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We apply a quantitative method for the identification of asymmetric relations between
weakly interacting self-sustained oscillators to the study of rhythmic neural electrical activ-
ity. We begin by testing the method on biophysically motivated neural oscillator models
considering first two diffusively coupled Hindmarsh-Rose oscillators, and then two ensembles
of globally coupled neurons interacting through their mean fields. Next, we consider the
more complex case of interactions among several oscillatory units. The method is further
applied to the analysis of the control of externally vs internally paced movements in humans.
A pilot study in one healthy subject reveals that asymmetry of interactions between different
brain areas may strongly change with the transition from external to internal pacing, while
the degree of synchronization hardly changes. Furthermore, our preliminary results highlight
the important role of the secondary auditory cortex in internal rhythm generation.

§1. Introduction

Nonlinear dynamics and coupled oscillators theory have provided fundamental
ideas and tools for the analysis of complex experimental data.)® An important
application of these tools is the study of brain activity at different levels of neuronal
organization, from the cellular level up to large scale neuronal networks.¥19 Nu-
merous theoretical studies have been devoted to understanding how inter-cellular
coupling mechanisms in conjunction with intrinsic properties of the neurons ac-
count for experimentally observed coherent, rhythmical behavior in neuronal pop-
ulations.1V>12)  This knowledge could further illuminate on the functional role of
interaction between different populations in brain information processing, both in
normal and pathological conditions. The ultimate goal of the research in this field is
to translate theoretical knowledge into novel noninvasive diagnostic tools (e.g., syn-
chronization tomography13)) and therapeutic techniques (e.g., demand-controlled
desynchronizing deep brain stimulation based on stochastic phase resetting!4)16)).

Rhythmical phenomena in the electrical activity of the brain can be often un-
derstood within the framework of the coupled oscillators theory. This formalism
has provided explanation for a number of observed synchronization phenomena and
coherent behavior in neuronal ensembles. In addition, techniques derived from syn-
chronization theory have found useful applications in the analysis of brain electrical
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activity.S)’ 17),18)

Non-invasive brain recordings are typically multichannel measurements of elec-
tric (electroenchephalogram, EEG) or magnetic brain activity (magnetoenchephalo-
gram, MEG) which reveal the coexistence of broad-band activity and rhythms of
different frequencies. In the multivariate analysis of these signals we can outline
two important tasks. The first task is to reveal and quantify interaction between
certain sources of oscillatory activity.)%)17:19-21) Opce the presence of interaction
is established or physiologically motivated, the second task is to identify the asym-
metry, or the direction of coupling between these sources, i.e., to find out which of
the interacting oscillators predominantly effects its counterpart.

An approach that enables the identification of the asymmetry of weak interaction
of self-sustained oscillators has been developed quite recently.?2)23) In the present
study, we evaluate the performance of the proposed method using biophysically mo-
tivated models. Further, we apply this method to the analysis of asymmetry of the
interaction of sources of rhythmic neural activity engaged in the control of externally
vs internally paced movements. MEG and EMG (electromyographic) measurements
have been performed in a healthy subject during a paced finger tapping (PFT) exper-
iment.24) The sub ject was first asked to tap with his index finger in synchrony with
a periodic train of tones (external pacing). After discontinuing the tones, the subject
continued the periodic finger tapping, guided by internal timing mechanism. The
brain areas active during PFT were consistently localized with functional magnetic
resonance imaging (fMRI), which detects neuronal activity indirectly by measuring
an increase of the blood oxygenation level 25 and with synchronization tomogra-
phy,’® ie. a phase synchronization analysis®) applied to the cerebral current source
density, reconstructed with magnetic field tomography.26) Unlike fMRI, the synchro-
nization tomography enables to study interactions between different brain areas, as
well as between brain areas and muscular activity. In this way four relevant neural
sources have been selected for further analysis.

The paper is organized as follows. In §2 we briefly describe the algorithms.
Section 3 is devoted to tests of the algorithms on the models of neuronal oscillators.
We start here with the case of two interacting neuronal oscillators. Then we propose a,
model of two interacting sources of neural activity. For this purpose we consider each
source as a population of globally coupled neurons, generating a macroscopic mean
field; next we assume that the populations interact through their mean fields. Finally,
we treat the case of several interacting units. In §4 we present the experiment, the
algorithmic steps of data processing and the results of asymmetry analysis. In §5 we
discuss our results.

