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On  the  Second  Variation  of  Free Energies and  Nonlinear

 Fbkker-Planck  Equations  Involving  Periodic Variables

Till D. FRANK')

institute for Theoretical Physics, Ciniversity of  Mtinster,

  Wilhelm-Klemm-Str. 9, 48149 Mdinster, Germany

   The  stability  of  stationary  solutions  of  nonlinear  Fbkker-Planck equations  is discussed.

The  equivalence  between Lyapunov's direct method  and  linear stability  analysis  fbr systems
'With

 periodic random  variables  is shewn  by  means  of  a  H-theorem  based on  the second

variation  of  free energies.

gl. Introduction

   Generalized R)kker-Planck equations  that are  nonlinear  with  respect  to probabil-

ity densities ha;ve been discussed in various  contexts.  For example,  they have been

studied  to describe synchronizationi)r3)  (for a  review  see  Ref. 4)), ferromagnetic

phase transitions,5) nonextensive  thermodynamical  systems,6),7)  and  ion channels  of

neurons.8)  While linear Fokker-Planck equations  tisually exhibit  unique  stationary

solutions,  nonlinear  Fokker-Planck equations  can  exhibit  mukiple  stationary  solu-

tions.5),9) Some of  these solutions  are  stable  in the sense  that perturbations of  the

solutions  vanish  in the long time limit. Other stationary  solutions  may  be unstable

in the  sense  that perturbations do not  decay. In literature there  are  two methods

to investigate the stability  of  stationary  solutions  of R)kker-Planck equations:  linear

stability  analysis  and  Lyapunov's direct method.  So far, however, the  relationship

between  these methods  has not  been explored  in general. In this article,  for systems

with  periodic random  variables  we  will  show  that they are  equivalent,  [[b this end,  we

will  introduce a  H-theorem  involving the second  variation  of  free energy  functionals.

g2. Linear  stability  analysis  and  Lyapunov's  direct method

2.1. Nonlinear Fbkker-Planck eguations  and  Lyaponov's direct rnethod

   Let us  consider  a stochastic  process described by the  random  vector  X(t)  =

(Xi, ･ - ･ ,
 XM)  defined on  the phase space  S?. Let P(x,tl u)  =  6(x -X(t))  denote the

corresponding  probability density with  the initial distribution u: P(x, to; za) =  u(x)J

We  consider  systems  with  free energy  functionals given by

I][P] =  U[P] -  QS[P] , (2sl)

where  U[P] describes an  energy  measure,  Q >  O measures  the  strength  of  the  fluctu-

ations  to which  the  system  is subjected,  and  S[P] =  B[Jb s(P)  dMx]  is an  entropy

measure.  Using the concepts  of linear nonequilibrium  thermodynamics,  the evolution
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equation

   3tp(x,t,u) -:  -divJ(x,t)  i=: -div[I(x,t)P]  + oO., [uak(x,t)PoO., [Ii/l;] (2 2)

can  be derived,iO),ii) where  I ==  (Ii,･･･ 
,IM)

 is a  drift vector  of  a  conservative

systern,  dek is a  semi-positive  definite diffusion matrix,  and  J  =  (Jl, ･ ･ ･ , JM) can

be regarded  as  both  a  probability current  and  a  thermodynamic  flux. Note  that

above  and  in what  fbllows we  use  
'the

 Einstein summation  convention.  We  require

that  I  satisfies

                                     6U

                       
divl =O,

 I･ VT IsltT 
=O.

 (2･3)

Then, the  integral J}? I + XthPdMx  vanishes,  where  Xth(x,t) =  
-06F16POxi

 de-

notes  a  thermodynamic  force vector,  which  means  that I is indeed related  to a

conservative  system  and  does not  contribute  to an  intrinsic entropy  production.ii)
This consideration  holds provided that the surface  integral Bi =  :fbo L[s(P)]I 

･
 n  dA

with  L[s(P)l =  s  
-

 Pds/dP  vanishes.  In fact, for periodic boundary conditions

we  have Bi =  O. For natural  boundary condition  we  need  to examine  Bi for each
case  separately.  For example,  in the linear case  given by U  =  J}? U(x)PdMx  and

s=  
BGSS

 ::  -  Jb PlnPdMx  one  obtains  Bi =  O･

   Let us  show  now  that Xth  =  O defines stationary  probability densities ef  Eq.

