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We investigate the effect of displacements of the brane in the extra dimension. The
S'/Z5 compactified 5D anti-de Sitter spacetime bounded by positive and negative tension
branes is considered. The relative displacement of a brane is called a “radion”. We study
displacements caused by the “fluctuation” of a brane without the matter energy-momentum
tensor on the brane. We derive the solution for a homogeneous fluctuation of an expanding
brane. It is found that the homogeneous brane fluctuation interacts with an anisotropic
bulk perturbation and thereby affects the anisotropy of the brane. By determining the
bulk anisotropic perturbation, we calculate the homogeneous metric perturbations on the
positive tension brane and find a large-scale CMB anisotropy. An interesting finding is that
the radion contributes to the CMB anisotropy if the distance between the two branes is time
dependent. The observational consequences of these effects are discussed.

81. Introduction

String theory suggests the idea of confining the standard model particles to a
3-brane in a higher-dimensional spacetime. Based on this brane world idea, Randall
and Sundrum proposed very interesting models with branes in a 5D anti-de Sitter
(AdS) spacetime. If there is a single positive tension brane, 4D Newton gravity can
be recovered on the brane although the extra dimension extends infinitely. })

In brane world models, a new geometrical degree of freedom is introduced, i.e.
the displacement of the brane in the extra-dimension. If we choose an appropriate
coordinate gauge, the displacement of the brane is described by the scalar field
existing on the brane. For example, the displacement of the Minkowski brane ¢

obeys the equation

2
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6
where 7' is the trace of the energy-momentum tensor of the matter on the brane
and Oy is the d’Alembertian operator in 4D Minkowski spacetime.? Thus there are
two kinds of displacements of the brane, corresponding to the two kinds of solutions
of Eq. (1-1), i.e. the homogeneous and the particular solutions. The homogeneous
solution for Eq. (1-1) with 7" = 0 represents the “fluctuation” of the brane. The
brane can fluctuate by itself, without the matter energy-momentum tensor. The
other kind of displacements is the “bend” of the brane, due to the matter on the
brane. The trace of the energy-momentum tensor acts as a tension, and the brane
bends due to this effective tension.
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Of particular interest is the detectability of the brane fluctuation. A similar
situation was considered in the analysis of the fluctuation of a thin domain wall. ¥
It was shown that the wall fluctuation cannot be seen by an interior observer on
the wall, because the fluctuation does not change the curvature of the domain wall.
However, this analysis was done only for a test domain wall. If we take into account
gravitational perturbations, it may be possible to see the effect of the fluctuation. 5)
The same statement applies to the brane fluctuation. If there is only one brane,
the bulk possesses a translational invariance, at least when the energy density of
the matter on the brane is sufficiently smaller than the tension of the brane. In
this case, the gravitational perturbations are not affected by the brane fluctuation.
Because the brane fluctuation can be detected only through the interaction with
gravitational perturbations in the bulk, the brane fluctuation has no physical degree
of freedom in the one-brane model. However, if there are two branes, the gravita-
tional perturbations are confined between the two branes. Resulting displacements
of the branes change the distance between the two branes, and they should therefore
affect the gravitational perturbations. Thus the brane fluctuation acquires a physical
degree of freedom, and there is a possibility to detect it. If the extra dimension is
Z5 symmetric, it is compact. The brane fluctuation indeed changes the size of the
extra dimension. For this reason, the brane fluctuation is called a “radion” in the
literature. %)

Let us consider a S'/Z, compactified 5D AdS spacetime bounded by two positive
and negative tension branes. 2) For such a system, it was shown that the gravity on
the branes is described by the Brans-Dicke (BD) theory where the radion acts as a
BD scalar.?®) If we are living on a positive tension brane, the BD parameter can be
compatible with observations if the distance between the two branes is sufficiently
large.

Now let us consider cosmology based on this scenario. The branes expand due
to the matter energy-momentum tensor on the brane. On large scales, the brane
exhibits a homogeneous fluctuation. Interestingly, the dynamics of a homogeneous
and isotropic brane are determined only by the matter energy-momentum tensor
on the brane if the bulk is a purely AdS spacetime. Thus a homogeneous radion
does not affect the evolution of a homogeneous and isotropic brane. However, if
one allows spatial anisotropy of the brane, the situation changes significantly. In
this case, an anisotropic perturbation in the bulk is allowed to exist. Then, the
homogeneous brane fluctuation interacts with the anisotropic bulk perturbation, and
the homogeneous radion contributes to the anisotropy of the positive tension brane.
Our universe has an anisotropy, which is measured by the temperature anisotropy
of the cosmic microwave background (CMB). Thus it is important to clarify the
contribution of the homogeneous radion to the CMB anisotropy. The aim of this
paper is to derive a solution for the homogeneous radion in the case of an expanding
brane and investigate its effect on the anisotropy of the positive tension brane.

