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On the Second Variation of Free Energies and Nonlinear
Fokker-Planck Equations Involving Periodic Variables

Till D. FRANK*)

Institute for Theoretical Physics, University of Miinster,
Wilhelm-Klemm-Str. 9, 48149 Minster, Germany

The stability of stationary solutions of nonlinear Fokker-Planck equations is discussed.
The equivalence between Lyapunov’s direct method and linear stability analysis for systems
‘with periodic random variables is shown by means of a H-theorem based on the second
variation of free energies.

§1. Introduction

Generalized Fokker-Planck equations that are nonlinear with respect to probabil-
ity densities have been discussed in various contexts. For example, they have been
studied to describe synchronization?™3) (for a review see Ref. 4)), ferromagnetic
phase transitions,? nonextensive thermodynamical systems,®”) and ion channels of
neurons.8) While linear Fokker-Planck equations usually exhibit unique stationary
solutions, nonlinear Fokker-Planck equations can exhibit multiple stationary solu-
tions.?)'9 Some of these solutions are stable in the sense that perturbations of the
solutions vanish in the long time limit. Other stationary solutions may be unstable
in the sense that perturbations do not decay. In literature there are two methods
to investigate the stability of stationary solutions of Fokker-Planck equations: linear
stability analysis and Lyapunov’s direct method. So far, however, the relationship
between these methods has not been explored in general. In this article, for systems
with periodic random variables we will show that they are equivalent. To this end, we
will introduce a H-theorem involving the second variation of free energy functionals.

§2. Linear stability analysis and Lyapunov’s direct method

9.1. Nonlinear Fokker-Planck equations and Lyaponov’s direct method

Let us consider a stochastic process described by the random vector X(t) =
(X1, -, Xp) defined on the phase space £2. Let P(x,t;u) = 6(z— X (t)) denote the
corresponding probability density with the initial distribution u: P(z,to;u) = u(z).
We consider systems with free energy functionals given by

F[P] = U[P] - QS[P] (21)

where U[P] describes an energy measure, () > 0 measures the strength of the fluctu-
ations to which the system is subjected, and S[P] = B[[,, s(P)dz] is an entropy
measure. Using the concepts of linear nonequilibrium thermodynamics, the evolution
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9z 0P

0 —P(zx,t;u) = —divd (z,t) = —div[I(z,t)P] + 0 M (z, t)P (2-2)

ot 51:1

can be derived,!91V) where I = (Iy,---,Iy) is a drift vector of a conservative
system, M;; is a semi-positive definite diffusion matrix, and J = (J1,---,Jy) can
be regarded as both a probability current and a thermodynamic flux. Note that
above and in what follows we use the Einstein summation convention. We require

that I satisfies

U
divI=0, I-V=5=0. (2-3)

Then, the integral [, I - X" P dMy vanishes, where X*(x,t) = —96F/5P0x; de-
notes a thermodynamic force vector, which means that I is indeed related to a
conservative system and does not contribute to an intrinsic entropy production 11)
This consideration holds provided that the surface integral B; = fan s(P)|I-ndA
with L[s(P)] = s — Pds/dP vanishes. In fact, for periodic boundary conditions
we have B; = 0. For natural boundary condition we need to examine By for each
case separately. For example, in the linear case given by U = [, U oU(x)P d™ g and
S = BGSg — fQPlnPde one obtains B; = 0.

Let us show now that X*® = 0 defines stationary probability densities of Eq.
(2-2). X' = 0 implies §F/P = p = constant. Consequently, stationary probability

densities are defined byll)’m)
ds]1™ " [SU/SP — u
Pa(@;u) = || Y5577, 2.4
with dB(z)/dz at z = fQ dM z, where [ds(z)/dz]~! denotes the inverse of

ds(z)/dz. Note that in general Eq (2-4) is an implicit description for Py that ad-
mits for multiple solutions (i.e., multiple stationary probability densities). In the
aforementioned linear case, Eq. (2:4) describes the Boltzmann distribution of Uy(x).
From Eq. (2-4) it is clear that Py can be written as Py (x;u) = f(6U/JP). Conse-
quently, we have div[IPs] = IV Py = [f(2)/dz]IVSU/SP = 0 and Py substituted
into the right hand side of Eq. (2-2) indeed yields 0P/0t = 0. Using Egs. (2-1) and
(2-2) we obtain