(2-2). Xth  = O implies iF16P  =  pa =  constant.  Consequently, stationary  probability
densities are  defined byli)712)

                    ,p?,t  (x, u)  -  [[:/] 
-i

{6[I/d6.Pf E,"} (2'`)

with  dB(z)/dz at  z  =  J}?s(Il,t)dMx, where  [ds(2)/dz]-i denotes the  inverse of

ds(z)/dz. Note that in general Eq. (2･4) is an  implicit description for 4t that ad-

mits  for multiple  solutions  (i.e., multiple  stationary  probability densities). In the

aforementioned  linear case,  Eq. (2･4) describes the Boltzmann distribution of  Ub(x).
From  Eq. (2･4) it is clear  that Il,t can  be written  as  R,t(x;u) ==  fl6U/6P). Conse-

quently, we  have div[I4t] =  IV4t  =  [f(z)/dz]IV6U/6P =  0 and  I]kt substituted

into the right  hand side  of  Eq. (2･2) indeed yields aP/et  =  O. Using  Eqs. (2･1) and

(2-2) we  obtain

            1 tlF =  L [li/I; 21iltPdMx =  
-
 

.1

 pMtskxlhxhh  dM.  s o (2 s)

provided that the surface  term  B2 =  :fl)g[6F/6P] J  
･
 ndA  vanishes.  Obviously, fbr

periodic boundary conditions  we  have B2 =  O. In the  case  of  natural  boundary
conditions  we  obtain  B2 =  O, fbr example,  in the linear case  mentioned  earlier.  The
inequality sign  is due to the assumed  semi-positivity  of  M.  Note  that  the  change  of

entropy  diS due to intrinsic processesi3) is related  to dF  by  dF  =  -(:?d,S. Therefore,

Eq. (2･5) states  that  diS  ) O fbr all processes described by the nonlinear  Fokker-
Planck equation  (2-2). Erom  Eq. (2･5) vie obtain  the implication P  ==  R,t =>  dF/dt  =

0. In addition,  if Mhk  is positive definite we  have dFfdt  ==  O =>  Xth  ==  O =>  P  =  R,t.



Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOEfice,Piogiess  of  Theoietical  Physics

50 T. D. R'ank

In many  cases,  we  can  show  that  F  is bounded  from  below  like F  2 Enin. Then,  the

relations
                d d

               TtFSO, F2Illhin,  zlTtF=OoP==Il,t (2･6)

constitute  a H-theoremi4) stating  that in the long time limit every  transient solu-

tion converges  to a stationary  one.  Note  that in the linear case  this H-theorem

reduces  to the conventional  one  involving the Kullback distance measure  K[P, Rit] =

Jl? P  ln [P1 4t] dMx.i5)i i6)

   Nonlinear Fokker-Planck equations  of  the form (2-2) that describe mean  field
models  often  exhibit  multiple  stationary  probability densities.5);9) Using the  free
energy  measure  (2-1) these probability densities can  be classified  into stable  and

unstable  ones.  Stable ones  correspond  to minima  of  F{ whereas  unstable  ones  corre-

spond  to maxima  and  saddle  points of  F,i7),i8) In particular, the second  variation  of

F  denoted by 62F[Ikt](E), where  E  is a  small  deviation, can  be used  to determine the
character  of extrema  of  F. Consequently, by means  of  the expression  62F[R]t](E) and

the relations  (2･6), we  can  analyze  the stability  of  stationary  probability  densities of

Eq. (2･2). This analysis  is based on  Lyapunov's direct method.  F  is the Lyapunov
functional. In the next  section  we  introduce a  H-theorem for linear Fbkker-Planck
equations  based on  the  second  variation  of  a  free energy  measure.  After that  we  will

use  a  modification  of  this H-theorem in order  to show  the equivalence  of  Lyapunov's
direct method  and  a  linear stability  analysis  of  the  stationary  solutions of  Eq, (2･2).
2.2, On  a  H-theorem for linear ,Fbkker-Planck  equations  lperiodic case?