§2. Quantification of directionality from bivariate data

Traditional techniques of data analysis do not provide information on directional
relations between systems. This problem can be approached from the viewpoint of
information theory; direction of interaction can then be described in terms of mutual
predictability or information transfer.27)2% Another approach is based on the notion
of dynamical interdependence,? i.e., on existence of a functional relationship between
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the points in the (reconstructed) phase spaces of two systems; this relationship can
be asymmetrical. The latter approach is tightly related to the notion of generalized
synchronization and can be also described in terms of mutual predictability.ls)
Here we briefly describe our previously developed a.pproach22)’23) and then apply
it to the analysis of neuronal electrical activity. This approach is based on the
assumption that the systems under investigation can be regarded as weakly coupled
self-sustained oscillators. Such an assumption makes this approach more restrictive
compared to the approach based on the information theory. However, as models of
coupled oscillators describe a variety of natural phenomena, our technique can be
used in many practical situations offering some advantages over other methods, like
simplicity of implementation and interpretation, ability to work with rather short
and noisy data, small number of parameters. The starting point is one of the main
ideas of the coupled oscillators theory: Weak coupling influences the phase dynamics,
without altering each oscillator’s intrinsic limit cycle. Thus, the interaction, though
weak, leads to qualitative change in the collective dynamics. This property enables
the reduced description of two weakly interacting oscillators by the phase model:

b12 = wi2 +€12f1,2(d1,2, b2,1) + E1,2() (2-1)

where ¢ 2(t) denote the continuous phase variables (defined on the whole real line,
not on the [0, 2r) circle).>?) The coupling is described through the 27-periodic func-
tions f1 2 which also incorporate the properties of individual oscillators. The strength
of coupling is given by the parameters €12 < wy 2. Recently it has been shown that
complex (aperiodic) oscillators admit a similar description if a suitable phase variable
can be defined.3)) The terms ¢; 2 in (2-1) account for amplitude fluctuations in ape-
riodic (chaotic) oscillators and/or random perturbations which are always present in
the real-world systems. ,

We emphasize that there is no unique way to quantify the directionality of
coupling, even if Eq. (2-1) is known. Clearly, if one of the parameters €12 is zero,
then the coupling is unidirectional. However, if €12 # 0, quantification of asymmetry
becomes ambiguous. We call interaction symmetric if the coupling terms are identical
(i.e. e1fi(-) = e2f2(:)), what however does not take into account the difference of
natural frequencies w1o. We quantify the influence of system 2 on system 1 by
the coefficient &} = ((961/092)?) = £X((0f1/082)%), where (1)) = [J5" ()dé1 dé»
denotes averaging over ¢ 2. c1 is an integrative measure of how strongly oscillator
1 is driven and how sensitive it is to the driving. Computing in the same way cz, we
quantify asymmetry in interaction by one number :

g = 27 (2:2)
c1tc2

that we call directionality index. It varies from 1 in the case of unidirectional coupling
(1 — 2) to —1 in the opposite case (2 — 1), while intermediate values correspond to a
bi-directional coupling configuration. If two oscillators are structurally identical and

differ only by natural frequencies then fi(-) = f2(-) and d1?) = (g5 — £1) /(g1 + €2)-
Practically, we proceed as follows. Taking time series of phases ¢1,2 that can be
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estimated from data (see below) we construct new time series

Ar2(k) = dr2(te +7) — d1,2(tk) , | (2-3)

where 7 is the only parameter. Phase increments A; o can be considered as generated
by an unknown two-dimensional noisy map, analogue of continuous time Eq. (2-1):

A1,2(k") = F1,2(P1.2(tk), d2,1(tk)) + m12(tk) - (2-4)

The functions F7 2 can be estimated from data. Indeed, as they are periodic with
respect to phases, they can be approximated by a finite double Fourier series. Coef-
ficients of this series can be obtained by fitting the dependencies of A; 2 on ¢;9 in
the least mean square sense. Notice that fitting has also a noise reduction effect.3?)
Denoting the approximates of F12 by Fj 2, computing analytically the derivatives
O0F12/0¢2,1, and averaging, we estimate the coefficients

OF12\?
¢y = << 5 ¢2’1) > (2:5)

and directionality index according to Eq. (2-2). Concerning the choice of 7, we
mention that in the weak coupling (€12 < wi2) regime, the deviation of the phase
growth from wt becomes significant only on a time scale comparable to the oscillatory
period. We take 7 equal to the mean period of the fastest oscillator, following
previous insight?3) into the parameter selection problem.