d 0F 0
—F = / 5P athM /Q PM XPXPdMz <0 (2-5)
provided that the surface term By = fan dF/6P]J - ndA vanishes. Obviously, for
periodic boundary conditions we have Ba = 0. In the case of natural boundary
conditions we obtain Bs = 0, for example, in the linear case mentioned earlier. The
inequality sign is due to the assumed semi-positivity of M. Note that the change of
entropy d;S due to intrinsic processes'®) is related to dF by dF = —Qd;S. Therefore,
Eq. (2-5) states that d;S > 0 for all processes described by the nonlinear Fokker-
Planck equation (2-2). From Eq. (2-5) we obtain the implication P = Py, = dF/dt =
0. In addition, if M;;, is positive definite we have dF/dt =0 = X" =0 = P = Py.
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In many cases, we can show that F' is bounded from below like F' > F,;,. Then, the
relations p d

—F <0, F2>2Fun, —
dt - dt

constitute a H-theorem!'®) stating that in the long time limit every transient solu-
tion converges to a stationary one. Note that in the linear case this H-theorem
reduces to the conventional one involving the Kullback distance measure K [P, Py =
[ PIn[P/ Py] dMz.1%):16)

Nonlinear Fokker-Planck equations of the form (2-2) that describe mean field
models often exhibit multiple stationary probability densities.?)»?) Using the free
energy measure (2-1) these probability densities can be classified into stable and
unstable ones. Stable ones correspond to minima of F'; whereas unstable ones corre-
spond to maxima and saddle points of F.17:18) In particular, the second variation of
F denoted by 62 F[Py](¢), where ¢ is a small deviation, can be used to determine the
character of extrema of F. Consequently, by means of the expression §2F[Px](¢) and
the relations (2:6), we can analyze the stability of stationary probability densities of
Eq. (2-2). This analysis is based on Lyapunov’s direct method. F' is the Lyapunov
functional. In the next section we introduce a H-theorem for linear Fokker-Planck
equations based on the second variation of a free energy measure. After that we will
use a modification of this H-theorem in order to show the equivalence of Lyapunov’s
direct method and a linear stability analysis of the stationary solutions of Eq. (2:2).

F=0& P =Py (2-6)

2.2. On a H-theorem for linear Fokker-Planck equations (periodic case)

Let X(t) denote a time-dependent T-periodic random variable and V(z) a po-
tential satisfying V(z + T) = V(z). We consider X € 2 = [a,b] withb—a =T >0
and assume that the probability density P(z,t;u) of X(t) with initial distribution
P(x,tp;u) = u satisfies the linear Fokker-Planck equation

0 0 [dV

— P(z,t; P sP(z,tu) . 27

8Pt = 2 [P ti)] + Qs Pla i) 7)
The stationary solution of Eq. (2:7) reads P (z;u) = Pst(z) = Z lexp{-V(z)/Q} >
0 with Z = [, exp{—V/Q} dz. Equation (2-7) can equivalently be expressed as

0 . A0 0 P(z,t;u) .
giPe i =g | Puag R )

which can be verified by substituting Ps(z) = Z lexp{—V(x)/Q} > 0 into Eq.
(2-8). Let us define now the functional

1 [P(z,t;u) — Pst(z 2 1 {/ [P x, t u)] }
L P, P. = — = - —1 , 2.9
PR = [ S 2 (2:9)
which satisfies L[P, Py;] > 0 and L[Py, Pst] = 0. Differentiation with respect to ¢
gives us )
d o0 P
— = — Piy|l——1| d B 2-10
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with the surface term B3 defined by

o P
= P—— =0. 2-11
By = Oz Py |, 0 ( )
As indicated above, the expression B3 vanishes due to the periodic boundary condi-
tions. Consequently, we have dL/dt < 0. Furthermore, the implications P = Py =
dL/dt = 0 and dL/dt = 0 = P = C' Py hold. On account of the normalization of P

and Py we have C = 1. Therefore, we conclude that the following relations hold:

d d
> — L < — L = = . .
L>0, —L<0, —L=0&P=Py (2:12)

They imply that for every initial distribution w the probability density P(z,t;u)
converges to the stationary solution Py: lim; oo P(z,t;u) = Pst(x). That is, we have

~ obtained a new H-theorem for linear Fokker-Planck equation subjected to periodic
boundary conditions. This H-theorem involves a Lyapunov functional L[P, Py that
differs from the Kullback distance measure K [P, Py].

