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  We  apply  a  quantitative method  for the  identification of  asymmetric  relations  between
weakly  interacting selfisustained  oscillators  to the study  of  rhythmic  neural  electrical  activ-

                                                             modelsity, We  begin by testing the method  on  biophysically motivated  neural  oscillator

considering  first two  diffusively coupled  Hindmarsh-Rose oscillators,  and  then two  ensembles

Qf  glebally coupled  neurons  interacting through their mean  fields. Next,  we  consider  the

                                                           is furthermore  cemplex  case  of interactions among  several  oscillatory  units.  The  method

applied  to the analysis  of  the control  of  ext･ernally  vs  internally paced  movements  in hurnans.

A  pilot study  in one  healthy subject reveals  that asymmetry  of  interactions between different

brain areas  may  strongly  change  with  the transition from external  to internal pacing, while

the degree of synchronization  hardly changes.  gUrthermore, our  preliminary results  highlight

the important role  of  the  secondary  auditory  cortex  in internal rhythm  generation,

'gl.
 Introduction

   Nonlinear dynamics  and  coupled  oscillators  theory have provided fundamental

ideas and  tools fbr the analysis  of  complex  experimental  data.i)-3) An  important

application  of these tools is the study  of  brain activity  at different levels of  neuronal

organization,  from the cellular  level up  to large scale  neuronal  networks.4)rriO)  Nu-

merous  theoretical studies  have been devoted to understanding  how inter-cellular

coupling  mechanisms  in coajunction  with  intrinsic properties of  the neurons  ac-

count  for experimentally  observed  coherent,  rhythmical  behavior in neuronal  pop-

ulations.ii),i2)  This knowledge could  further illuminate on  the functional role of

interaction between different populations in brain information processing, both in

normal  and  pathological conditions.  The  ultimate  goal of  the research  in this field is

to translate theoretical knowledge into novel  noninvasive  diagnostic tools (e,g., syn-

chronization  tomographyi3)) and  therapeutic techniques (e.g., demand-controlled

desynchronizing deep brain stimulation  based on  stochastic  phase resettingi4)-i6)).

    Rhythmical phenomena  in the  electrical  activity  of  the brain call  be often  un-

derstood within  the framework  of the coupled  oscil}ators  theory.  This formalism

has provided  explanation  for a number  of  observed  synchronization  phenomena  and

coherent  beha;vior in neuronal  ensembles.  In addition,  techniques derived from  syn-

chronization  theory have found usefu1  applications  in the analysis  of brain electrical
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activity.5),17),18)

    Non-invasive brain recordings  are  typically multichannel  measurements  of  elec-

tric (electroenchephalogram, EEG)  or  magnetic  brain activity  (magnetoenchephalo-
gram, MEG)  which  reveal  the coexistence  of  broad-band activity  and  rhythms  of

different frequencies. In the multivariate  analysis  of  these signals  we  can  outline

two important tasks. The  first task is to reveal  and  quantify interaction between
certain  sources  of  oscillatory  activity.3)'5)]i7)ii9)-2i)  Once the presence  ofinteraction

is established  or  physiologically motivated,  the second  task is to identify the asym-
metry,  or  the  direction of  coupling  between  these sources,  i.e., to find out  which  of

the interacting oscillators  predominantly  effects  its counterpart.

    An  approach  that enables  the identification ofthe  asymmetry  of  weak  interaction
of  selfsustained  oscillators  has been developed quite recently.22)J23)  In the present
study,  we  evaluate  the perfbrmance  of  the  proposed method  using  biophysically mo-
tivated models.  Further, we  apply  this method  to the analysis  of asymmetry  of  the
interaction of  sources  of  rhythmic  neural  activity  engaged  in the control  of  externally
vs  internally paced movements.  MEG  and  EMG  (electromyographic) measurements

have been perfbrmed  in a  healthy subject  during a  paced finger tapping (PFT) exper-
iment.24) The subject  was  first asked  to tap  with  his index finger in synchrony  with

a  periodic train of  tones (external pacing). After discontinuing the tones, the  subject

continued  the periodic finger tapping, guided by internal timing  mechanism.  The
brain areas  active  during PFT  were  consistently  localized with  functional magnetic

resonance  imaging (fMRI), which  detects neuronal  activity  indirectly by measuring

an  increase of  the  blood oxygenation  level,25) and  with  synchronization  tomogra-

phy,i3) i.e., a  phase synchronization  analysis5)  applied  to the  cerebral  current  source

density, reconstructed  with  magnetic  field tomography.26) Unlike fMRI, the synchro-
nization  tomography  enables  to study  interactions between different brain areas,  as

well  as between brain areas  and  muscular  activity.  In this way  fbur relevant  neural
sources  have been  selected  for further analysis,

   The  paper is organized  as follows. In g2 we  briefly describe the algorithms.