We emphasize that the algorithm fails if the oscillators are phase locked, which
mathematically corresponds to the appearance of a functional dependence between
the two phase variables. Alternative solutions of the directionality estimates have
been discussed and experimentally verified in Refs. 23),33).

The described approach requires the knowledge of the phases of the interacting
systems. Therefore, the first step in the analysis of experimental data is an estima-
tion of the instantaneous phases from the signals. This can be done by means of
the Hilbert transform (see discussion and technical details in Ref. 3)) or complex
continuous wavelet transform;G) these methods appear to be nearly equivalent if ap-
plied in synchronization analysis.3%) Alternatively, the phase can be determined via
marker events in time series, in analogy to the Poincaré section technique. Indeed,
if a time series contains some easily detectable marker event per each oscillation
period, e.g. a spike, then the period can be associated with the inter-spike interval.
Correspondingly, we can assign 27 phase increment to each inter-spike interval and
obtain the instantaneous phase by linear interpolation between the spikes:3)

t— 1
b1 — Tk

$(t) = 27 Yok, (2:6)

where t are the instants of spike occurrence in the signal. Below we discuss the
choice of a suitable technique.
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§3. Testing the algorithm with models of neuronal oscillations

The application of the directionality identification algorithm to electrophysiologi-
cal data, and especially brain activity, suggests to test this algorithm on biophysically
motivated neuron models.

3.1. Two coupled neuronal oscillators

We begin by considering the Hindmarsh-Rose (HR)3® neuron model which, with
minimal complexity (i.e., three variables only) replicates the main dynamical regimes
of regular spiking and chaotic spiking-bursting activity observed in living neurons.

Two electrically coupled HR neurons are described by the following set of coupled
ordinary differential equations:

Ti2 = Yi2— :B:;’,Q + 336%,2 —z12+ L2 +ei2(za —T12),
Y2 = 1-— 5517%,2 -~ Y1,2 »
z12 = 0.006 - (4(z12 + 1.6) — 21,2) - (3-1)

The z variable represents the membrane potential, y is a recovery variable and 2z
represents the internal mechanism which regulates the patterns of discharges. The
parameters I; 2 denote the external current injected to each neuron; the spiking
frequency is approximately proportional to I. In our simulation we set Iy =5, I =
5.2; for these parameters an individual cell exhibits periodic spiking. Parameters
g1,2 denote the strength of the synaptic coupling. For the tests, we fixed €; = 0.05,
and varied e2 in the interval [0, 0.5].

With increase of the coupling strength (parameter €3), the two oscillators exhibit
different regimes of spiking. So, periodic spiking (like in uncoupled neurons) is pre-
served at very weak coupling and re-established in the synchronous regime, whereas
a bursting behavior (short trains of spikes intercalated by quiescent intervals) is ob-
served for intermediate coupling strength. Figure 1 shows typical spiking patterns
encountered within the explored range of the coupling strength. The results of the
directionality analysis are shown in Fig. 2(a). For each coupling configuration ex-
plored, the index d12) was computed from the instantaneous phases of signals 1 2;
the length of data corresponds to ~ 200 consecutive spikes. Instantaneous phases
have been computed according to Eq. (2-6).

Note that transition to synchronization is not monotonic here. This can be ob-
served in Fig. 2(b), where we plot synchronization index p? = (cos(¢1(t) — ¢2 ()2 +
(sin(¢1 (t) — d2(t)))?, that is the intensity of the first Fourier mode of the phase differ-
ence distribution; brackets ( ) denote time averaging. p = 1 means perfect locking,
whereas p = 0 corresponds to the absence of interaction. The unusual behavior of
the synchronization index is caused by non-monotonic changes in the firing period
that occur at small coupling strength between the two oscillators. However, the
directionality index correctly identifies the asymmetry in interaction, independently
of the dynamical regime (regular spiking or spiking-bursting).
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Fig. 1. Time series of x variables from coupled HR oscillators (Egs. (3:1)) with €; = 0.05 kept
constant and ez varied: (a) e2 =0, (b) €2 = 0.1, (c) e2 = 0.3, and (d) g2 = 0.4.
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Fig. 2. Dependence of (a) the directionality index d*»? and (b) the synchronization index p on &2
for two coupled HR oscillators with fixed €1 = 0.05. Solid line in (a) shows the theoretical curve
for 2 according to (e2 — e1)/(e1 + £2). Note that estimation of d'? is effective unless the
two systems synchronize.