   Let X(t) denote a  time-dependent  T-periodic random  variable  and  V(x) a  po-
tential satisfying  V(x  +  T) =:  V(x). We  consider  X  E n  ==  [a, b] with  b -  a  =  T  >  0

and  assume  that the probability  density P(x,tlu) of  X(t) with  initial distribution
P(x,to;u) =  u  satisfies  the linear Fokker-Planck equation

            8tp(x, t, u)  =  zll.T [Z/illp(x,t, u)]  +QoOi,  p(x, ti .)  (2 7)

The stationary  solution  ofEq.  (2･7) reads  R,t(x;u) =  4t(x) =  Z"i exp{-V(x)/([2}  >

O with  Z  ==  
.ft?

 exp{-Vl(:l}}  dx. Equation (2･7) can  equivalently  be expressed  as

                iil,Tp(x･t･u)-Qzii.T [4t(x)31. 
Plt(`th)")],

 (2 s)

which  can  be verified  by substituting  ll,t(=) =:  Z-iexp{-V(x)/([2} >  O into Eq.

(2･8). Let us  define now  the  functional

   L[p, 4t] -  i 
.L,

 
[P(X't'ft),

 i.)Ri`(X)]2 dx -  3 [11, 
[P(i',kiiX)]2

 dx 
-
 i] , (2 g)

which  satisfies  L[P,1I,t] 2 O and  L[Pkt,Pkt] =  O. Differentiation with  respect  to t

glves us

                  ltlL[p, R,,] =-L  F?,, [zS.1 lilll,7]

2

 d.+B,  (2 lo)
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with  the surface  term  B3 defined by

                                Opb

                         
B3=Pb7.

 Ip T, .=O･
 (2･11)

As  indicated above,  the expression  B3 vanishes  due to the periodic boundary condi-
tions. Consequently, we  have dL/dt  S O. Furthermore, the  implications P  =  1kt =>

dL/dt =  0 and  dL/dt =  O =.  P  =  Clkt hold. On  account  of  the normalization  of  P

and  1 lit we  have C  =  L  Therefore, we  conclude  that  the  fo11owing relations  hold:

                         d d

                
L2O,  artLE{O, dtL=OeP=iFkt.  (2･12)

They  imply  that for every  initial distribution u.the  probability  density P(x,tlu)

converges  to the  stationary  solution  Pkt: limt..o P(x, t; u)  =  jPkt(x).  That is, we  have
obtained  a new  H-theorem fbr linear Fokker-Planck equatien  subjected  to periodic
boundary conditions.  This H-theorem  involves a  Lyapunov  functional L[P, 4t] that
differs from the Kullback distance measure  K[P, Iilit],

   L[P, Rit] can  also  be interpreted in terms  of  thermodynamic  quantities. For

P(x,t;u) Rs R,t(x) we  introduce the small  deviation c(x,t;u)  =  P(x,t;u) -  Rit(x).
Let S =  SBGs =  

-
 f ]P  ln P  dx denote the Boltzmann-Gibbs-Shannon  entropy.  [l]hen,

the  second  variation  reads  62S[ll,t](E) =  -  Jle[E(x,t;u)]2/1]kt(x)dx. Since F[P] =

J?2 V(m)Pdx-([?S[P] we  have i2F[.R,t](E) =  
-(262S[Fkt](c),

 Consequently, we  obtain

           L[P, ]Pkt]  =  -i62S[R,t](P  -  ]R,t)  =  S62F[R,t](P -  R,t) J (2-13)
For probability densities P(x,t;u) =  Ilit(x) +  c(x,t;u)  in a  neighborhood  of  .Pl,t,

the  H-theorem based on  Eq. (2i12) states  that fbr t -> oo  the deviation 62F of  the

free energy  vanishes.  That is, for t -  oo  we  have 6217 :=  2L  -  O. Note  that H-

theorems with  functionals similar  to (2･9) have been previously discussed.i9)i20) The
functionals in these studies,  however, have not  been  discussed in the context  of  the
free energy  approach  to linear and  nonlinear  Fokker-Planck equations.

