Service



Publication O fice, Progress of Theoretical Physics

180 S. Yamamoto, T. Sakai and A. Koga

by the Hamiltonian

2 I+1
H=) Sii-Sitr1+ry Sij Sa;. (3)
, =1 j=l
In terms of the Schwinger boson representation:
1 ~ 1
St =alb, S~ =abl, §* = 5(aﬁa —b'b); S = 5(aTa + b'b), (4)

their ground state is explicitly given as

2
b (r)h = [COSO )1 (a’zlbz I+1 7 ;rla’l,l+1>

=1
I+1

+sin O(r H (aljb 13(12])]|0) (5)

where |0); is the Bose vacuum and 6(r) is given by tanf(r) = r — 1+ V1 —r + 2.
As 7 varies from 0 to co, # moves from 0 to 7, that is, the leg dimers continuously
turn into the rung dimers. Using the plaquette singlet state (5), we can in principle
construct much better variational wave functions for spin-1 ladders particularly in

the in-phase-leg region as

=HmH|¢<v~>>'zl_1[cos«s(alpnuz(r»zz_l+sin¢<6n>>|¢<r>>zz . (6)
2,9 l

where P; ; represents an operation of symmetrizing the two spin %’s at site (2, 7) into
a spin 1. Now that 6(r) is a continuous function of r and may here deviate from
that in Eq. (5), a naive optimization 36) of Eq. (6) is no more feasible. However,
the refined variational scheme shows us more. For better understanding of the wave
function (6), we visualize its special forms for ¢ = 5 [Fig. 3(a)] and ¢ = 0 [Fig. 3(b)],
which are most stabilized at d;p = 0 and d;p = 1, respectively. The snapshots of
PSS (DSP) at 6 =0, § = 7 and 6 = T are nothing but the variational components
DH (PLD), DP and RD, respectively. Through the plaquette singlet resonance, any
snapshot of PSS (DPS) can turn into another without any explicit transition. PSS
and DPS share DP and RD as their snapshots. Thus, the extended variational wave
function (6) is expected to erase the artificial first-order transition lines (thin solid
lines), reducing the only discontinuity wall AB to a point. The point A belongs to
the same universality class as the spln-— Heisenberg chain.3!) We are all the more
convinced of the immediate gap formation with » moving away from 0. On the other
hand, neither PSS nor DPS includes both ALD and SH and therefore the two critical
lines in the out-of-phase-leg region survive against the plaquette singlet formation.
We summarize our rich harvest as the plaquette singlet formation and the re-
entrant quantum phase transition via the snake Haldane state in staggered spin-1
ladders. The re-entrant phase boundary is peculiar to spin-1 or possibly integer-spin
ladders. Half-odd-integer-spin chains are generically critical at the translationally
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symmetric point 6 = 0. Therefore, the critical line cannot exhibit the initial re-
entrant behavior in the r- phase diagram, because it should be symmetric for +4.
We finally point out that no explicit phase transition in the in-phase-leg region is
closely related to the collapse of the fractional-spin edge states due to the interchain
interaction introduced.

We are grateful to Professor H. Takayama for helpful comments. This work was
supported by the Japanese Ministry of Education, Science, Sports and Culture and
by the Sumitomo Foundation.
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