Section 3 is devoted to tests of the algorithms  on  the models  of  neuronal  oscillators.
We  start  here with  the case  of  two interacting neuronal  oscillators.  Then we  propose a
model  of two interacting sources  of  neural  activity.  Fbr this purpose  we  consider  each

source  as a population of  globally coupled  neurons,  generating a macroscopic  mean

field;
 
next

 we  assume  that the populations interact through  their mean  fields. Finally,
we

 treat the  case  of  several  interacting units.  In g4 we  present the experiment,  the
algorithmic  steps  ofdata  processing and  the  results  of asymmetry  analysis.  In g5 we
discuss our  results.

g2. Quantification ofdirectionality  from  bivariate data

   [[taditional techniques  of  data analysis  do not  provide information on  directional
relations

 between systems,  This problem  can  be approached  from the viewpoint  of
information theory; direction of interaction can  then be described in terms  of mutual

predictability or  infbrmation transfer.27)rv29) Another approach  is based on  the notion
of  dynamical  interdependence,4) i.e., on  existence  of  a  functional relationship  between
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the points in the (reconstructed) phase spaces  of  two systems;  this relationship  can

be asymmetrical.  The latter approach  is tightly related  to the notion  of  generalized
synchronization  and  can  be also  described in terms of  mutual  predictability.i8)

   Here we  briefly describe our  previously developed approach22),23)  and  then apply

it to the analysis  of neuronal  electrical  activity.  This approach  is based on  the

assumption  that the systems  under  investigation can  be regarded  as  weakly  coypled

selfsustained  oscillators.  Such an  assumption  makes  this approach  more  restrictive

compared  to the approach  based on  the information theory. However, as  models  of

coupled  oscillators  describe a variety  of  natural  phenomena,  our  technique can  be

used  in many  practical situations  offering  some  advantages  over  other  methods,  like

simplicity  of  implementation  and  interpretation, ability  to work  with  rather  short

and  noisy  data, small  number  of  parameters. The starting  point is one  of  the main

ideas ofthe  coupled  oscillators  theory:  Weak  coupling  influences the phase dynamics,

without  altering  each  oscillator's  intrinsic limit cycle.  Thus, the interaction, though

weak,  leads to qualitative change  in the collective  dynamics. This property enables

the  reduced  description of  two  weakly  interacting oscillators  by the phase model:

di1,2 =  Wl,2  +  el,2fl,2(ip1,2, ip2,1) +  gl,2(t) , (2･1)

where  dii,2(t) denote the continueus  phase variables  (defined on  the whole  real  line,
                                                             ic func-                                         ed  through  the 2T-periodnot  on  the  [O, 2T) circle),30) The  coupling  is describ

tions A,2 which  also  incorporate the  properties of  individual oscillators.  The  strength

of  coupling  is given by the parameters  si,2 <K  wi,2.  Recently it has been shown  that

complex  (aperiodic) oscillators  admit  a  similar  description if a suitable  phase  variable

can  be defined.3i) The terms  Ci,2 in (2･1) account  for amplitude  fiuctuations in ape-

riodic  (chaotic) oscillators  and!or  random  perturbations which  are  alwacys  present in

the real-world  systems.  .

   We  emphasize  that there  is no  uniqve  way  to quantify  the directionality of

coupling,  even  if Eq. (2･1) is known. Clearly, if one  of  the parameters Ei,2  is zero,

then  the coupling  is unidirectional.  However, if ei,2 t O, quantification of asymmetry

becomes ambiguous.  We  call interaction symmetric  ifthe coupling  terms are  identical

(i.e. sifi(-)  =  62fe(-)),  what  however  does not  take into account  the difference of

:,a,tuJ.ag.fr,:g:,en,c?
ieg

℃da,
W,s,?,u

,
an=`i?ii<lh,e,;i",fi,u,e,",g?ef,,sg,s`?,gl> 2..o"

Jlfi
s

3y.s,`.gm,,i,By,
denotes averaging  over  ipi,2. ci  is an  integrative measure  of  how strongly  oscillator

1 is driven and  how  sensitive  it is to the driving. Computing in the  same  way  c2,  we

quantify  asymmetry  in interaction by one  number  
･

                           d(1,2)=C2-Cl,  (2.2)
                                 Cl +  C2

that  we  call directionality inde=. It varies  from 1 in the  case  of  unidirectional  coupling

(1 --> 2) to -1  in the  opposite  case  (2 -  1), while  intermediate values  correspgnd  
to

 
a

bi-directional coupling  configuration.  If two oscillators  are  structurally  identical and

differ only  by natural  frequencies then fi(･) =  fe(･) and  d(i72) ==                                                    (e2 -  el)1(el  +  E2)-

   Practically, we  proceed as fbllows. Taking time series  of phases ipi,2 that can  be
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estim'ated  from data (see below) we  construct  new  time  series

