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An  Introduction  to Coupled  Heteroclinic  Cycles

Masashi  [[IACHIKAWA')

Departrnent of Physics, Nagoya  [iniversity, Nagoya 464-8602, Japan

  Coupled  heteroclinic cycles  are  introduced as  a  new  class  of  coupled  osclllator  systems,

As  an  example,  we  study  a  square  lattice distribution of  heteroclinic cycles  and  show  the

emergence  of  non-chaDtic  disordered patterns. A  short  analysis  of  them  is also  reported,

Sl. Introduction

   Coupled element  systems  in which  each  element  has autonomous  dynamics and

interact each  other  are  usefu1  classes  of  models  to understand  the dynamics of  the

se-organized  systems.  For example',  coupled  limit cycles  or  chaotfc  maps  are  fre

quently  studied  as the simplest  cases.i)-3)  Emerging  phenomena  in the whole  system

reflect  the  dynamical properties of  each  elernent.  When  we  introduce a  new  type of

dynamics as  the elements,  the  whole  system  will  show  new  phenomena.

   As a  new  type of  dynamical systems,  we  note  systems  which  have heteroclinic

cycles.  Heteroclinic cycles  are  constructed  with  some  saddle  fixed points and  hete-

roclinic  orbits  that  connect  the  fixed points  cyclically.  If a  system  has a  heteroclinic
cycle  as  an  attractor,  an  orbit  stays  for long periods in neighborhoods  of  fixed points
and  moves  to the next  quickly along  with  the heteroclinic orbits.  The  staying  peri-
ods  grow  exponentially  with  respect  to the  number  of  visiting  times. Therefore, the

period of  oscillation  along  with  the heteroclinic cycle  also  grows exponentially,  and

such  a  system  has no  characteristic  time  scale.  However, this infinite growth  of  the

period can  occur  when  the system  is perfectly isolated from  the  environment.  It is

not  realistic  as  a  model  of  a  natural  system,  and  every  system  gets some  noise  or

perturbations from the environment.  The  perturbations on  a  dynamical  system  force
an  orbit  keep away  from the attractor  (i.e. the heteroclinic cycle  in this case).  There-
fore, the  system  with  the  heteroclinic cycle  can  resume  characteristic  time scale  by
means  of  perturbations. In other  words,  a  time  scale  of  such  a  system  depend  on  the

perturbations from the exterior  of  the system.  As the exterior,  we  introduce many
other  systems  with  heteroclinic cycles,  and  the  interactions affect  the  systems  as

the perturbations.  Though  some  basic properties  of  heteroclinic cycles  have been re-

ported,4)-7) collective  phenomena  of  heteroclinic cycles  have not  been studied.  Thus,
we  introduce coupled  heteroclinic cycles  and  show  a  novel  phenomena.

g2. Replicator  equation  and  robust  heteroclinic cycle

   First, we  review  a  class  of  dynamical  systems  which  has robust  heteroclinic cy-
cles  against  small  changes  of  parameters.  Since all heteroclinic cycles  are  structurally

unstable,8)  such  a  system  must  harve certain  constraints.  With adequate  constraints,
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the  phase  space  have some  invariant sets,  and  a  robust  heteroclinic cycle  can  exist

in the  invariant sets. As an  example  of  such  systems,  we  adopt  the replicator  equa-

tion.7) The  replicator  equation  describes dynamics of  populations that multiply  by
replication  and  interact each  other.  A  set  

'of
 selfcatalyzing  molecules  that  make  a

chemical  reaction  network  are  an  example  of  such  populations. Additionally, the
Lotka-Vblterra equation  is proved to be equivalent  to the replicator  equation.  Thus,
it has be,en also  analyzed  as the basic model  of  ecological  systems  in a  lot of  studies,7)

The replicator  equation  is written  as

ddVtz
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where  xi  denotes the relative  abundance  of  species  i and  matrix  (aij) describes the
interaction effects  between  species.  Because the variables  represent  proportions, the
constraints  (2) are  fu1fi11ed by itself. Therefore, the  phase space  becomes compact  set
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Fig. 1. A  phase space  of  replicator  equation

   (1) with  four components  (S4) and  a  robust

   heteroclinic cycle.  The  fi11ed circles  repre

   sent  saddle  fixed points, and  the  thick solid

   lines with  arrows  represent  hetereclinic or-

   bits,
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called  simplex  and  the boundary  of  the

simplex  becomes the invariant set.

   [[b describe the robust  heteroclinic
cycle,  we  note  a  four-component repli-

cator  system,  which  is adopted  in our

study  reported  below, with  pararneter
matrlx

(aij) =

01-1-2-2o1-1-1-2o1 1-1-2o

. (4)

Phase space  (S4) is surface  and  interior of  a  tetrahedron with  vertices  p? ==

(tiiJ', 62j', 63j, 64J') (Fig･ 1). These  vertices  correspond  to the ecological  systems  which

are  occupied  with  only  one  species.  They  are  always  fixed points with  any  parameter
matrix.  Moreover, edges  which  are  segments  {xlxi+xj =  1, xk  ==  xt  ==  O} that  connects

two  vertices  are  also  invariant. In the  invariant edge  {mixi +x2  =  1, x3  
--

 x4  ='O},  the

fixed point (pi) at  one  end  becomes a  source  and  the fixed point (p2) at the other

end  becomes  a  sink  with  the matrix  (4). Therefbre, the edge  becomes  a heteroclinic

orbit  which  connects  the  two  fixed points. Because  the edges  are  invariant, the' het-
eroclinic  orbit  is robust  against  small  changes  of  parameters. In this case,  the  four
edges  {mixi +xi+i  !!  1, xi+2  =::  xi+3  !!  O} are  designed in the same  way.  Therefbre, the

four fixed points and  the four edges  compose  a  robust  heteroclinic cycle  attractor