3.2. Two coupled ensembles of neuronal oscillators

Modeling sources of rhythmic activity that contribute to MEG and EEG genera-
tion implies a macroscopic level of description, i.e., consideration of the dynamics of
large neuronal ensembles. It is widely believed that the onset of rhythmical activity
in a population of neurons can be regarded as the Kuramoto transition39:3%) in an
ensemble of globally (each-to-each) coupled oscillators.37) Correspondingly, interac-
tion of two (or several) sources of brain activity can be modeled by two (or several)
interacting ensembles.

In order to test the applicability of our approach to MEG signals, we consider
two populations of NV globally coupled oscillators; the populations diffusively interact
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through their mean fields. We start with the simplest model of an individual neuron,
the FitzHugh-Nagumo, or Bonhoeffer-van der Pol oscillator. The equations of the

model are:

& = zi—23/3—yi+Li+nX+eU-X),

9 = 0.1-(z;+0.7-0.38y),

u; = ui-—u?/B—vi—FJi-f-nU—l—sg(X—U),

v, = 0.1: (ul + 0.7 — 0.8’02') . (3'2)
Here the variables z;,v; and u;,v;, where ¢ = 1,--- | N, describe the ith elements of

the first and second population, respectively; X = N1 Zfil zjand U = N~1 EZJL U;
are the mean fields of the populations. Parameter n denotes the coupling within each
population (for simplicity we suppose it to be the same in each population), while
£1 2 describe the coupling between the two ensembles. Parameters I;, J; correspond
to external currents injected into each neuron of the first and second population,
respectively; they determine the spiking frequency of the individual neurons. We
further assume that neurons within each population are subject to different inputs
I; and J;, respectively. I;, J; are assumed to be Gaussian distributed numbers with
‘the mean values I =0.6 and J = 0.7, and standard deviation AI = AJ = 0.01. For
the chosen value of n = 0.005, a non-zero mean field occurs in each ensemble. As
I # J, then in the absence of coupling between ensembles (€12 = 0), the mean fields
have different frequencies.

A Kuramoto transition in a popu-

Table I. Results of the directionality estimates lation of globally coupled oscillators ap-

for the coupled populations model (3-2); pears as a Hopf bifurcation for the mean
d1? is the theoretical prediction (e2 —  field (i.e. the order parameter). There-
£1)/(e1 + €2). fore, the dynamics of two coupled popu-
1 e2  dP 42 lations should be similar to the dynam-

0.001 0.001 0 0.05 ics of two coupled self-sustained oscilla-
0.002  0.002 0 007 tors.3®) A detailed analysis of a model

0 0002 1 09 of coupled populations is beyond the

0.001 0002 033 038 framework of this paper; here we just

simulate the model (3-2) for N = 500
and for different values of 1 2, testing the efficiency of the asymmetry detection. For
the estimation of d(1'?) we take the mean fields X, U as the signals and estimate the
instantaneous phases by means of the Hilbert Transform. For sufficiently large cou-
pling strength we observe synchronization between the populations; in this regime -
the directionality cannot be detected (see the discussion in §2). For coupling strength
below synchronization threshold asymmetry is reliably detected, as exemplified by
results in Table I.

For the next test, we consider two coupled ensembles of Hindmarsh-Rose neu-
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Fig. 3. Mean fields X (a) and U (b) in two interacting ensembles of HR neurons for £; = 0.05 and
€2 = 0.07 and their power spectra (c), (d).

rons:
T; = yi——x?+3x$—zi+fi+nX+€1(U-—X),
% = 1—5z2—vy,
z = 0.006- (4(z; +1.6) — z) ,
U = v;—ud+3ul—w+ Ji+nU +ea(X -U),
v = 1—5u?—u;,
w; = 0.006 - (4(u; + 1.6) — w;) , (3-3)

where variables z;, y;, 2; and u;, v;, w; describe the dynamics of the ith neuron in the
first and second population, respectively, and X = N1 Ziv ziand U = N1 Ziv uj
are the mean fields. Other parameters have the same meaning as in Egs. (3-2). The
values of the currents I; and J; are assumed to be Gaussian distributed around the
mean values I = 5 and J = 5.1 with standard deviation AT = AJ = 0.05. In this
range of parameters individual neurons exhibit periodic spiking with the frequency
approximately linearly increasing with the magnitude of the input current.