2.3. Nonlinear IJbkker-Planck equations  and  linear stability  analysis

   Let X(t) describe the stechastic  behavior of  a  system  with  the free energy  (2･1)
and  the probability density P(=,t;u) =  <6(x-X(t))> that evolves  according  to

Eq. (2･2). Again, we  consider  a  T-periodic time-dependent random  variable  X(t) on
the phase  space  9  =  [a,b] with  b-a  =  T  >  O. Then,  Eq. (2･2) becomes

                     o o                                         b 6F

                     stP(X,tlU) 
]=

 at.rMx=PbJ. Isitp･ (2･14)
For the sake  of  convenience  let us  put M..  =  1. Then, we  get

                       o o                                       O 6F

                       15Tt 
P(Xi

 
ti
 
")

 
=

 bT. 
P
 bl.T lsltir 

･
 (2･i5)

We  require  that the energy  potential under  consideration  is T-periodic and  that the
second  variation  of  F  is symmetric:

               g:/; (x + T) =  gi/; (x), 6p6i.si 
Pp](y)

 =  x(x, y) (2 i6)
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  with  x(x,y) =  x(x,y). Fbr example,  consider  a  system  with  mean  field interactions

  characterized  by an  entropy  measure  S =  Jl2 s(P)dx  and  an  energy  functional

           U[P] =  Yl, Ub(x)Pdx +  S 
.11,

 
.11,

 UMF(x  
-
 y)p(x)p(y)dx  dy (2･i7)

  with  Ub(z+T)  =  Ub(z), UMF(z+T)  ==  UMF(2), and  [IMF(z) =  UMF(-z). Then, the

  quantltles

                  [l}/i (x) =  Ub (x) +L  UMF(x-y)P(y)  dy (2･ls)

  and

                                         d2s(2)              62F[P]

            6p(x)6p(y)=U(X-Y)-Q6(X-Y)  d.2 .=p(.)  
,
 (2'19)

  satisfy  Eq. (2･16). As shown  in g2.1, the  stationary  solutions  4t(x;u) of  Eq. (2･14)
  satisfy  6F[R,t]/6P =  pa. Let us  consider  now  the evolution  of P(x,t;u) =:  Ikt(x;u) +

  E(x, t; u),  where  E corresponds  to a  small  perturbation with  J}? E(x,  t; u)  dx =  O. Then,

  the variational  expansion  of  6F/6P  at lkt reads

             
6:SP]

 =  
6F6[p"Pg`]

 +  Yl, dp62(.F)[6Pp`(]y)E(y,t; u)  dy + o(c2)

                  =  pa + 
.12,

 6p6 
2

( .F) 
[6Pp`(]y)

 E(y,  t; u)  dy +o(E2)  (2･2o)

  and  Eq. (2･15) becomes

    8t c(x7  t; u)  =  zil.T [ii ?it +  c] zil.7 [pa + L 6ISi.F) [6"F,lpi`iy) E(y,t;  u) dy +  o(E2)] (2･2i)

  Therefbre, neglecting  higher order  terms  O(E2), the evolution  of  E is given by  the

  linear integrodifferential equation

             IliltTc(x,t; u) =  zli.TRit(x)zii.T Y[l, 6p62(.F)[6Pp`(]y)E(y,t;u) dy. (2･22)

  Equation (2･22) is the linearization of  Eq. (2･15) at 4t. Let us  study  now  the

  functional

      L(c) =  Sti2F[F2it](E) -  S L .12

 6iilli.F)[6ipl]`(]y)E(y,t; u)E(x,t;  u) dx dy . (2･23)

  The  evolution  of  L(E) is given by

      Slt/L(E) :=  -L  f?]t(x;u) [zli.T L 6p62(.F)[6ipl]`iy)E(y,t, u) dy]
2

 dx + B4 (2･24)

  with
                                                  b

            B4 ==  iilit(x;u)zit.T [L 6p62(.F)[6Pp`(]y)E(y,t,u)dy]
2

 =o.  (2.2s)
                                                  a
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 The  surface  term  vanishes  due to periodic boundary conditions.  Consequently, we

 have dL/dt S  O. Moreover, we  getciO  =>  dL/dt =  O. If dL/dt =  Othen

 Jb[62F[]Pl,t]/iP(x)6P(y)]c(y,t;u) dy =  C, where  C  denotes a  constant.  Multiplying
this result  with  E(x,  t; u),  integrating with  respect  to x,  and  taking the normalization
condition  J?? c(x,t;  u) dx =:  O into account,  we  obtain

   IZtTL =  o ::>  L L 6p62(.F)[6ip
]k`iy)

 c(y,  t, u)6(x,t;  u) dx dy =  62F[ikt] (E) =  o (2 26)

Let us  apply  these  results  to extrema  of  F. Let Fkt correspond  to a  (local or  global)
minimum  of  F  with