Al,2(k) =  ip1,2(tk +  T)  -  ip1,2(tle) , (2･3)

where  T  is the  only  parameter. Phase  increments Ai,2 can  be considered  as  generated
by an  unknown  two-dimensional noisy  map,  analogue  of  continuous  time Eq. (2･1):

Ai,2(k) =  A,2 (ipi,2(tk), ip2,i(tk)) +  ni,2(tk) ` (2･4)

The  functions IL,2 can  be estimated  from  data. Indeed, as  they are  periodic with
respect  to phases, they can  be approximated  by a,finite  double l7burier series.  Coef
ficients of  this series  can  be obtained  by fitting the dependencies of Ai,2 on  ipi,2 in
the least mean  square  sense.  Notice that fitting has also  a  noise  reduction  effect.32)

Denoting  the approximates  of A,2 by .Fl,2,  computing  analytically  the derivatives
O"Fl,210ip2,i, and  averaging,  we  estimate  the coeMcients

Ci,2=((OA,2Oip2,1)

2

) (2･5)

and  directionality index according  to Eq. (2･2). Concerning the choice  of  7,  we

mention  that in the weak  coupling  (Ei,2 K  wi,2)  regime,  the deviation of  the  phase
growth from wt  becomes  significant  only  on  a  time scale  comparable  to the oscillatory

period. We  take T  equal  to the mean  period of the fastest oscillator,  fbllowing
previous insight23) into the  parameter  selection  problem.

   We  emphasize  that the algorithm  fails if the oscillators  are  phase  locked, which
mathematically  corresponds  to the  appearance  of  a  functional dependence  between
the two  phase variables.  AIternative solutions  of  the directionality estimates  have
been discussed and  experimentally  verified  in Refs. 23),33).

   The described approach  requires  the knowledge of  the phases of  the interacting
systems.  Therefore, the first step  in the analysis  of  experimental  data is an  estima-

tion of  the instantaneous phases from the signals.  This can  be done by means  of

the Hilbert transform  (see discussion and  technical details in Ref. 3)) or  complex

continuous  wavelet  transform;6) these methods  appear  to be nearly  equivalent  if ap-
plied in synchronization  analysis,34)  Alternatively, the phase can  be determined via
rnarker  events  in time series, in analogy  to the  Poincar6 section  technique.  Indeed,
if a  time  series  contains  some  easily  detectable marker  event  per each  oscillation

period, e,g. a spike,  then the period can  be associated  with  the inter-spike interval.
Correspondingly, we  can  assign  2T phase  increment to each  inter-spike interval and

obtain  the  instantaneous  phase  by linear interpolation between  the spikes:3)

ip(`) =
     t-tk
2r･tk+1

 
-

 tle+2T･ic, (2･6)

where  tk are  the  instants of spike  occurrence  in the signal.  Below  we  discuss the
choice  of  a  suitable  technique.
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g3. Tbsting  the  algorithm  with  models  of  neuronal  oscillations

   The  application  of  the directionality identification algorithm,to  electrophysiologi-

cal  data, and  especially  brain activity,  suggests  to test this algorithm  on  biophysically

motivated  neuron  medels.

3.1, [PuJo coupled  neuronal  oscillators

   We  begin by considering  the  Hindmarsh-Rose  (HR)35) neuron  model  which,  with

minimal  complexity  (i.e., three variables  only)  replicates  the main  dynamical regimes

of  regular  spiking  and  chaotic  spiking-bursting  activity  observed  in living neurons.

   Two  electrically  coupled  HR  neurons  are  described by  the fbllowing set of  coupled

ordinary  difrerential equations:

=1,2

Yl,2il,2

=
 Yl,2-

:=  1-  5x

=  O.006･

x?,2 +  3xZ2 -  xl,2 +  Il,2 +  el,2(x2,1  
-
 xl,2)  ,

21,2
 
-

 Yl,2 ,

(4(xl,2 +  1.6) -  Zl,2)  ･ (3･1)

The  x  variable  represents  the membrane  potential, y is a  recovery  variable  and  z

represents  the internal mechanism  which  regulates  the patterns of  discharges. The

parameters Ii,2 denote the external  current  injected to each  neuron;  the  spiking

frequency is approximately  proportional to I. In our  simulation  we  set  Ii =  5, h  =