We performed numerical simulations of Egs. (3-3) with N = 1000 oscillators
in each population and the global coupling parameter n = 0.5 above the critical
value for which a finite macroscopic mean field occurs in each ensemble. One inter-
population coupling coefficient has been fixed, £1 = 0.05, while €5 was varied in the
interval [0, 0.11].

It is well-known that the dynamics of the mean field can be complex: examples
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~ Fig. 4. Dependence of directionality index d®? on e, for two coupled ensembles of HR oscillators.
Symbols o and e denote estimates with phases determined via Poincaré section and Hilbert
transform, respectively. The bold line shows the curve (e2 —e1)/(e1 + €2).

are formation of clusters,3?) dephasing and bursting®?) and collective chaos.*1):42) In
our model the mean field appears to be irregular (Fig. 3). Without going into details
of the collective dynamics of the HR neurons, we estimated the directionality index
considering the mean fields X, U as observables. Estimation of the instantaneous
phase from such complex mean field data requires a careful consideration. The
mean field appears as a sequence of large and small spikes. It is not clear whether
27 phase increment should be attributed to each spike. Indeed, if phase variables
have been computed via the marker events technique, the directionality estimates
largely deviate from the theoretical prediction (see Fig. 4, o symbols). To overcome
the difficulty in accurate phase estimation from original mean field data, we filtered
the signals with a bandpass linear-phase FIR filter centered on the frequency of the
dominant spectral component (see Figs. 3(c) and (d)). In this way, we obtained a
narrow-band process with a well-defined phase. Instantaneous phases have further
been estimated using the Hilbert transform of the filtered data. This approach has
lead to a considerably increased accuracy of the directionality index estimates, as it
can be observed in Fig. 4 (e symbols).

3.3. From two coupled oscillators to a complex network

Our algorithm has been designed for the case of two coupled oscillators. However,
a complex natural system, like the human brain, may represent a complex network of
N oscillators. Theoretically, we can write for each oscillator, similarly to Eq. (2-4),

Ai(k) = Fi (1(te), -+, on(te)) + milte)

compute coefficients ¢; ; and c;;, and directionality indices d®7) for each pair i, j
of oscillators, where 4,5 = 1,--- , N and 4 # j. However, for large N the approach
requires a multidimensional regression and becomes computationally very inefficient.

‘Simple tests show that a pairwise analysis provides reasonable results in case
of complex networks as well. One test was performed in Ref. 23), where a ring
of three unidirectionally coupled oscillators was considered. Here we analyze two
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Fig. 5. Different coupling configurations of three oscillators. Parameters of coupling are given in
the text. The numbers in brackets show the value (¢;; — €55)/(gsj + €5i).

configurations (Fig. 5) in a system of three coupled Bonhoeffer-van der Pol oscillators:

i = zi—o/3—vyi+ L +ei(zy — )+ ewlar — zi)
% = 0.1-(z;+0.7-08y), (3-4)

where 7,7,k = 1,2,3 and i # j # k. The natural frequency of each oscillator has
been set by parameters I; = 0.5, I = 0.55, and I3 = 0.6, respectively. The first
configuration (Fig. 5(a)) considers symmetric (€23 = €32 = 0.0015) and unidirectional
(e12 = 0.002, 13 = 0.001) coupling between the elements of the network, while
the second one (Fig. 5(b)) exemplify the case of asymmetric mutual interactions
(€12 = 0.0011, g91 = 0.003, g93 = 0.002, €32 = 0.001, €13 = 0.001, €31 = 0.002).
We observe that the pairwise analysis of interactions correctly identifies the specific
configuration of the network. Difficulty in evaluating the accuracy of d(*7) estimates
is related to the inability of the pairwise analysis to resolve the contribution of
the third oscillator, leaving unknown the theoretical prediction of the directionality
index.

Before presenting the analysis of experimental data, we would like to underline
two points that are essential for reliability and correct interpretation of the results.
First, we emphasize that the algorithm requires that the phase is well-defined, i.e.,
one can unambiguously identify oscillation cycles in the signal. This requirement is
more strict than, e.g., in case of the computation of the synchronization index. The
second point concerns the interpretation of the index that generally is determined
both by parameters of €; 2 and functions f1,2 in the model (2-1). So, it is possible
that the asymmetry in f; 2 dominates over the asymmetry in €1,2. This may lead
to counterintuitive results when, say, for 1 > &5 the index d is positive. Indeed, d
quantifies the integrative effect of how strongly each of the oscillators is driven by its
counterpart and of how sensitive it is to this driving. In other words, our approach
quantifies the average influence of each oscillator on the phase dynamics of the other
one.