L[P, Py4] can also be interpreted in terms of thermodynamic quantities. For
P(z,t;u) = Ps(x) we introduce the small deviation e(z,t;u) = P(z,t;u) — Py(z).
Let S = Sggs = — [ Pln P dz denote the Boltzmann-Gibbs-Shannon entropy. Then,
the second variation reads 025[Py)(e) = — fg[e z,t;u))?/Psy(z) dz. Since F[P] =
[ V(z)P dz—QS[P] we have 52F[Pst]( ) = —Q6? S[ Pg](€). Consequently, we obtain

L[P, Py = —§5QS[PSt](P — Py) = —2-52F[Pst](P — Py) . (2-13)

For probability densities P(xz,t;u) = Ps(z) + €(z,t;u) in a neighborhood of P,
the H-theorem based on Eq. (2-12) states that for ¢ — oo the deviation §2F of the
free energy vanishes. That is, for t — oo we have §2F = 2L — 0. Note that H-
theorems with functionals similar to (2-9) have been previously discussed.!9):29) The
functionals in these studies, however, have not been discussed in the context of the
free energy approach to linear and nonlinear Fokker-Planck equations.

2.3. Nonlinear Fokker-Planck equations and linear stability analysis

Let X (t) describe the stochastic behavior of a system with the free energy (2-1)
and the probability density P(z,t;u) = (6(x — X(t))) that evolves according to
Eq. (2-2). Again, we consider a T-periodic time-dependent random variable X (¢) on
the phase space {2 = [a,b] with b—a =T > 0. Then, Eq. (2:2) becomes

0 0 0 0F
P t; .
(z,t;u) = 5 — M. P— 923D (2-14)
For the sake of convenience let us put M,, = 1. Then, we get
0 o _0 6F

We require that the energy potential under consideration is T-periodic and that the
second variation of F' is symmetric:
U U §2F[P]

5—]5(33 +T) = 5—]5(33) " 3PP x(z,y) (2-16)
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with x(z,y) = x(z,y). For example, consider a system with mean field interactions
characterized by an entropy measure S = [ o 8(P)dz and an energy functional

UlP] = /QUo(x)Pd:c—{— %A)AZUMF(x—y)P(w)P(y)dxdy (2-17)

with Up(z+T) = Up(2), Ump(z+T) = Umr(2), and Umr(z) = Ump(—2). Then, the

quantities
5U
5P / Umr(z — y)P(y) dy - (2-18)
e S2F(P) 2s(2)
s(z
0l _U-y) - Qb(x—y) —2 , 219
et T R L = I (2:19)
satisfy Eq. (2-16). As shown in §2.1, the stationary solutions Py (z;u) of Eq. (2-14)
satisfy 0 F[Ps|/0P = p. Let us con81der now the evolution of P(x t;u) = Ps(z;u) +
e(z,t;u), where € corresponds to a small perturbation with [, e(x,t;u) dr = 0. Then,
the variational expansion of 0 F/§P at Py reads
SF[P]  6F|[Py] §° F[Py] , 2
5P 4P  5P(a)oP(y) W EW dy +0(€)
52F[P;
=p+ —Je(y, t;u) dy + O(€?) (2-20)

2 0P(z)0P(y)
and Eq. (2-15) becomes

0 52F[P,
0 0 [ n [Pet]

= ) = 2 ha : 2 _
8te(a:,t, u) P [Pst + €] 5 | © e(y,t;u)dy+ O(e”)| . (2:21)

o 5P(z)sP(5)"