5.2; for these parameters an  individual cell exhibits  periodic spiking.  Parameters

ei,2  denote the strength  of  the synaptic  coup!ing,  For the  tests, we  fixed ei =
 0.05,

and  varied  E2  in the interval [O,O.5].
   With increase ofthe  coupling  strength  (parameter E2),  the two oscillators  exhibit

different regimes  of spiking.  So, periodic spiking  (like in uncoupled  neurons)  is pre
served  at very  weak  coupling  and  re-established  in the synchronous  regime,  whereas

a  bursting behavior (short trains of  spikes  intercalated by quiescent  intervals) is ob-

served  fbr intermediate coupling  strength.  Figure 1 shows  typical spiking  patterns

encountered  within  the explored  range  of  the coupling  strength.  The results  of  the

directionality analysis  are  shown  in Fig. 2(a). For each  coupling  configuration  ex-

plored, the index d(i,2) was  computed  from the instantaneous phases of  signals  xi,2;

the length of  data corresponds  to f200  consecutive  spikes.  Instantaneous phases
have been computed  according  tQ Eq. (2･6).
   Note that transition to synchronization  is not  monotonic  here. This can  be ob-

served  in Fig. 2(b), where  we  plot synchronization  index p2 =:  <cos(ipi(t) 
-
 ip2(t)>2 +

<sin(ipi(t) -  ip2(t))>2, that is the intensity of  the  first Fburier mode  of  the  phase differ-

ence  distribution; brackets < > denote time averaging.  p =  1 means  perfect locking,

whereas  p =  O corresponds  to the  absence  of interaction. The  unusual  behavior of

the  synchronization  index is caused  by non-monotonic  changes  in the firing period
that occur  at  small  coupling  strength  between  the two oscillators,  However, the

directionality index correctly  identifies the  asymmetry  in interaction, independently

of  the  dynamical regime  (regular spiking  or  spiking-bursting).
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Fig.1. Time  series  of  x  variables  from coupled  HR  oscillators  (Eqs. (3-1)) with  Ei ==

constant  and  E2 varied:  (a) E2  =  O, (b) E2  =  O.1, (c) e2 =  O.3, and  (d) E2 =  O.4.
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Fig. 2. Dependence of  (a) the directionality index d(i'2) and  (b) the  synchrenization  index p  on  e2

   fbr two  coupled'HR  oscillators  with  fixed ei =  O.05. Solid line in (a) shows  the theoretical curve

   for d(i'2} according  to (e2 -Ei)1(ei  +E2). Note  that  estimatien  of  d(i'2) is effective  unless  the

   two  systems  synchrenize,

3.2. Two  cozrpled  ensembles  of  neuronal  oscillators

    Modeling  sources  of rhythmic  activity  that contribute  to MEG  and  EEG  genera-
tion implies a  macroscopic  level of  description, i.e., consideration  of  the dynamics  of

large neuronal  ensembles.  It is widely  believed that the onset  of  rhythmical  activity

in a population  of  neurons  can  be regarded  as  the Kuramoto  transition30),36) in an
ensemble  of  globally (each-to-each) coupled  oscillators.37)  Correspondingly, interac-
tion of  two (or several)  sources  of  brain activity  can  be modeled  by two  (or several)
interacting ensembles,

   In order  to test the applicability  of  our  approach  to MEG  signals,  we  consider

two  populations  of  N  globally coupled  oscillators;  the  populations  diffusively interact
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through  their mean  fields.
the FitzHugh-Nagumo, or
model  are:

We  start  with  the  simplest  model  of  an  in

Bonhoeffer-van der Pol oscillator.  [I]hedividual

 neuron,

equations  of  the

bi.yiuiabi: x, -x?･  /3 -  yi +4+nX  +ei  (U -X)  ,

=  O.1-(xi+O.7-O.8yi),

=  u,  -  u?･ /3 -  vi +  .Jla +  T]U+  E2(X  
-

 U) ,

=  O.1･(ui+O.7-O.8vi). (3･2)

Here  the variables  xi,gyi and  ui,vi,  wherei=  1,･･･,N,  describe the ith elements  of

the first and  second  population, respectively;  X  =  N"i  Ei･=i xi  and  U  =  N-i  2,N=i ui

are  the  mean  fields ofthe  populations, Parameter ep denotes the coupling  within  each

population (for simplicity  we  suppose  it to be the same  in each  population), while

si,2 describe the coupling  between  the two  ensembles.  Parameters k, G  correspond

to external  currents  iajected into each  neuron  of  the first and  second  population,

respectively;  they determine the spiking  frequency of  the individual neurons.  We

further assume  that neurons  within  each  population are  subject  to different inputs

4 and  G, respectively.  4, de are  assumed  to be Gaussian distributed numbers  with

the mean  values  i 
--

 O.6 and  J- =  O.7, and  standard  deviation AI  =  AJ  =  O.Ol. Fbr

the chosen  value  of ny =  O.O05, a  non-zero  mean  field occurs  in each  ensemble.  As

i 7E j, then in the  absence  of  coupling  between ensembles  (Ei,2 =  O), the mean  fields

have different frequencies.
                                       A  Kuramoto  transition in a  popu-

Table I. Results ofthe  directionality estimates

  for the coupled  populations  model  (3･2);
  dSk'2) is the theoretical prediction (e2 -

  el)/(El+E2).

p tt e2 dth d
O.OOI O.OOI
O,O02 O.O02
 O O,O02
O,OOI O.O02

 O O.05

 O O,07
 1 O.99
O.33 O.38

and  fbr different values  of  el,2,  testing the e

the estimation  of  d(i'2) we  take  the  mean  fields X,

instantaneous phases  by means  of  the Hilbert [[lr;

pling strength  we  observe  synchroniz'ation  between th

the directionality eannot be detected (see the

below  synchronization  threshold  asymmetry

results  in [Ilable I.