§4. Brain activity during paced finger tapping

We apply the directionality analysis to the study of cerebro-muscular and cerebro-
cerebral processes engaged in sensory-motor coordination during a paced finger tap-
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ping experiment. Pairwise interactions between four relevant neural sources of rhyth-
mical electrical activity are evaluated for directionality, under two different condi-
tions of the same experiment: external and internal pacing. MEG and EMG mea-
surements were performed in a healthy male subject. During the first minute the
subject had to tap with his right index finger in synchrony with an external cue ad-
ministered at 2 Hz (external pacing). During the second minute the external pacing
was terminated, and the subjects had to continue the tapping with the same rate as
during the first minute (internal pacing).

4.1. Data acquisition, pre-processing, and synchronization tomography

EMG and MEG signals were registered with a sampling rate of 1017.25 Hz. The
EMG was recorded from the right flexor digitorum muscle (RF). A standard pre-
processing of the raw EMG signal, i.e., a high-pass filtering (> 30 Hz) followed by
rectification (where z — |z|) and a band-pass filtering of the dominant frequency
peak (1 Hz-3 Hz), was applied to extract the burst activity, so that the resulting
signal represents the time course of the task-related muscular activity (see Ref. 13)).

In a previous study we determined the brain areas which were synchronized
with the muscular activity during the paced finger tapping by means of the syn-
chronization tomogmphy,l?’) i.e., a phase synchronization analysis5) applied to the
current source density obtained from the measured MEG signals with magnetic field
tomography.%) This has been done in two steps:

1. Reconstruction of the cerebral current source density: The cerebral current
source density (CSD) which generates the measured magnetic field was calculated
in each volume element (voxel) and for all times ¢t with magnetic field tomography
(MFT).26) This computationally demanding single-run analysis runs on a supercom-
puter (Cray T3E).

2. Synchronization analysis: Phase synchronization was analyzed voxel by voxel
by computing the synchronization index:®) To detect cerebro-muscular synchroniza-
tion, the degree of phase synchronization between the muscular activity (the recorded
EMG signal) and CSD was determined in each of the voxels representing the brain,
whereas for cerebro-cerebral synchronization the phase relation was computed be-
tween all pairs of voxels. For the phase synchronization analysis the dominant fre-
quency components were extracted with band-pass FIR filters between 1 Hz and 3
Hz as well as between 3 Hz and 5 Hz corresponding to dominant peaks in the fre-
quency spectrum around 2 Hz and around 4 Hz. Figures 6 and 7 show power spectra
and coherence function of RF and SMC as well as SMC and LC, respectively.

Along the lines of a pilot study we here focus on the interaction of the 2 Hz
activity (i.e. the CSD in the range of 1-3 Hz) of four areas which displayed strongest
cerebro-muscular synchronization: left premotor cortex (PMC), left sensorimotor
cortex (SMC, consisting of primary motor and primary sensory cortex), left sec-
ondary auditory cortex (SAC), and left cerebellum (LC). For the asymmetry analysis
we only used the component of the CSD vector which displayed the most pronounced
frequency peak around 2 Hz.
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Fig. 6. Power spectra (a), (b) and coherence function (c), (d) of muscular activity (RF, bold line)
and sensorimotor cortex (SMC, thin line) during external pacing (a), (c) and internal pacing
(b), (d). For better visualization the spectra of two signals have been plotted with an offset.
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Fig. 7. Power spectra (a), (b) and coherence function (c), (d) of cerebellar activity (LC, bold line)
and sensorimotor cortex (SMC, thin line) during external pacing (a), (c) and internal pacing

(b), (d).