Owing to the limitation on the length of this paper, we omit detailed calculations.
Interested readers can find these calculations in Ref. 7).

NI | -El ectronic Library Service



Publication O fice, Progress of Theoretical Physics

Radion and Large Scale Anisotropy on the Brane 261
§2. Set up of the model

We consider two branes located at the S1/Z5 orbifold fixed points in 5D AdS
spacetime. Our system is described by the action

12
/dO:r\/ (R5 l2>
+ 2 (_Mi/dllmv_gbranei +/d4$\/_gbranei£matteri>’ (21)

i=A,B

where R® is the 5D Ricci scalar, [ is the curvature radius of the AdS spacetime and
k> = 87 G5, where G5 is the 5D Newton constant. The brane A4 has positive tension

1™, and the brane B has negative tension 1B, These are taken as

in order to ensure that each brane becomes Minkowski spacetime when there is no
matter on it. The induced metric on the brane i is denoted by g¢pranei, and the
matter that is confined to the brane i is described by the Lagrangian £ 1. We
assume that we are living on the positive tension brane A and we do not explicitly
express the index ¢ = A in the following.

We take the metric for the background spacetime as

ds? = 21l gy? — 200 g% 1 20t d dad (2-3)

The extra coordinate y is compact and runs from —[ to [. Furthermore, the identifi-
cation of (y,t,z") with (—y, ¢,2") is made. Then the extra dimension becomes S' /Z,
compactified space. The brane A is located at y = 0 and the brane B is located at
y = [. The 5D energy-momentum tensor (including the tensions of the branes) is
taken as

6
Ty = K ldlag(o 1,1,1,1) + diag(0, —p, p, p, p)> i(y)
# ((3pding(0.1,1,1.1) + ding(0, %, 5. 17,7 Sty-D]. (2

We write the power series expansion of the metric near the branes as

) 2

/y _1.....7

g (t)
5 1Y

(1) = aot) + an (B)ly] + 247
aly,t) = ag (t) +af )|y — 1|+ =2y — 1P+ (2:5)

When we consider the perturbations, the explicit form of the bulk metric must
be known. In addition, we also need to solve the bulk evolution equation for pertur-
bations. It is generally difficult to exactly solve the evolution equations in the bulk.
For this reason, we solve the evolution equation in the bulk by assuming that the
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system is nearly static. To do so, we assume that the energy density of the matter
on the brane is sufficiently smaller than the tension of the brane

KAp <1, rApP < 1. (2:6)

From the Friedmann equation on the brane, the time derivative of the metric & is
of the order (Hzl_lp)l/Q. Also, from the junction condition, the y derivative of the
metric ¢ is of the order 7! for x%lp < 1. Then the time derivative of the metric is
much smaller than the y-derivative of the metric:

Oy ?
Sl L2 )
(aya> K2lp < 1. (27)

The bulk metric can be obtained by solving the Einstein equation and junction
conditions perturbatively in terms of x%lp. The leading order solutions are obtained

as®
@ = =b(t)] +ao(t). §=—b()

~

, V= log b(ﬂ? (28)

where b(t) is the function that describes the time evolution of the physical distance
between two branes:

g
/ dye? D — b(¢). (2:9)
0

We assume that the time dependence of b(t) is also weak, i.e. (b/1)? ~ w2lp < 1.
The behavior of the scale factor ap and the distance between the two branes b(t) are
determined by the next order equations. It should be noted that the function b(t)
is also called the “radion” in the literature.® In order to avoid the confusion, we
use the term “radion” only in the reference to the displacements of the brane in this

paper.
§3. Brane fluctuation

In this section, we find the solution for the brane fluctuation. The brane fluctu-
ation is not coupled to the energy-momentum tensor of the matter on the brane.
Because the evolution of the brane universe is determined solely by the matter
energy-momentum tensor, the brane fluctuation does not change the evolution of
the brane universe. Therefore, we will find the displacement of the brane that does
not affect the evolution of the homogeneous and isotropic brane.