   Fbr the  next  test, we  consider  two  coupled  .ensembles  of  Hindmarsh-Rose neu-

 lation of  globally coupled  oscillators  ap-

 pears as  a  Hopf bifurcation fbr the mean

 field (i.e. the  order  parameter). There

 fore, the dynamics of  two  coupled  popu-

 lations should  be similar  to the dynam-

 ics of  two  coupled  selgsustained  oscilla-

 tors.38) A  detailed analysis  of  a  model

 of coupled  populations  is beyond  the

 framework of  this paper; here we  just
 simulate  the  model  (3･2) for N  =  500
ficiency of  the asymmetry  detection. For

      U  as  the  signals  and  estimate  the

     ansform.  For suMciently  large cou-

         e  populations;  in this regime

  discussion in g2). Fbr coupling  strength

  is reliably  detected, as  exemplified  by
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Fig, 3, Mean  fields X  (a) and  U  (b) in two  interacting ensembles  of  HR  neurons  fbr ei

  e2 =  O.07 and  their power spectra  (c), (d),
=:  O.05 and

rons:

             thi =  yi -x?･ +  3x?･ -  z,  +  Ile +  7?X  +Ei  (U -  X)  
,

             Yi =  1-  5m,2･ -  yi,

             2i =  O.O06t(4(xi+L6)-zi),

             drz =  vi-u?+3ul-wi+Ji+nU+e2(X-U),

             abdi =  1-  5u,2- -  vi ,

            abi =  O.OO6･(4(ui+L6)-wi),  (3･3)
where  variables  xi,  yi, zi and  ui, vi, wi  describe the dynamics of  the  ith n'euron  in the
first and  second  population,  respectively,  and  X  =  N'i  Er  x, and  U  = N-i  :l  ui

are  the mean  fields. Other parameters have the same  meaning  as  in Eqs. (3J2). The
values  of  the  currents  4 and  4  are  assumed  to be Gaussian distributed around  the
mean  values  I =  5 and  J  =  5.1 with  standard  deviation AI  =  AJ  =  O.05. In this
range  of  parameters individual neurons  exhibit  periodic spiking  with  the  frequency
approximately  linearly increasing with  the magnitude  of  the input current.

   We  performed numerical  simulations  of  Eqs. (3i3) with  N  ==  1000 oscillators

in each  population and  the global coupling  parameter  n =  0.5 above  the  critical

value  for which  a  finite macroscopic  mean  field occurs  in each  ensemble.  One  inter-
population  coupling  coeMcient  has been fixed, Ei =  O.05, while  E2  was  varied  in the
interval [O,0.11],
   It is well-known  that  the  dynamics of  the  mean  field can  be complex:  examples
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Fig. 4. Dependence  of  directionality index d(ii2) on  e2 fbr two  coupled  ensembles  of  HR  oscillators.

  Symbols  o  and  .  denote estimates  with  phases determined via  Poincar6 section  and  Hilbert

  transfbrm,  respectively.  The  bold line shows  the  curve  (e2 -Ei)/(ei  +e2)･

are  fbrmation of  clusters,39)  dephasing and  bursting40) and  collective  chaos.4i)T42)  In

our  model  the  mean  field appears  to be irregular (Fig. 3). Without  going into details

of  the  collective  dynamics of the HR  neurons,  we  estimated  the directionality index

considering  the  mean  fields X, U  as  observables.  Estimation of  the instantaneous

phase from such  complex  mean  field data requires  a  carefu1  consideration.  The

mean  field appears  as  a  sequence  of  large and  small  spikes.  It is not  clear  whether

2r- phase increment should  be attributed  to each  spike.  Indeed, if phase variables

have been computed  via  the marker  events  technique,  the directionality estimates

largely deviate from  the  theoretical prediction (see Fig. 4, o  symbols).  To overcome

the dificulty in accurate  phase estimation  from original  mean  field data, we  filtered

the  signals  with  a  bandpass linear-phase FIR  filter centered  on  the frequency of  the

deminant  spectral  component  (see Figs. 3(c) and  (d)). In this way,  we  obtained  a

narrow-band  process with  a  well-defined  phase. Instantaneous phas,es have further

been estimated  using  the  Hilbert transforih of the filtered data. This approach  has

lead to a  considerably  increased accuracy  of  the  directionality index estimates,  as  it

can  be observed  in Fig. 4 (. symbols).