4.2. Results

The main results are summarized in Fig. 8, where we show the difference of
the asymmetry and strength of interaction of the four areas during external and
internal pacing. The four areas are associated with time estimation (LC), movement
coordination (PMC, LC), and inner voice (SAC). Remarkably, in the analyzed 2
Hz-range the phase synchronization hardly differs for the two conditions (Fig. 8(b)),
whereas the directionality changes strongly (Fig. 8(a)). For the interpretation of the
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Fig. 8. Quantitative analysis of pairwise interactions of brain sources: Asymmetry analysis (a)
and phase synchronization analysis (b) of the four cerebral areas. (a) Direction is indicated by
the connecting arrow, where the degree of asymmetry is coded by the width of the arrow. A
symmetric relationship is indicated by a bidirectional arrow. (b) Strength of the phase synchro-
nization is coded by the width of the connecting lines. In (a) and (b) solid lines correspond to
external pacing (first minute) and dashed lines belong to internal pacing (second minute).

asymmetry analysis we should keep in mind that, according to the instruction, the
goal of the neuronal control is to keep the peripheral, muscular oscillation as regular
as possible. This control is based on the proprioceptive feedback, i.e., the brain areas
responsible for generating and/or controlling the muscular oscillation permanently
receive information on the muscular action. Apart from monitoring the peripheral
oscillation, these brain areas have to react appropriately to the deviations of the
actual peripheral motion from a periodic one. For this, the brain areas have to be
sensitive to the phase dynamics of the muscular oscillation. We observe the following
patterns of interaction:

External pacing (first minute): PMC and LC are stronger influenced by SMC
than vice versa. This may be a correlate of PMC and LC being strongly sensitive to
the activity of SMC, in order to maintain a periodic action of SMC. Put otherwise,
PMC and LC stabilize SMC by adapting to its oscillation. Furthermore, LC adapts
to PMC. The strongest adaptation is, thus, found in LC, an area which is important
for time estimation. SAC interacts symmetrically with all other brain areas under
consideration. ‘

Internal pacing (second minute): The picture is different compared to the first
minute. SMC and LC as well as SMC and PMC are now interacting in a symmetric
way. LC adapts to the phase dynamics of PMC. In this way LC may stabilize the
periodic action of PMC. SAC plays a completely different role compared to the
external pacing: Instead of interacting symmetrically, it adapts its phase dynamics
to all other brain areas under consideration. In this way SAC, supported by LC,
plays the role of an inner clock necessary for internal rhythm generation. This fits
nicely to previous behavioral results which point out the importance of an inner
voice for the internal generation of rhythmic movements.*3)

We also investigated the degree of asymmetry between the muscular activity
(RF) and all four brain areas under consideration. During both first and second
minute in all pairs we obtain the same type of adaptation: The brain activity
is more sensitive to the muscular activity, which may mean that the controlling
brain areas adapt to the muscular activity in a way that they stabilize the periodic
tapping. Although this is consistent with the above mentioned results concerning
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the brain/brain-interactions, we should mention that in case of the brain/muscle-
interaction the determination of asymmetry according to (2-2) is not reliable because
of the high coherence and synchronization between peripheral and brain activity (see

§3.1).
§5. Discussion and conclusions

With this study, we addressed the problem of experimental detection of the
asymmetry of interaction of neuronal oscillators within the framework of weakly
coupled oscillators theory. The technique briefly described in §2 has been tested
on biophysically motivated neural oscillators, i.e. coupled Hindmarsh-Rose neurons.
The results show that the pairwise analysis of phase variables of oscillators in small
networks can reveal bi- or unidirectional interaction and quantify the degree of cou-
pling asymmetry. 7

Single cell level oscillations often provide an inaccurate description of global
oscillatory behavior of neuronal populations. Thus, we employed a macroscopic
level of description by considering the dynamics of large neuronal ensembles. A
new model of two ensembles of globally coupled neuronal oscillators, interacting via
their mean fields, has enabled us to simulate directional interactions between sources
of rhythmical activity which underlie observed signals, such as the MEG or EEG.
The results of asymmetry analysis for this model demonstrate that asymmetry in
interaction can be estimated for such complex systems as well.

Concerning the application of our asymmetry analysis we should mention that
we operate close to the method’s limits of resolution because of the small number
of periods in the MEG recordings. Nevertheless, it is quite remarkable how strongly
the pattern of interactions differ between external and internal pacing, although the
synchronization hardly changes in the studied sources and frequency band (Fig. 8).
The neurophysiological result which is suggested by our analysis, i.e., the dominant
role of the secondary auditory cortex for the generation of internal rhythms, is con-
sistent with previous behavioral studies which demonstrated the significance of an
inner voice for internal rhythm generation.3) Motivated by these results, we are
going to substantiate our findings by investigating more subjects and additionally
modifying the experimental protocol.
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