Let us consider a brane A that is located at y = 0. Now, suppose that the
location of the brane is displaced infinitesimally. The displaced brane is denoted by
A. The displaced brane is no longer located at y = 0. It is convenient to perform an
infinitesimal coordinate transformation and go to the coordinate system in which the
displaced brane A is located at § = 0. For this purpose, we perform the coordinate
transformation

oM MM M = (g (y, ), £y, 1), 0), (3-1)
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which preserves the homogeneity and isotropy of the brane. By choosing an appro-
priate £, we can impose the normal condition gyo = 0. This choice is

£y, 1) = /0 Ty =By 1) + To(t), (3-2)

where Ty(t) is the residual gauge transformation which depends only on time ¢. Then,
the induced metric on the displaced brane A is given by
A5 anen = —€20 W2 4 280015, dyidad, (33)

where

200 = 20 (1 1 2Ty + 280 + 26,€Y).

62&0 = €2a0(1 + 20Ty + Qalfg). (34)
Let us find the coordinate transformation &Y that does not change the evolution of
the brane. It should be noted that the evolution of the brane is determined only by

ap, Bo, a1 and ). Hence, we first demand that the metric on the brane be unchanged
by the coordinate transformation; that is,

do = o, o= Po. (3-5)
Then Ty(t) is determined by & as
« . .
Ty = —d—éfg, To = =015 — BoTo. (3-6)
Hence, the physical displacement of the brane ¢ = ¢ &8 should satisfy
2
Qo+ 1
p— —— ( Q7 = w) =0, (3:7)
Qo rr \ Q0,7

where 7 is the cosmic time on the brane. Next, we consider the first derivatives of
the metric with respect to y. In order to ensure that the evolution of the metric
Qg = op and BO = fp on the displaced brane A is the same as the evolution of the
metric on the brane A, the junction conditions should be the same as the junction
conditions for the brane A. These conditions also give the equation for ©,

2
2 2 O
<)0,7'T + (2 + 303)a077-<'077— - (3&0’7- + 2&0’7-7— + a2€j27_70

+ 3c§ag’T) =0 (38)
1

It is very interesting that this equation has a conserved quantity (., where

2
G = —are [90 ~ Jor ( ! O — w)} : (39)

o, rr \ Q0,7

If ¢« = 0, the condition (3-9) is compatible with the condition (3:7). For w = ¢? =
const, we can integrate Eq. (3-7) and obtain the solution for ¢. At high energies
(5%lp > 1) and at low energies (k2lp < 1), we obtain the solution as

p(t) = f(t), f(t) = femBTD0 (for r2p > 1)

3w+1

f(t)=fiem 77 2 (for k’lp< 1) (3-10)
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where f, is the integration constant. These are the solutions for the brane fluctuation.
The same argument holds for the fluctuation of the brane B. We will denote the
fluctuation of the brane B as f5(t).

§4. Radion and large scale anisotropy on the brane

4.1. Anusotropic shear in the brane world

In the previous section, we found the solution for the brane fluctuation f(#)
which does not change the evolution of a homogeneous and isotropic universe. In
this case, the evolution of the brane fluctuation is determined locally, and it is not
necessary to find the geometry of the whole 5D spacetime. However, once we take
into account the anisotropy of the brane, the situation changes significantly.

Let us consider a homogeneous but slightly anisotropic 5D spacetime. The metric
for this 5D spacetime is taken as

ds? = W gy? 4 2PWD qp2 4 22w (5,0 4 IT;5(y, t))dz'da?, (4-1)
where
Ij(y,t) =0, (for i=7j)
— [(y.t). (for i #j) (4-2)
The branes are again located at y = 0 and y = [, respectively. For a linear anisotropic
shear I1(y,t) < 1, the evolution equation for II(y,t) is given by
(" + (3d + B — AT+ e 2T+ (3a— B+ ) ) =0.  (4:3)

Let us investigate the effect of the brane fluctuation on the anisotropy of the
brane. Now, suppose that the brane is displaced due to the brane fluctuation. We
again perform an infinitesimal coordinate transformation and consider the coordinate

system in which the brane is located at y = 0:

!
€T

In an anisotropic spacetime, a coordinate transformation that depends on the spatial
coordinate is allowed. We take the coordinate transformation function to be

Y =&y hwa'), T=_¢(y o), X' =Ey, o', (4-5)
where w(z') and (') are functions of the spatial coordinates given by
Pu(a’) = 2 + (2'2? + 2%° + 2°2Y),
o' (zh) = 22 + 23, 16%(z") = 2% + 2!, o3(x)) = ' + 2% (4-6)