3.3. Iih"orn two  cempled  oscillators  to a  eomplex  network

   Our algorithm  has been designed fbr the  case  of  two coupled  oscillators.  However,

a  complex  natural  system,  like the human  brain, may  represent  a  complex  network  of

N  oscillators.  Theoretically, we  can  write  for each  oscillator,  similarly  to Eq. (2･4),

Ai(ic) =  1ts (ipi(th),･･･ , ipN(tle)) +  ni(th) ,

compute  coeficients  ci,j･ and  cJ･,i, and  directionality indices d(i:i) for each  pair i,j'

of  oscillators,  where  i,o' =  1,･･･,N  andif  j'. However, for large IV the  approach

requires  a  multidimensional  regression  and  becomes computationally  very  ineMcient.

   Simple tests show  that a  pairwise  analysis  provides reasonable  results  in case

of complex  networks  as  well.  One  test was  performed in Ref. 23), where  a  ring

of three unidirectionally  coupled  oscillators  was  considered.  Here we  analyze  two
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(a)

d(1,2). =-O.84

  (-1)

(b)

d<1,2).

 (-O.4
=-O.41(-O.33)

                 d(2t3L-o.o6 
･
 d(2･3).o.14

                      (O) (O.17)
Fig. 5. Different coupling  configurations  of  three oscillators,  Pararrieters of  coupling  are  given

   the text, The  numbers  in brackets show  the value  (eji -  eij･)1(eij  +  ep'i),

in

configurations  (Fig, 5) in a  system  ofthree  coupled  Bonhoeffer-van der Pol oscillators:

           bi =  xi -  x?- /3 -  yi +  li +  Eii･ (x2- -  xi)  +  eile (=k -  xi)  
,

           !)i 
=  0.1･(xi+e.7-O.8yi), (3i4)

where  i,j',k =  1,2,3 and  i l j' f k, The natural  frequency of  each  oscillator  has
been set  by parameters Ii =  O.5, l2 ==  O.55, and  I3 =  O.6, respectively.  The  first
configuration  (Fig. 5(a)) considers  symmetric  (E23 ==  E32  ==  O.OO15) and  unidirectional

(ei2 =  O,OO2, ei3  =  O.001) coupling  between the  elements  of  the network,  while

the second  one  (Fig. 5(b)) exemplify  the  case  of  asymmetric  mutual  interactions

(s12 
=

 O.OOII, e21  =  O.O03, s23  =  O.002, e32  =  O.OOI, e13  =  O.OOI, E31  =  O.O02).
We  observe  that the pairwise analysis  of  interactions correctly  identifies the specific
configuration  of  the network.  Dificulty in evaluating  the  accuracy  of  d(i,J') estimates

is related  to the inability of the paiTwise  analysis  to resolve  the contribution  of

the  third oscillator,  leaving unknown  the theoretical prediction of  the directionality
index.

   Befbre presenting the analysis  of  experimental  data, we  would  like to underline
two  points that are  essential  fbr reliability  and  correct  interpretation of  the  results.

First, we  emphasize  that the algorithm  requires  that the  phase is well-defined,  i.e.,
one  can  unambiguously  identify oscillation  cycles  in the  signal.  This requirement  is
more  strict  than,  e.g., in case  of  the computation  of  the synchronization  index. The
second  point concerns  the  interpretation of  the index that generally is determined
both by parameters of  ei,2 and  functions fi,2 in the model  (2･1). So, it is possible
that the asymmetry  in fi,2 dominates over  the asymmetry  in ei,2. This may  lead
to counterintuitive  results  when,  say, fbr ei >  s2  the index d is positive. Indeed, d
quantifies the integrative effect of  how strongly  each  of the  oscillators  is driven by its
counterpart  and  of how sensitive  it is to this driving. In other  words,  our  approach

quantifies the average  influence of  each  oscillator  on  the phase  dynamics  of the other
one.

94. Brain  activity  during paced  finger tapping

   We  apply  the directionality analysis  to the study  of  cerebro-muscular  and  cerebro-

cerebral  processes  engaged  in sensery-motor  coordination  during a  paced  finger tap-
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ping  experiment,  Pairwise interactions between four relevant  neural  sources  of rhyth-

mical  electrical  activity  are  evaluated  for directionality, under  two different condi-

tions of  the same  experiment:  external  and  internal pacing. MEG  and  EMG  mea-

surements'were  performed  in a healthy male  subject.  During  the  first minute  the

subject  had  to tap with  his right  index finger in synchrony  with  an  external  cue  ad-

ministered  at 2 Hz (external pacing). During  the second  minute  the  external  pacing

was  terminated, and  the subjects  had to continue  the tapping with  the same  rate  as

during the first minute  (internal pacing).