Therefore, neglecting higher order terms O(€?), the evolution of € is given by the
linear integrodifferential equation

a 8 8 52F[Pst]
- ‘) = — — _— t;u) dy. 2-22
Equation (2-22) is the linearization of Eq. (2:15) at Py. Let us study now the
functional
6% F [Py
- = tyu)drd 2-23
1O =3RRI = [ [ spsmsetiueatin) dedy . (223)
The evolution of L(e) is given by
d 9 [ 8F[Py ?
ol = — —_— cu)dy| dr+ B 224

with b

1 El 52F[Pst]‘ ' i _

a
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The surface term vanishes due to periodic boundary conditions. Consequently, we
have dL/dt < 0. Moreover, we get € = 0 = dL/dt = 0. If dL/dt = O then
Jol02F[Pst] /6 P(2)6 P(y)]e(y, t; u) dy = C, where C denotes a constant. Multiplying
this result with €(z,t; u), integrating with respect to x, and taking the normalization
condition [, €(z,¢;u) dz = 0 into account, we obtain

—L=0 ————€(y, t; ,tu)dr dy = §“F|P, =0. (226

7= | | spmsae o ) dedy = PFRJO =0 . (226)
Let us apply these results to extrema of F. Let Py correspond to a (local or global)
minimum of F with

§°F[Py](€) >0Ve 20, 62F[Pyl(e)=0fore=0. (2-27)

Consequently, the functional L(e) is semi-positive: L(e) = 202 F[Py](e) > 0Ve. Fur-
thermore, if dL/d¢ vanish we conclude by means of Egs. (2:26) and (2-27) that
dL/dt = 0 = §°F[Py](e) = 0 = € = 0. Taking Egs. (2-24) and (2-25) into account,
we arrive at the relations

d d
L> —L <0 —L=0&¢=0 2.28
that constitute a H-theorem related to the perturbation e. Accordingly, if P corre-
sponds to a minimum of F' then in the limiting case t — oo the quantities €, L and
62F behave like € — 0, L(e) = 0, and 6%2F[Py](P — Py) — 0. Now, let Py describe

a maximum or a saddle point of F' satisfying _
Je* (2, t;u) : 62F[Py)(e") <O . (2-29)

That is, there is at least one perturbation €* such that in the direction of this
perturbation the free energy decreases. From Eqs. (2-24) and (2:25) it follows that
dL(e)/dt < 0 Ve and, in particular, dL(¢*)/dt < 0. Consequently, we have

%521?[19%](6*) <0. (2-30)

This inequality states that a negative valued perturbation §2F of the free energy F
does not vanish. |§°F| increases with time or is constant. In sum, by means of a
linear stability analysis we have shown that if Py corresponds to a minimum of F,
then perturbations of the stationary state vanish. In contrast, if Py corresponds to
a saddle point or a maximum of F, then there are perturbations that do not vanish.
Therefore, we conclude that Lyapunov’s direct method based on the free energy F
is consistent with a linear stability analysis based on the second variation 62F of F.

Let us conclude this section with an example. We consider the 2m-periodic
variable ¢ on the phase space {2 = [0,27] and study a stochastic process described
by the (nonlinear) mean field Fokker-Planck equation?

92p

242
(2-31)

0 ~ 0 0 N T/ 1) /
POt =g [o = || SUe(o— )P il Plo, )] +@
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with Q > 0. This process can conveniently be examined in a rotation frame? by
means of the probability density P(z,t;u) = P(¢(z,t),t;u), where ¢ is evaluated at
position z and time t like ¢(z,t) =  — wt. Then, Eq. (2:31) becomes