(Fig. 1).
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S3. Coupled  heteroclinic cycles

   In this paper, we  study  coupled  replicators  in which  the  replicators  with  fbur
components  illustrated above  are  distributed on  a  two  dimensional square  lattice,
and  nearest  neighbors  are  coupled  diffusively,

        E{f/} 
("
 
V)

 =  es (x(.,.)) +  D  
Uz ±i

 
Vz± i(x;u',v')

 - xsu･v))  (z =  1, ,4)  (s)
                           uf  vf

Where  (u,v) is a  site index that represents  the  location of  an  replicator,  and  D  is

the coupling  constant  between adjoining  sites. The  corresponding  situations  can

occur  in an  ecological  system  on  dotted spots  with  diffusion between the spots  (e.g.
ecosystem  on  trees in an  orchard)  or  dynamics of  reaction  networks  of  selficatalyzing

molecules  in cells.

   If the  system  has a certain  large coupling  constant  (D [y O.1), we  observe  rotating

spiral  patterns of  a  well-known  type. However, if we  choose  the coupling  constant

small  (D <  O.Ol), a  quite different pattern arises  (Fig. 2), The  snapshot  of  the

pattern looks disordered in space,  but it is exactly  periodic in time  and  not  chaotic

(Fig. 3). The period of  the pattern is the same  as  the period  of  oscillation  of  each

replicator  (Fig. 3). Thus, the  frequencies of  all rep}icators  are  entrained  each  other,

while  phases of  their oscillations  keep differences. There  are  many  attracting  patterns
which  divide the  ambient  phase  space  into their basins. With  further investigations,
we  discover a  local rule  of  the patterns:  relation  on  the phases of  oscillations  between

two neighboring  replicators  never  become the anti-phase.

   As mentioned  above,  the coupling  effect keeps orbitpoint  [x("7V)(t)] ofeach  repli-

cator  from approaching  the heteroclinic cycle  which  exists  in the  phase  space  of  each

replicator.  Thus, smaller  coupling  constant  makes  orbitpoint  approach  closer  to the

               O.O  Xi  1.0

Fig. 2, A  snapshot  of  spatial  distributions of

  xg"'V)  on  a  gray scale  with  30 ×  30 sites  and

  D  ==  10-4. Disordered  pattern is observed.
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Fig, 3. Time series  data of  Fig. 2, (A): the
  distance between  Xo  E R3600  (a point in
  the trajectory at  a  time te in the ambient

  phase spa £ e) and  X  (the trajectory  after

  the time). (B): the oscillation  ofxSi'i).  The

  exact  returns  to  Xo  in (A) indicate that
  the disordered pattern forms a  limit cycle

  in the ambient  phase  space,  The  both os-

  cillations  show  the  same  period,
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Fig. 4. Seven types  of  phase  arrangements  for

  fbur replicators  that form unit  square  in

  the  lattice. The circle  represents  a  replica-

  tor system.  The  arrow  denotes the  T/2  ad-

  vance  of  the phase  of  the replicator  which

  is pointed by it. The  parallel lines denote

  the two  replicators  have  the same  phase.

cal  rule  rnentioned  above  put another  restriction,  an

O or ± T/2.  With this simplification  of  the

composed  into seven  types  of  units  and  their
Moreover, we  can  compose  all the possible
types.

heteroclinic cycle.  As a  result,  the or-

bitpoint stays  long in the  neighborhoods

of  fixed points and  moves  infrequently
along  with  heteroclinic orbits.  With  a

quite small  coupling  constant,  all orbit-

points move  infrequently and  one  can

get the  snapshots  of  patterns in which
all orbitpoints  stacy in the neighborhoods
of  fixed points. Jn such  states,  the  orbit-

points can  be roughly  described as  four

phases (O,T/2,7r,3T/2 ) of  oscillations

which  represent  the fbur fixed points
(pi,p2,p3,p4) respectively.  Therefore,

difference of  states  between neighboring
replicators  are  described as  the defer-
ence  of  phases, which  can  take  the  value

of  O, ±7/2  or  ±T. Furthermore, the lo-

      d the phase difference only  takes

  description, the patterns can  be de-

   rotated  and  reflected  ones  (Fig. 4).

patterns with  the  combinations  of  the

g4. Conclusion

   In this paper, we  introduced coupled  heteroclinic cycles  and  reported  a  novel

type  of  oscillating  patterns. We  also  reported  the short  analysis  of  them. For more
detailed investigation, see  Ref. 9). In coupled  heteroclinic cycles,  the  coupling  effect

is assumed  as  a  perturbation for the  single  system  mentioned  above.  Therefore, the
differences of  states  between elements  decide the time  scales  of  the dynamics of  the

elements.  Such fiexibility of  tirne scales  on  each  element  can  bring such  cornplex

states  as  non-chaotic  attractors.  Another example  of  non-chaotic  complex  states

will be reported  in the forthcoming paper.iO)
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