4.1. Data acquisition,  pre-processing, and  synchronization  tornography

   EMG  and  MEG  signals  were  registered  with  a  samp!ing  rate  of 1017.25 Hz. The

EMG  was  recorded  from the right  flexor digitorum muscle  (RF). A  standard  pre-

processing of  the  raw  EMG  signal,  i.e., a  high-pass filtering (> 30 Hz) fbllowed by
rectification  (where x  -  lxl) and  a  band-pass filtering of  the dominant frequency

peak (1 Hz-3 Hz), was  applied  to extract  the  burst activity,  so  that the resulting

signal  represents  the  time  course  of  the  task-related muscular  activity  (see Ref. 13)).

   In a previous study  we  determined the brain areas  which  were  synchronized

with  the muscular  activity  during the paced  finger tapping  by means  of  the syn-

chronization  tomography,i3) i.e., a  phase synchronization  analysis5)  applied  to the

current  source  density obtained  from the measured  MEG  signals  with  magnetic  field

tomography.26) This has been done in two  steps:

   1. Reconstruction of  the cerebral  current  source  density: The cerebral  current

source  density (CSD) which  generates the  measured  magnetic  field was  calculated

in each  volume  element  (voxel) and  for all times t with  magnetic  field tomography

(MFT).26) This computationally  demanding  single-run  analysis  runs  on  a supercom-

puter  (Cray T3E).
   2. Synchronization analysis:  Phase synchronization  was  analyzed  voxel  by voxel

by computing  the synchronization  index:5) To detect cerebro-muscular  synchroniza-

tion, the degree of  phase synchronization  between the  muscular  activity  (the recorded
EMG  signal)  and  CSD  was  determined in each  of the voxels  representing  the brain,

whereas  for cerebro-cerebral  synchronization  the phase relation  was  computed  be-

tween all pairs of  voxels.  R)r the  phase synchronization  analysis  the dominant fre-

quency  components  were  extracted  with  band-pass FIR  filters between  1 Hz and  3

Hz  as  well  as  between 3 Hz  and  5 Hz  corresponding  to dominant peaks in the fre-

quency  spectrum  around  2 Hz  and  around  4 Hz. Figures 6 and  7 show  power  spectra

and  coherence  function of  RF  and  SMC  as well  as SMC  and  LC, respectively.

    Along the  lines of  a pilot study  we  here fbcus on  the  interaction of  the  2 Hz

activity  (i.e. the  CSD  in the range  of 1-3 Hz) of  four areas  which  displayed strongest

cerebro-muscular  synchronization:  left premotor cortex  (PMC), left sensorimotor

cortex  (SMC, consisting  of  primary motor  and  primary sensory  cortex),  left sec-

ondary  auditory  cortex  (SAC), and  left cerebellum  (LC). For the asymrnetry  analysis

we  only  used  the component  of  the CSD  vector  which  displayed the  most  pronounced

frequency peak  around  2 Hz.
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Power  spectra  (a), (b) and  coherence  function (c), (d) of  muscular  activity  (RF, bold line)
senserimotor  cortex  (SMC, thin  line) during external  paclng (a), (c) and  internal pacing
(d), R)r better visualization  the spectra  of  twe  signals  have been plotted with  an  offset.

8

"6

℃

ooR
 4R2

o

(a)

ni

(b)

k

Mf"w,,,ni
lO.8O.6O.4O.2o

(cJ

iVo2
 46

ftHzJ

(cD

8024

   ffHzl6g

Fig. 7. Power  spectra  (a), (b) and  coherence  funetion (c), (d) of  cerebellar  activity  (LC, bold line)
   and  sensorimotor  cortex  (SMC, thin line) during external  pacing (a), (c) and  internal pacing
   (b), (d),

4.2.Results

   The main  results  are  summarized  in Fig. 8, where  we  show  the  difference of
the asymmetry  and  strength  of  interaction of  the  fottr areas  during external  and

internal pacing.  The  fbur areas  are  associated  with  time estimation  (LC), movement

coordination  (PMC, LC), and  inner voice  (SAC). Remarkably, in the  analyzed  2
Hz-range the phase synchronization  hardly differs fbr the  two conditions  (Fig. 8(b)),
whereas  the directionality changes  strongly  (Fig. 8(a)). For the  interpretation of  the
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a) b)

Fig. 8. Quantitative analysis  of  pairwise  interactions of  brain sources:  Asymmetry  analysis  (a)
   and  phase synchronization  analysis  (b) of  the four cerebral  areas.  (a) Direction is indicated by
   the connecting  arrow,  where  the degree  of  asymmetry  is coded  by the width  of  the arrow.  A

   symrnetric  relationship  is indicated by a  bidirectional arrow.  (b) Strength of  the  phase synchro-

   nization  is coded  by the width  of  the  connecting  lines, In (a) and  (b) solid  lines correspond  to

   external  pacing (first minute)  and  dashed lines belong to internal pacing  (second minute),

asymmetry  analysis  we  should  keep in mind  that, according  to the  instruction, the

goal  of  the neuronal  control  is to keep the  peripheral, muscular  oscillation  as  regular

as  possible. This control  is based on  the proprioceptive feedback, i.e., the  brain areas

responsible  for generating and/or  controlling  the  muscular  oscillation  permanently
receive  information on  the Muscular  action.  Apart  from  monitoring  the peripheral

oscillation,  these brain areas  have to react  appropriately  to the deviations of  the

actual  peripheral motion  from a  periodic one.  Ifor this, the brain areas  have to be

sensitive  to the phase dynamics  of  the  muscular  oscillation.  We  observe  the  fo11owing

patterns of  interaction:

   Extemal pacing (lfirst minute?:  PMC  and  LC  are  stronger  influenced by SMC

than vice  versa.  This may  be a correlate  of  PMC  and  LC  being strongly  sensitive  to

the activity  of  SMC,  in order  to maintain  a  periodic action  of  SMC.  Put otherwise,

PMC  and  LC  stabilize  SMC  by adapting  to its oscillation.  Furthermore, LC  adapts

to PMC.  The  strongeSt  adaptation  i.s, thus, fbund in LC, an  area  which  is important

for time  estimation.  SAC  interacts symmetrically  with  all other  brain areas  under

consideration.

    internal pacing tsecond minute):  The picture is diflerent compared  to the first

minute.  SMC  and  LC  as  well  as  SMC  and  .PMC  are  now  interacting in  a symmetric

way.  LC  adapts  to the  phase dynamics of  PMC.  In this way  LC  may  stabilize  the

periodic action  of PMC.  SAC  plays a  completely  different role  cempared  to the

external  pacing: Instead of  interacting symmetrically,  it adapts  its phase dynamics

to all  other  brain areas  under  consideration.  In this way  SAC, suppor'ted  by LC,

plays the  role  of  an  inner clock  necessary  fbr internal rhythrn  generation. This fits

nicely  to previous beha;vioral results  which  point  out  the importance of  an  inner

voice  for the internal generation of rhythmic  movements.43)

    We  also  investigated the  degree of  aSymmetry  between the muscular  activity

(RF) and  all  fbur brain areas  under  consideration.  During both first and  second

minute  in all pairs we  obtain  the samq  type of adaptation:  The brain activity

is more  sensitive  to the  muscular  activity,  which  may  mean  that the controlling

brain areas  adapt  to the  muscular  activity  in a way  that they stabilize  the periodic

tapping. Although this is consistent  with  the above  mentioned  results  concerning
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the brain/brain-interactions, we  should  mention  that in case  of  the brain/muscle-
interaction the determination of  asymmetry  according  to (2･2) is not  reliable  because
ofthe  high coherence  and  synchronization  between peripheral  and  brain activity  (see
S3.1).

g5. Discussion and  conclusions

   With this study,  we  addressed  the problem  of  experimental  detection of  the
asymmetry  of interaction of  neuronal  oscillators  within  the framework of  weakly

coupled  oscillators  theory. The  technique briefly described in g2 has been tested
on  biophysically motivated  neural  oscillators,  i.e. coupled  Hindmarsh-Rose neurons.
The results  show  that  the  pairwise analysis  of  phase  variables  of  oscillators  in small
networks  can  reveal  bi- or  unidirectional  interaction and  quantify  the degree of  cou-

pling asymmetry.

   Single cell  level oscillations  often  provide an  inaccurate description of  global
oscillatory  behavior of  neuronal  populations. Thus, we  employed  a macroscopic

level of  description by considering  the  dynamics of  large neuronal  ensembles.  A
new  model  of  two ensembles  of  globally coupled  neuronal  oscillators,  interacting via

their mean  fields, has enabled  us  to simulate  directional interactions between  sources

of  rhythmical  activity  which  underlie  observed  signals,  such  as  the  MEG  or  EEG.
The results  of  asymmetry  analysis  fbr this model  demonstrate  that asymmetry  in
interaction can  be estimated  for such  complex  systems  as  well.

   Concerning the application  of  our  asymmetry  analysis  we  should  mention  that
we  operate  close  to the method's  limits of  resolution  because of  the  small  number

of  periods in the MEG  recordings.  Nevertheless, it is quite remarkable  how strongly

the pattern of  interactions differ between external  and  internal pacing,  although  the
synchronization  hardly changes  in the studied  sources  and  flrrequency band (Fig. 8).
The neurophysiological  result  which  is suggested  by our  analysis,  i.e., the dominant
role of  the  secondary  auditory  certex  for the generation of  internal rhythms,  is con-
sistent  with  previous behavioral studies  which  demonstrated the significance  of  an

inner voice  for internal rhythm  generation.43) Motivated by these results,  we  are

going to substantiate  our  findings by investigating more  subjects  and  additionally

modifying  the experimental  protocol.
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