             62F[1]kt](E) >O  Vc iil O , i2F[.Pl,t](c) =O  fbr E iii O . (2･27)
Consequently, the functional L(E) is semi-positive:  L(E) =  262F[4t](E) }) OVE. Fur-
thermore, if dL/dt  vanish  we  conclude  by means  of  Eqs. (2･26) and  (2･27) that
dL/dt  =  O =>  i2F[I]kt](E) =  O #  c i  O. liking Eqs. (2･24) and  (2･25) into account,
we  arrive  at  the  relations

                           d d

                  
L2O,

 EiTtLSO, aTtL=OoEiO (2･2s)
that  constitute  a H-theorem related  to the perturbation E. Accordingly, if ]Pkt  corre-
sponds  to a  minimum  of  F  then in the limiting case  t -  oo  the quantities E, L  and
62F behave like E -)F O, L(E) ->  0, and  62F[4t](P -  4t) -  O. Now, let ]Fkt  describe
a  maximum  or  a  saddle  point of  F  satisfying

                     ]E' (x, t; u)  : i2F[,Fl,t] (E') <0.  (2･29)
That  is, there is at  least one  perturbation E' such  that  in the direction of  this

perturbation the free energy  decreases. From Eqs. (2･24) and  (2-25) it fo11ows that
dL(c)/dt :i{ 0 VE and,  in particular, dL(E")/dt f{ O. Consequently, we  have

                          Slt1 62F[R,,] (c*) so.  (2･3o)

This inequality states  that a negative  valued  perturbation 62F of  the free energy  F

    not  vanish.  Ii2Fl increases with  time or  is constant.  In sum,  by means  ofa
doeslinear

 stability  analysis  we  have shown  that if 4t corresponds  to a  minimum  of  F,
then  perturbations of  the stationary  state  vanish.  In contrast,  if Rlt corresponds  to
a  saddle  point or  a maximum  of  F, then there are  perturbations that do not  vanish.

Theref9re, we  conclude  that  Lyapunov's direct method  based on  the free energy  .Fi

is consistent  with  a linear stability  analysis  based on  the second  variation  62F of  F.

   Let us  conclude  this section  with  an  example.  We  consider  the 2T-periodic
variable  ¢  on  the phase  space  S2 ==  [O,2T] and  study  a  stochastic  process described
by the  (nonlinear) mean  field R)kker-Planck equation2)

  2il,P@, t･ u) 
-

 
-zil;

 [w -  .Ll, z;$ uMF(ip -  ip')p(ip', t, u)  dipt,p(ip,t, .)]  + QOo
2

ipe
                                                               (2･31)
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with  Q >  O. This process can  conveniently  lee examined  in a  rotation  frame2) by

means  of  the probability density P(x,t;u) =  P(ip(x,t),t;u), where  ip is evaluated  at

position x  and  time t like ip(x,t) =  x  -  wt.  Then, Eq. (2･31) becomes

   iiltJP(x,ti u) =  zll.T [L SI.T uMF(x - x')p(x',t;u)  dx'p(nc,t;u)] + QOo
2

.5  (2 32)

This equation  can  be regarded  as  a  special  case  of  Eq. (2"15) fbr S =  SBGs and  an  en-

ergy  functional (2･17) given by Ub =  O and  UMF(z)  =  £ .OO=1  
cn  cos(nx)  (or UMF(z) =

-Z.OO=iincos(nx),  where  an >  O describes an  attractive  coupling  that tends to

synchronize  the  system).  In this case,  it can  be shown  that F  is bounded from be-

low.2i) Consequently, the H-theorem of  S2.1 applies  and  we  have limeoo  P(x, t; u)  =

Rit(x;u). Due  to the nonlinearity,  there are  multiple  stationary  probability densi-

ties. One  stationary  solution  is given by the  unifbrm  distribution R,t =  l/[2T]. In

some  previous studies2i),22)  the  functional F  has been  evaluated  at  Il3t ==  11[2r]. In

particular, calculating  i2F[IJI]t =  11[27r]](E) fbr c =  £ .OO--i[a.  cos(nx)  +  bn sin(nx)],

one  can  show  that  F  has a  minimum  at  1kt =  11[2T] ifthe inequality 2Q  >  
-cn

 
=

 En

is satisfied  for every  n  (weak coupling  case).  In this case  Lyapunov's  direct method

tells us  that the  uniform  distribution is a  stable  stationary  distribution. In contrast,