The functions w(z') and o*(z’) were determined so that the spatial homogeneity
of the universe is preserved after the coordinate transformation. As in the isotropic
universe, we can find a coordinate transformation that does not change the evolution
of the metric by choosing & = e f(t) and

Ey0) = [ dyeO Ny, 0)+ To(r). (47)
J0

NI | -El ectronic Library Service



Publication O fice, Progress of Theoretical Physics

Radion and Large Scale Anisotropy on the Brane 265

where Tj is given by Eq. (3-6). The normal condition g,; = 0 and the condition
gi0 = 0 on the brane A can be satisfied by choosing an appropriate X*:

Ey,t) = —17? /y dye® TNV (y, 1) + 171 X (1),
0
Xo(t) = 17 te2 ooy 4). (4-8)

The trace part of g;; is not transformed. However, the traceless part of g;;, namely
the anisotropic shear I7(y, t), is transformed as

. y
(y.t) = M(y, 1) — 202 / 20w (y 1) 4 207 Xy (1), (4-9)
0
Thus the junction condition for IT is given by
I = 0 = 1T} — 2007200072 1), (4-10)

Thus, now the problem is to solve the wave equation for II(y,t), i.e. Eq. (4-3)
with the boundary conditions (4-10) and to calculate the anisotropic shear ITo(t) =
Io(t) + 2071 Xo(t) on the displaced brane. If the solution for 1Ty is different from
IIy(t), we conclude that the brane fluctuation affects the anisotropy of the brane.

4.2.  Anisotropic shear induced by brane fluctuation

As mentioned in §2, we solve the bulk evolution equation using the assumption
of a nearly static configuration. The bulk metric is given by Eq. (2-8). Then the
wave equation for I7 in the bulk is given by

7" — b(t)%ﬂl . b<t)2€2b(t)y/l (H + (Z—E% + 3ap — 2b(t>%> H) = 0. (4-11)

Here, the time dependence of IT is assumed to be weaker than the y dependence of

II:
o1\’
¢
=& 1. 4-12
(o) e« (412
Within this approximation, we obtain the following solution for ﬁ o that depends on
ft):
: —b(t)
To — — —2040@ -3 - € .
Iy = —2e G0 IT°N(b(t)), N(@O()) = Ssinhb(D) ) (4-13)

Thus one can see that the brane fluctuation becomes a source of anisotropic shear.
However, if we take b — oo yielding the one-brane model, we get N (b(t)) — 0. Hence,
in this case the brane fluctuation does not affect the evolution of the anisotropic
shear. Thus, the brane fluctuation has no physical degree of freedom in the one-
brane model.
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§5. Conclusion and discussion

In this paper, we investigated the effect of displacements of a brane in the extra
dimension. We considered the S'/Z; compactified 5D AdS spacetime. The positive
and negative tension branes are located at the orbifold fixed points. It is assumed
that we are living on the positive tension brane. We showed that a homogeneous
fluctuation of this brane f(¢) evolves as f(t) oc e”(3wFbao/2 at low energies, where
e is the scale factor of the brane. Such a homogeneous brane fluctuation can
interact with an anisotropic perturbation of the bulk. In this way, the anisotropy of
the brane is affected by the fluctuation. We derived the anisotropic shear induced
by the brane fluctuation. In order to derive this solution, it is necessary to solve
the bulk evolution equation. We solved this equation with the assumption that the
system is nearly static.

An interesting point is that the CMB anisotropy due to the Sachs-Wolfe effect
is given by

AT Ll - K0
o

= ). (51)

Then, if the distance b(t) is time dependent, the brane fluctuation will indeed affect
the CMB anisotropy. However, if the distance between two branes is time indepen-
dent, the anisotropic shear induced by the brane fluctuation will not contribute to
the CMB anisotropy. The time variation of the distance between the two branes
makes the effective 4D Newton constant vary with time. This time variation of the
4D Newton constant is constrained by observations. If we consider only the displace-
ment of our brane, the modification induced by the time variation of the distance is
suppressed by the factor N (b(t))/do, which is of order 107° at the decoupling. Be-
cause the brane fluctuation f(t) is a decreasing function of time in a dust dominated
universe, it is difficult to detect the fluctuation of our brane.

If we consider displacements of the hidden brane, the situation becomes more
complicated. Displacements of the hidden brane appear in the CMB anisotropy on
our brane in a non-trivial manner. It would be very interesting to perform detailed
calculations of their effects with some specific models.
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