2
agP(zc t;u) =32 [/ —UMF z — 2')P(z', t;u) dz' P(z, t;u) +Qg—xl; (2-32)
This equation can be regarded as a special case of Eq. (2-15) for S = Spgs and an en-
ergy functional (2-17) given by Up = 0 and Umr(2) = Y ¢ cos(nz) (or Umr(2) =
— 3% | &, cos(nz), where & > 0 describes an attractive coupling that tends to
synchronize the system). In this case, it can be shown that F' is bounded from be-
low.2!) Consequently, the H-theorem of §2.1 applies and we have lim;_, 0 P(z,t;u) =
Pyt(z;u). Due to the nonlinearity, there are multiple stationary probability densi-
ties. One stationary solution is given by the uniform distribution Py = 1/[27]. In
some previous studies??):2?) the functional F has been evaluated at Py = 1/[27]. In
particular, calculating 62F[Py, = 1/[27]](e) for € = Y2 {an cos(nz) + by sin(nz)],
one can show that F' has a minimum at Ps = 1/[27] if the inequality 2Q > —cp = Cn
is satisfied for every n (weak coupling case). In this case Lyapunov’s direct method
tells us that the uniform distribution is a stable stationary distribution. In contrast,
F has a maximum or a saddle point at Py = 1/[2n] if there is at least one n* for
which &, = —cp= > 2Q holds (strong coupling case). Then, the uniform distribution
is an unstable stationary distribution and P(z,t;u) for u # 1/[27] cannot converge
to Py = 1/[2x]. Since Eq. (2-6) holds in any case, in the strong coupling case there
is at least one stable stationary distribution Py (z) # 1/[27] and the limiting case
limy_y00 P(z,t;u) = Pst(x) # 1/[27] holds. Therefore, it has been conjectured?!) that
in the long time hmlt P(¢,t;u) converges to a rotating wave solution of the form
Py (¢ + wt;u) with Py(z) # 1/[2n]. This result is in line with the linear stability
analysis carried out by Kuramoto. 2) Qur objective now is to reobtain the approach
by Kuramoto from our general linearized equation (2- 22). To this end, we substitute
Eq. (2:19) for S = Spas = s(z) = —zInz and Ps = 1/[27] into Eq. (2-22) and thus

obtain
0 e(z,t;u) = L o /U (z — y)e(y, t;u) dy + 2mQe(z, t; u) (2-33)
8t Z,u 2ﬂ'8 0 MF Y)e\y,i; ) s Uy .
Using Unr(z) = Y.0° cncos(nz) and ez, t;u) = 307 [an(tiw) cos(nx )by (t; u)
sin(nz)] Eq. (2-33) can be transformed into

di Z [an(t; 1) cos(nz) + b (t; w) sin(nz)]

= —= Z n%(cn + 2Q)[an(t; u) cos(nz) + bn(t; u) sin(nz)], (2-34)

n 1

which leads to

2 2

Zan(tiu) = —%(cn +20) an(t;u) —%bn(t;u) - —%(cn +2Q) bn(t;u) . (2:35)
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Consequently, the linear stability analysis yields the same result as Lyapunov’s direct
method. If ¢, +2Q > 0 (i.e., &, = —c, < 2Q) for all n then we have a,(t — o0) =
bn(t — 00) = 0. In contrast, if there is at least one n* with —c,« > 2Q then we can
choose an initial distribution u such that an(to;u) # 0 and by« (to;u) # 0. In this
case the amplitudes will increase with time.

§3. Conclusions

We have shown that for stochastic processes described by linear Fokker-Planck
equations subjected to periodic boundary conditions there is a H-theorem based on
the second variation 62F of the free energy F of the processes. This finding is partic-
ularly striking because for this kind of processes there is also a H-theorem involving
the measure F'. Consequently, we deal with stochastic processes for which we can
show by means of independent considerations that in the long time limit F' converges
to a stationary value Fy and 6°F converges to zero. §%F also provides us with a
local Lyapunov functional for nonlinear Fokker-Planck equations illustrating that
perturbations € decay to zero if a stationary solution describes a free energy mini-
mum. Therefore, the situation resembles the one for deterministic systems described
by first order differential equations. For ¢(¢t) = A(q — qo) with A > 0 the function
L(q) = [g — q0)?/2 is a Lyapunov function by means of which we can prove that the
limiting case q(t — c0) = o holds. For ¢(t) = —dV(q)/dq with dV(qo)/dg = 0 and
d?V (qo)/dq? = X > 0 the function L(e) = [g—qo]2/2 corresponds to a local Lyapunov
function for perturbations e(t) = ¢(t) — go with € ~ 0 by means of which the limiting
case €(t — 00) = 0 can be shown.
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