F  has a  maximum  or  a  saddle  point at  Pgt =  1/[2T] if there is at  least one  n'  fbr

which  ant =  -c.*  >  2Q  holds (strong coupling  case).  Then, the uniform  distribution

is an  unstable  stationary  distribution and  P(x,tlu) fbr u  il 11[2T] cannot  converge

to iF?,t  ==  11[2T]. Since Eq. (2･6) holds in any  case,  in the strong  coupling  case  there

is at least ene  stable  stationary  distribution R,t(x) it 1/[2T] and  the lirniting case

limt-oo P(x,t;u) =  4t(x) ii: 1/[2T] holds. Therefore, it has been conjectured2i)  that

in the long time  limit P(ip,t;u) converges  to a  rotating  wave  solution  of the form

Rit(ip +  wt;u)  with  1kt(x) l 1![2T]. This result  is in line with  the linear stability

analysis  carried  out  by Kuramoto.2) Our                                  objective  now  is to reobtain  the approach

by Kurcimoto from our  general linearized equation  (2･22). [[b this end,  we  substitute

Eq. (2･19) fbr S =  SBGs =>  s(z)  =  -zlnz  and  R,t =  1![2T] into Eq. (2･22)                                                            and  thus

obtain

     3tc(x,t; u) =  i. oai, [Xl} UMF(x-y)E(y,t; u) dy+2T([?E(x,t, u)] (2 33)

Using UMF(z) =  2i?=icncos(nz) and  E(x,t;u)  =  2]l?.i[a.(t;u)cos(nx)b.(t;u)
sin(nx)]  Eq, (2･33) can  be transfbrmed into

IIItl Sii) [an(t; u) cos(nx)  +  bn (ti u) sin(nx)]
  n=1

  =  -;  ISI) n2(cn  +  2Q) [an(t, u) cos(nx)  + bn (t, u)  sm(nx)],
       n=1

which  leads to

SltTan(t, tt) =  -!Ii
2L(cn

 + 2Q) an(t,u)  , SltTbn(t;u) =  -!ll
2L

 (cn + 2Q) bn(t,u)

(2･34)

(2･35)

NII-Electionic  



Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOEfice,Piogiess  of  Theoietical  Physics

On  the Second lihriaton of iFlrTee  Energies 55

Consequently, the linear stability  analysis  yields the same  result  as  Lyapunov's  direct
method,  If c. +  2Q  >  O (i.e., Ei,, ==  -c.  <  2Q) for all n  then we  have a.(t  -  oc)  =

b.(t -  oo)  =  O. In contrast,  if there is at  Ieast one  n"  with  -c..  >  2Q  then  we  can

choose  an  initial distribution u  such  that  a.*(to;u)  f O and  b..(to;u) 4 O. In this
case  the  amplitudes  will  increase with  time.

S3. Conclusions

   We  have shown  that  for stochastic  processes described by linear Fbkker-Planck
equations  subjected  to periodic boundary conditions  there is a  H-theorem  based on
the second  variation  62F of  the  free energy  F  of  the  processes. This finding is partic-
ularly  striking  because fbr this kind of  processes there is also  a  H-theorem  involving

the measure  F. Consequently, we  deal with  stochastic  processes fbr which  we  can

show  by means  of  independent considerations  that in the long time limit F  converges

to a  stationary  value  Fl,t and  62F converges  to zero.  62F  also  provides us  with  a

local Lyapunov  functional for nonlinear  Fokker-Planck equatiolls  illustrating that

perturbations E decay to zero  if a  stationary  solution  describes a  firee energy  mini-

mum.  Therefore, the  situation  resembles  the one  fbr deterministic systems  described
by  first order  diflerential equations.  For d(t) =  A(q -  qo) with  A >  0 the function
L(q) =  [q -  qo]2/2 is a  Lyapunov function by means  of  which  we  can  prove that the
limiting case  q(t -> oo)  ==  qo holds. Fk:)r d(t) =  

-dV(q)/dq
 with  dV(qo)/dq =  O and

d2V(qo)/dq2 =  A >  O the function L(E) =  [q-qo]2/2 corresponds  to a  local Lyapunov
function fbr perturbations E(t) =  q(t) -  qo with  E fe O by means  of which  the limiting
case  E(t -  oo)  =  e can  be shown,
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